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Abstract: Recently, flexible devices using intrinsically conductive polymers, particularly poly(3,4-
ethylenedioxythiophene) (PEDOT), have been extensively investigated. However, most flexible
wiring fabrication methods using PEDOT are limited to two-dimensional (2D) fabrication. In this
study, we fabricated three-dimensional (3D) wiring using the highly precise 3D printing method of
stereolithography. Although several PEDOT fabrication methods using 3D printing systems have
been studied, few have simultaneously achieved both high conductivity and precise accuracy. In
this study, we review the post-fabrication process, particularly the doping agent. Consequently, we
successfully fabricated wiring with a conductivity of 16 S cm−1. Furthermore, flexible wiring was
demonstrated by modeling the fabricated wiring on a polyimide film with surface treatment and
creating a three-dimensional fabrication object.

Keywords: microstereolithography; flexible wiring; 3D microfabrication; conductive polymers

1. Introduction

Intrinsically conductive polymers (ICPs) have been actively investigated since the
discovery of conductive polyacetylene with iodine doping by Shirakawa et al. in 1977 [1],
and various ICPs have been developed [2]. In particular, poly(3,4-ethylenedioxythiophene)
(PEDOT) is one of the most widely employed ICPs because it is superior to ICPs in terms of
conductivity and environmental stability after doping [3–5]. Recently, PEDOT has become
a promising conductive material in the field of flexible electronics [6–15], where high
processability is required for the advancement of the Internet of Things. Currently, inkjet
printing [11], screen printing [12], roll-to-roll method [13], and photolithography [6–10]
are the main processing technologies for fabricated wiring. However, these processing
technologies have limitations in achieving three-dimensional (3D) wiring and fabrication
accuracy. High device integration is effective for fabricating highly functional flexible
devices. If 3D flexible wiring can be formed in high definition, device integration can be
drastically improved.

As an example of attempted 3D wiring using PEDOT, a 3D printing method has been
reported employing material extrusion (MEX) of a solution containing a mixture of PEDOT
and polystyrene sulfonic acid (PSS) [16]. However, the MEX method is unsuitable for
high-resolution patterning because the resolution of the MEX method depends on the
nozzle diameter. In this study, we focused on stereolithography, which is the most precise
3D printing technique. The color that originates from a long-conjugated system of PEDOT
is a challenge for adapting PEDOT to the photocurable resin used in stereolithographic
methods because the absorption of light suppresses the photopolymerization reaction
by PEDOT. Therefore, two methods are used for the 3D-wiring fabrication of PEDOT
using stereolithography: one is to fabricate a mold and soak it with a PEDOT:PSS aqueous
solution, and the other is to mix the PEDOT precursor with a light-curing resin. For
example, in the previous method, Tao et al. developed arbitrary structures from a hydrogel
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by stereolithography and then immersed the fabricated object in a PEDOT:PSS solution to
fabricate wiring [17]. However, it was difficult to achieve sufficient conductivity using only
hydrogel and PEDOT:PSS, and although the conductivity was improved by adding a small
amount of highly conductive carbon nanotubes to the light-curing resin that formed the
hydrogel, the conductivity was only 0.425 S cm–1. As an alternative method to fabricate
conductive 3D wiring using PEDOT precursors, Yamada et al. impregnated the EDOT
dimer in a Nafion film and succeeded in obtaining a high conductivity of 3500 S cm–1;
however, their method is limited to inner Nafion film [18].

