Design and Ballistic Performance of Hybrid Plates Manufactured from Aramid Composites for Developing Multilayered Armor Systems
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Hybrid Plates
2.1.1. Preparation of STF/Kevlar Plates
2.1.2. Preparation of Epoxy/Kevlar Plates
2.1.3. Preparation of Polyurea Elastomers/Kevlar Plates
2.2. Scanning Electron Microscopy (SEM) Analysis
2.3. Ballistic Impact Testing
3. Results and Discussion
3.1. Surface Morphology of Aramid Composites
3.2. Effect of Aramid Composites on Impact Energy Absorption
3.3. Damage in Fracture Analysis
3.4. The Dynamic Back Face Deformation Response of Single-Ply and Multi-Ply Target Plates to High-Velocity Impact Loading
3.5. Ballistic Test Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
STF | Shear Thickening Fluid |
SEA | Specific Energy Absorption (J·cm2/g) |
PEG | Polyethylene glycol |
FMJ RN | Full Metal Jacketed Round Nose |
SJHP | 0.44 Magnum Semi Jacketed Hollow Point |
NIJ | National Institute of Justice Standard |
BFD | Back Face Deformation |
BFS | Backface Signature |
∆Ea | The energy absorption by the target to be measured (J) |
M | The mass of the projectile (kg) |
Viis | The initial velocity of the projectile (m/s) |
Vris | The residual final velocity after the projectile penetrates the target (m/s) |
Nomenclature
P1 | The 19-ply 13 cm × 13 cm neat Kevlar plates sample that is used as a control for ballistic testing with 9 mm ammunition. |
P2 | The 47-ply 13 cm × 13 cm neat Kevlar plates sample that is used as a control for ballistic testing of 0.44 ammunition. |
S1 and S2 | The Standard Sample that is used as a control for ballistic testing with 9 mm ammunition. |
S3, S4, and S5 | The Standard Sample that is used as a control for ballistic testing of 0.44 ammunition. |
References
- Lane, R.A. High performance fibers for personnel and vehicle armor systems. AMPTIAC Q. 2005, 9, 3–9. [Google Scholar]
- Tabiei, A.; Nilakantan, G. Ballistic Impact of Dry Woven Fabric Composites: A Review. Appl. Mech. Rev. 2008, 61, 010801. [Google Scholar] [CrossRef]
- Crouch, I.G. Body armour—New materials, new systems. Def. Technol. 2019, 15, 241–253. [Google Scholar] [CrossRef]
- Goode, T.; Shoemaker, G.; Schultz, S.; Peters, K.; Pankow, M. Soft body armor time-dependent back face deformation (BFD) with ballistics gel backing. Compos. Struct. 2019, 220, 687–698. [Google Scholar] [CrossRef]
- Naik, N.K.; Shrirao, P. Composite structures under ballistic impact. Compos. Struct. 2004, 66, 579–590. [Google Scholar] [CrossRef]
- Singh, T.J.; Samanta, S. Characterization of Kevlar Fiber and Its Composites: A Review. Mater. Today Proc. 2015, 2, 1381–1387. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Chavan, V.V.; Ahmad, S.; Alagirusamy, R.; Bhatnagar, N. Ballistic impact response of Kevlar® reinforced thermo-plastic composite armors. Int. J. Impact Eng. 2016, 89, 1–13. [Google Scholar] [CrossRef]
- Richardson, M.O.W.; Wisheart, M.J. Review of low-velocity impact properties of composite materials. Compos. Part A Appl. Sci. Manuf. 1996, 27, 1123–1131. [Google Scholar] [CrossRef]
- Akella, K.; Naik, N.K. Composite Armour—A Review. J. Indian Inst. Sci. 2015, 95, 297–312. [Google Scholar]
- Billon, H.; Robinson, D. Models for the ballistic impact of fabric armour. Int. J. Impact Eng. 2001, 25, 411–422. [Google Scholar] [CrossRef]
- Yang, F.; Bai, Y.; Min, B.; Kumar, S.; Polk, M. Synthesis and properties of star-like wholly aromatic polyester fibers. Polymer 2003, 44, 3837–3846. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Chen, J.; Hao, X.; Wang, S.; Feng, X.; Guo, Y. Effects of solar UV irradiation on the tensile properties and structure of PPTA fiber. Polym. Degrad. Stab. 2006, 91, 2761–2767. [Google Scholar] [CrossRef]
- Jefferson, A.J.; Arumugam, V. Effect of patch hybridization on the tensile behavior of patch repaired glass/epoxy composite laminates using acoustic emission monitoring. Int. J. Adhes. Adhes. 2017, 74, 155–166. [Google Scholar] [CrossRef]
- Jefferson, A.J.; Sivakumar, M.S.; Arockiarajan, A. The role of adhesively bonded super hybrid external patches on the impact and post-impact response of repaired glass/epoxy composite laminates. Compos. Struct. 2018, 184, 848–859. [Google Scholar] [CrossRef]
- Jefferson, A.J.; Sivakumar, M.S.; Arockiarajan, A.; Dhakal, H.N. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review. Compos. Struct. 2019, 224, 111007. [Google Scholar]
- Marom, G.; Fischer, S.; Tuler, F.R.; Wagner, H.D. Hybrid effects in composites: Conditions for positive or negative effects versus rule-of-mixtures behaviour. J. Mater. Sci. 1978, 13, 1419–1426. [Google Scholar] [CrossRef]
- Yang, S.; Chalivendra, V.B.; Kim, Y.K. Fracture and impact characterization of novel auxetic Kevlar/Epoxy laminated composites. Compos. Struct. 2017, 168, 120–129. [Google Scholar] [CrossRef]
- Mora, P.; Okhawilai, M.; Jubsilp, C.; Bielawski, C.W.; Rimdusit, S. Glass fabric reinforced polybenzoxazine composites filled with nanosilica: A High impact response poises use as strike panels in multilayered armor applications. J. Mater. Res. Technol. 2020, 9, 12723–12736. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, Z.; Yan, R.; Wei, S.; Zhang, W.; Lu, S.; Jia, L. Processing technology and ballistic-resistant mechanism of shear thickening flu-id/high-performance fiber-reinforced composites: A review. Compos. Struct. 2021, 266, 113806. [Google Scholar] [CrossRef]
- Majumdar, A.; Butola, B.S.; Srivastava, A. Optimal designing of soft body armour materials using shear thickening fluid. Mater. Des. 2013, 46, 191–198. [Google Scholar] [CrossRef]
- Petel, O.E.; Ouellet, S.; Loiseau, J.; Frost, D.L.; Higgins, A.J. A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction. Int. J. Impact Eng. 2015, 85, 83–96. [Google Scholar] [CrossRef]
- Cwalina, C.D.; McCutcheon, C.M.; Dombrowski, R.D.; Wagner, N.J. Engineering enhanced cut and puncture resistance into the thermal micrometeoroid garment (TMG) using shear thickening fluid (STF)—Armor™ absorber layers. Compos. Sci. Technol. 2016, 131, 61–66. [Google Scholar] [CrossRef]
- Fahool, M.; Sabet, A.R. Parametric study of energy absorption mechanism in Twaron