In contrast, Kurselis et al. fabricated a 3D object in which PEDOT is dispersed inside
the 3D-printed object by the oxidative polymerization of EDOT with iron chloride (FeCl3)
inside the fabricated object [19]. In their study, advanced 3D microstructures, such as
lattices, were fabricated using two-photon lithography, exhibiting an ultra-high resolution
of several hundred nanometers. Furthermore, they suggested that flexible wiring could
be achieved by selecting a highly flexible polymer as the matrix. However, the maximum
conductivity they achieved was 0.04 S cm–1. Although the choice of dopant is important
for the conductivity of ICPs [20], they employed FeCl3 as both the oxidant for EDOT and
the dopant for PEDOT in their experiments. We hypothesized that they could not obtain
sufficient conductivity in their study because FeCl3 was unsuitable as a dopant. The most
common dopant for PEDOT is PSS, and this mixture is termed as PEDOT:PSS. It is obtained
by the oxidative polymerization of EDOT dispersed in a PSS solution [3] but applying
the same method to the photocurable resin used in stereolithography is difficult. This is
because significant amounts of water must be removed after fabrication, which causes
shape deformation owing to shrinkage, and the low solubility of EDOT in water causes
it to separate from the 3D-printed structures. In addition, it is difficult to dissolve PSS
in photocurable resins containing EDOT without a solvent. Even if PSS is doped after
oxidative polymerization, the large molecular size of PSS prevents it from penetrating the
3D-printing material, making it difficult to expect doping effects. Hence, we concluded
that it would be difficult to use PSS and employed p-toluene sulfonic acid (PTSA) as
the dopant instead of PSS. The chemical structure of PTSA is similar to the monomer
unit of PSS. PTSA possesses a low molecular weight of 172 g mol–1 and is expected to
exhibit significant penetration into the 3D printing material. Furthermore, it has been
reported to have dopant effects on PEDOT [21,22]. In this study, we attempted to improve
conductivity by doping with PTSA following the scheme in Figure 1. Consequently, we
succeeded in improving the conductivity by approximately two orders of magnitude, even
though the EDOT content was less than half the amount reported by Kurselis et al. In
stereolithography-based methods for fabricating wiring, most of the reported conductivity
is less than 0.01 S cm−1, even when metallic particles or carbon nanotubes are used [23–27].
Therefore, it has advantages in terms of conductivity over other materials.

Furthermore, because conductive polymers are dispersed within flexible polymer
materials, flexible wiring was demonstrated on a polyimide (PI) film, which was applied as
an original surface treatment to improve the adhesion of 3D-printed structures. PI film is
widely used as a base material for flexible substrates.
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Figure 1. Schematic of different post-curing processes between Kurselis et al. [19] and this study.

2. Materials and Methods
2.1. Materials

p-Toluene sulfonic acid monohydrate (PTSA) and 3,4-ethylenedioxythiophene (EDOT)
were purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Iron (III) chlo-
ride hexahydrate (FeCl3·6H2O), sulfuric acid (H2SO4), chloroform, ethanol, and branched
polyethyleneimine (PEI, average molecular weight: 1800 g mol–1) were obtained from FUJI-
FILM Wako Pure Chemical Co. (Osaka, Japan). Diphenyl(2,4,6-trimethylbenzoyl)phosphine
oxide (TPO) was purchased from Sigma–Aldrich (St. Louis, MO, USA). Polyethylene glycol
(600) dimethacrylate (SR252) and dipentaerythritol pentaacrylate (SR399) were purchased
from TOMOE Engineering Co., Ltd. (Okayama, Japan). A polyimide (PI) film was obtained
from 3M Japan Co., Inc. (Tokyo, Japan) Gold wire (diameter: 0.1 mm) was obtained from
Nilaco Co. (Tokyo, Japan). Conductive adhesive (Dotite D-500) was purchased from Fu-
jikura Kasei Co., Ltd. (Tokyo Japan). A blue light-emitting diode (LED, EIL33-3L) was
obtained from Toyoda Gosei Co., Ltd. (Aichi, Japan).

2.2. Characterization

Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy was
performed using an FTIR-6200 with ATR PRO450-S (Diamond prism) at 25 ◦C (JASCO
Co., Tokyo, Japan). The conductivity of the 3D models was calculated using the resistance
and size of the object. A gold wire was attached to the fabricated object using conductive
adhesive. The resistance value of the object was then measured using an Agilent 34410A 6 1

2
digital multimeter (Agilent Technologies, Inc., Santa Clara, CA, USA.) with a four-terminal
sensing mode. The observation and size evaluation of the fabricated objects were performed
using a VHX6000 microscope (Keyence Corp., Osaka, Japan). Scanning probe microscopy
(SPM) observations (tapping mode) were performed using an SPA400 (Seiko Instrument
Inc., Chiba, Japan) equipped with an SI-DF20(Al) cantilever with a spring constant of 15 N
m−1. SPM phase-difference and topographic images were analyzed using Gwyddion 2.58.

2.3. Stereolithography System

We previously developed several types of stereolithography systems, such as a bottom-
up system based on single-photon polymerization with a blue laser [28,29] and a direct
writing system using blue and/or femtosecond lasers [30,31]. In this study, we developed
another bottom-up system based on single-photon polymerization using a blue laser with
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an fθ lens for laser writing in centimeter-sized areas. Figure 2 shows a schematic of the
developed blue-laser stereolithography system. Laser light is emitted from a semiconduc-
tor laser (Cobolt 06-MLD, Cobolt, Solna, Stockholms Lan, Sweden) with a wavelength of
405 nm, and the laser output is adjusted by passing it through a variable neutral density
(ND) filter. The laser was turned on and off using an automatic shutter. The laser diameter
was then increased using a beam expander. Next, the laser light that passed through
the beam splitter cube and entered the observation optics was incident on a galvanome-
ter mirror (SCANCUBE III 14, SCANLAB GmbH, Puchheim, Germany) and focused on
the boundary surface between the light-curing resin and upper glass substrate using an
objective lens. The system employed an fθ lens (SCANCUBE III 14, SCANLAB GmbH,
Puchheim, Germany) as the focusing lens. The laser light reflected by the galvanometer
mirror can only form an image along a circular surface using a spherical lens. However, fθ
lenses overcome this limitation by flattening and correcting the image plane of the laser
light. This system enables scanning on a flat surface over a larger area than spherical
lenses and is effective for laser wiring. The build area of the system was 60 × 60 mm2.
Based on the slice data, the galvanometer mirror was scanned in the horizontal plane to
cure the light-curing resin and form the layers. One portion of the laser light reflected
by the glass-bottom Petri dish was reflected by a beam splitter cube and focused on a
charge-coupled device camera to precisely adjust the focus position onto the glass substrate.
The 3D model was formed upside-down on the upper glass substrate, and the Z stage was
raised to stack each layer. These stages and galvanometers automatically controlled the
laser writing, stacking, and scanning speed changes according to the 3D-CAD model data
using lab-made software to fabricate the 3D model. The irradiated laser outputs for 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 17, and 25 vol.% of EDOT in uncured resin were 0.25, 0.25, 0.25, 0.25,
0.25, 0.255, 0.255, 0.26, 0.26, 0.26, 0.30, and 0.30 mW, respectively, when passing through the
variable ND filter in our setup. The layer pitch and hatching distances were 30 and 3 µm,
respectively.
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2.4. Preparation of Resin for Conductive Fabrication Objects

For all resins mixed with EDOT and SR252 in different volume ratios, and a TPO
initiator was added at 1 wt.% to SR252. The mixture was stirred for 5 min.
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3. Results and Discussion
3.1. Conductive Treatment of Resin Droplet

First, the formation of PEDOT, a conductive polymer, in the cured resin was confirmed.
In this study, ATR-FTIR was employed to confirm the synthesis of PEDOT from the changes
in the chemical structure of the cured material. In this case, resin droplets containing
44.8 vol.% EDOT were adjusted as a model system, and curing was attempted using ultra-
violet (UV) irradiation (handheld UV lamp SLM-8, wavelength: 365 nm, 1407 µW cm–2, AS
One Co., Osaka, Japan). The oxidative polymerization of EDOT with FeCl3·6H2O was then
performed (Figure 3). In addition, a higher concentration of EDOT was used to facilitate the
confirmation of the spectral changes associated with the oxidative polymerization of EDOT.
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The ATR-FTIR spectra of the uncured resin, photopolymerized resin UV-irradiated
for 15 min, and oxidative polymerization resin treated with FeCl3·6H2O are shown in
Figure 4. In all the spectra, peaks were observed at 2859 cm–1, attributed to the symmetrical
stretching vibration of CH2 with SR252, and 1712 cm–1, attributed to the carbonyl group
(C=O) stretch vibration. The peak originating from SR252 appears strong because SR252
accounts for a large proportion of the resin composition. In the uncured resin, the 1624
cm–1 peak originating from SR252 acrylate (C=C stretch vibration) was observed (Figure 4,
bottom spectra), but the peak decreased significantly after photopolymerization (Figure 4,
middle spectra) and oxidative polymerization (Figure 4, upper spectra). This means that
the acrylate groups disappeared owing to photopolymerization. The adjusted uncured
resin containing EDOT was a clear liquid (Figure 5a). However, after UV irradiation, it
was a transparent solid, which can also be explained by the fact that SR252 formed a cross-
linked structure following photopolymerization (Figure 5b). Further, it remains transparent,
suggesting that EDOT has not polymerized. The 754 cm–1, 892 cm–1, and 1185 cm–1 peaks
were derived from the C-H stretch vibration, out-of-plane vibration of =C-H, and in-plane
vibration of =C-H in EDOT, respectively [32]. This peak was observed in the uncured resin
(Figure 4, bottom spectra) and sample after photopolymerization (Figure 4, middle spectra)
and nearly disappeared after oxidative polymerization (Figure 4, upper spectra). Because
EDOT is not involved in photopolymerization and the solid after photopolymerization
exhibits almost no liquid release, it can be designated as an organogel with EDOT as the
solvent (Figure 5b). The decrease in those peaks’ intensity after oxidative polymerization
is presumably due to the loss of hydrogen atoms (α-α’ coupling) on the thiophene ring
associated with PEDOT formation [32,33]. The formation of PEDOT can also be explained
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by the fact that the solid after photopolymerization is transparent (Figure 5b), whereas
after oxidative polymerization, it is a black solid (Figure 5c), which is due to the red shift
of the light absorption region owing to the increased conjugation length caused by the
polymerization of EDOT [34]. In addition, as a simple continuity test, a sheet resistance
of 0.38 ± 0.29 kΩ/sq. was confirmed using a resistivity meter (Loresta-GX, MCP-T700
with Loresta probe type PSP MCP-TPQP2). These results indicate that the solids were
materials containing PEDOT as a conductive polymer. Furthermore, the polymerized solid
of SR252 is soft and forms a flexible film. PEDOT is a non-flexible solid; however, the
high proportion of SR252 in the resin confirms that it is sufficiently flexible to bend with
tweezers (Figure 5d).
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SPM investigated the reasons for obtaining flexible and conductive materials. SPM in
the tapping mode was used to record topographical (Figure 6, top) and phase-difference
images (Figure 6, bottom). The topographical image provides information on surface
roughness, whereas the phase-difference image reflects the viscoelastic properties of the
surface. In the topographic image, the height difference was approximately 10 nm after pho-
topolymerization, whereas the height difference was approximately 300 nm after oxidative
polymerization. This is suggested to be due to the shrinkage of the structure caused by ox-
idative polymerization, resulting in wrinkles on the surface. The phase-contrast image after
photopolymerization is used as a uniform material, as there are negligible differences in the
shading. However, after oxidative polymerization, dark and light areas were clearly visible.
This suggests that the two layers had separate structures [29]. In this case, polymerized
SR252 provides a soft and flexible material. In contrast, PEDOT is an amorphous solid and
possesses superior viscoelastic properties compared with polymerized SR252. Therefore,
areas with a high percentage of SR252 in the phase-contrast images were considered bright,
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whereas those with a high percentage of PEDOT were dark. The SPM results indicate that
SR252 acts as a matrix and is flexible, whereas PEDOT is dispersed within the matrix at the
nanoscale and possesses a continuous structure, which is considered conductive.
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Figure 5. Photographs of the uncured resin containing EDOT (a); resin cured by photopolymerization
(b); resin after oxidation polymerization (c); and fabricated flexible sample bent with tweezers (d).
The diameter of the cured droplet was 20 mm.

3.2. Tuning of the Resin Composition to Improve Conductivity with PTSA Doping

The effect of doping the fabricated object with PTSA was evaluated based on con-
ductivity, and the optimal conditions were determined by varying the ratios of SR252
and EDOT in the resin. The fabrication and post-curing processes were performed using
a method similar to that described by Kurselis et al. [19]. The difference between this
study and that of Kurselis et al. is that the oxidative polymerization and doping process
were performed in two steps in this study, instead of one. Although further efforts are
required, the conductivity is expected to improve using an appropriate compound in each
step. Figure 1 shows the stereolithographic fabrication and post-curing process. First, any
structure was fabricated on an acrylate-modified glass substrate from the prepared resin
using a blue-laser stereolithography system. The EDOT in the 3D-printed object was then
polymerized to PEDOT by oxidative polymerization in melted FeCl3·6H2O at 120 ◦C for
7 min. Doping was then performed by immersion in a PTSA aqueous solution (5.2 M) for
10 min. After washing, the samples were dried in a vacuum desiccator for at least 24 h
(<0.1 kPa). In addition, we considered mixing PTSA with EDOT in photocurable resin
in advance. However, although a clear, colorless liquid could be prepared immediately
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after adjustment, it turned blue-black and discolored after several days of standing. This is
believed to be because PTSA causes the polymerization of EDOT, even in the absence of
an oxidizing agent [35]. Oxidative polymerization followed by doping was employed to
prevent coloration before the material was cured.
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To evaluate the conductivity of the fabricated wiring, terminals consisting of 1 mm2

squares were fabricated at both ends of a 5 mm long, 0.5 mm wide wire (Figure 7a, insert).
Figure 7a shows the wiring pattern fabricated using blue-laser stereolithography and
oxidative polymerization. The fabricated pattern was confirmed to be shaped as designed.
In addition, the color of the fabricated pattern changed to black, owing to the formation
of PEDOT by oxidative polymerization. To evaluate the conductivity, a gold wire was
connected to the fabricated wire using a conductive adhesive (Figure 7b). In the absence
of PTSA doping, an increase in the percentage of EDOT exhibited a logarithmic increase
(Figure 8, open circle). Because the EDOT content increases, the conductive component,
PEDOT, increases after oxidative polymerization. In contrast, the PTSA-treated samples
exhibited improved electrical conductivity in all samples below 20 vol.% EDOT, suggesting
the superiority of PTSA over FeCl3 as a dopant. Furthermore, the samples doped with
PTSA exhibited a maximum conductivity of approximately 5–8 vol.% of EDOT content
in the uncured resin (Figure 8, closed circle). The fabricated object was immersed in an
aqueous solution of PTSA. PEDOT is insoluble in water; however, SR252 is hydrophilic;
therefore, doping is believed to proceed by the penetration of water with dissolved PTSA
between the polymer network of SR252; that is, SR252 acts as a dopant channel. As the
percentage of EDOT increased, the percentage of the SR252 that acted as a flow channel
decreased; therefore, the effect of the dopant was likely to decrease as the percentage of
EDOT increased above a certain level. In addition, an increase in the EDOT content implies
a decrease in the content of SR252, which is responsible for shape retention, as well as
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an increase in the amount of PEDOT, which is inflexible, making the fabricated structure
brittle [36]. In the Kurselis system, which is not doped with PTSA, 17 vol.% EDOT is the
limit for shape retention and high conductivity (0.04 S cm–1) [19]. However, our system
doped with PTSA exhibits a conductivity more than 100 times higher than that of our
system with 5–8 vol.% EDOT (maximum 16 S cm–1 at 7 vol.% EDOT), which is less than
half the amount. This would be an effective means of achieving both conductivity and
structural stability such as flexibility.
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Figure 8. Electrical conductivity of fabricated wiring before (open circles) and after (closed circles)
PTSA doping.

3.3. Flexible Wiring Using PI Film as a Substrate

We attempted to construct flexible wiring on a PI film. However, the adhesive strength
of the fabricated object on the pristine PI film was low, and the film peeled off. In the case
of flexible wiring, if the adhesive strength to the substrate is insufficient, delamination may
occur owing to curvature; therefore, the adhesive strength between the substrate and the
fabricated object is important [37,38]. To improve the adhesion between the PI film and
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the fabricated object, the surface of the PI film was acrylated using PEI and SR399 (PI-PEI-
SR399). Because this film has acrylate groups on its surface, it is expected to exhibit a strong
adhesive strength because the acrylate groups on the substrate are also polymerized during
the photopolymerization process of the 3D object [39].

Figure 9 illustrates the surface treatment process. First, the PI film was immersed in
98% H2SO4 for 1 min at 25 ◦C to modify its surface. The ATR-FTIR spectrum at the bottom
of Figure 10 (orange) shows the pristine PI film. Peaks at 1775 and 1713 cm–1 from the imide
group (asymmetrical and symmetrical C=O stretch vibration), 1509 cm–1 from the aromatic
C=C stretch vibration, 1382 cm–1 from the C–N stretching vibration of the imide group, and
1241 cm–1 from the aromatic ester (C–O–C) were observed in the pristine PI film [40]. After
the H2SO4 treatment of the PI film, a new peak was observed at 1199 cm–1, indicating the
modification with the sulfonate group (symmetric stretch vibration of SO2) on the surface
of the PI film (Figure 10, black). Similar to PI films, polymers with aromatic esters have
been modified with sulfate groups by H2SO4 treatment at 25 ◦C [41]. The product was then
immersed in an ethanol solution of PEI (PEI:ethanol = 1:3 (w/w)) for 1 min. The sulfonate
group present on the surface of the PI (H2SO4 treatment) film was anionic, whereas the PEI
was electrostatically adsorbed because of its cationic amine groups. The excess PEI was
then washed with water and ethanol. The PI–PEI film exhibits a peak of amine groups (C–N
vibration) derived from adsorbed PEI observed at 1044 cm–1 (Figure 10, blue). The sample
was then immersed in a chloroform solution of SR399 (SR399:chloroform = 1:7 (w/w)) for
30 min. SR399 is a multifunctional monomer containing five acrylate groups. The acrylate
group of SR399 and amine group of PEI formed a bond by the Michael addition reaction;
however, because excess SR399 was added to PEI, most of the SR399 acrylate remained
unreacted. After washing with chloroform and ethanol, the peaks at 1624 and 1395 cm–1

derived from the SR399 acrylate group (CH=CH2 stretch vibration and CH=CH2 scissor
bending vibration, respectively), and the 1200 cm–1 peak derived from the acrylate ester
group (C–O–C stretch vibration) of SR399 were observed by ATR-FTIR, confirming surface
acrylation (Figure 10, green).
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The fabricated wiring was formed on the PI-PEI-SR399 film, which was able to form
the wiring without peeling the film (Figure 11a). The results indicated that the PI-PEI-
SR399 film successfully improved the adhesion between the fabricated object and the
film. Furthermore, when an LED and power source (PW18-3AD, Kenwood Co., Tokyo,
Japan) were connected in series with the curved fabricated object and voltage was applied,
the LEDs emitted light (Figure 11b). This clearly indicates that the fabricated wiring is
conductive, even on the bent PI-PEI-SR399 film, and can function as flexible wiring.
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Figure 11. Example of fabricated flexible wiring on PI-PEI-SR399. (a) Flexible wiring on PI-PEI-SR399.
(b) Blue LED and power source connect fabricated flexible wiring on PI-PEI-SR399.

Up to now, the 2D modeling for evaluating the properties of adjusted resins has been
relatively simple. As a next step, geometric modeling was attempted as a more complex 2D
modeling pattern (Figure 12a). In addition, two towers, a bridge, and a stepped pyramid
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were modeled as 3D modeling objects (Figure 12b–d). Both moldings indicated that 2D and
3D structures could be built.
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Figure 12. Examples of fabricated 2D and 3D structures. (a) 2D geometric model; (b) 3D two towers
and a bridge model; (c) bird’s eye view of 3D stepped pyramid; and (d) side view of 3D stepped
pyramid. Resin with 5% EDOT was used for fabrication. Resin with 5% EDOT was used for modeling;
2D and 3D structures were modeled with laser intensities of 0.2 and 0.04 mW, respectively.

4. Conclusions

In this study, a photocurable resin was prepared by mixing SR252 and EDOT, a PEDOT
precursor, as a flexible polymer matrix. This confirmed that an organogel with EDOT as a
solvent was formed by cross-linking SR252 by photopolymerization. ATR-FTIR analysis
confirmed that the oxidative polymerization of EDOT by FeCl3·6H2O occurred in the cured
material to form conductive structures encapsulating PEDOT. It was also confirmed that
the solid formed by these reactions was a flexible material and did not fracture when bent.
The wiring was then formed using a laboratory-constructed microstereolithography system
with a blue laser, and the effect of dopant treatment with PTSA was evaluated based on
conductivity. Consequently, it was confirmed that PTSA is a superior dopant compared to
FeCl3·6H2O, and the conductivity was improved more than 100 times despite the EDOT
ratio being less than half that of Kurselis et al. [19]. Furthermore, it was determined that
by using this resin, the 3D fabrication of conductive objects is possible. When LEDs were
connected to the surface-treated PI film with wiring fabricated using this method, the light
continued to shine even when the film was bent, indicating that the fabricated wiring could
function as flexible wiring. The proposed method provides a flexible conductive 3D object
using a stereolithography system, thereby allowing the fabrication of sophisticated flexible
devices. In addition, we are planning to add inorganic materials with high conductivity as
a way to further improve the conductivity [17,42].
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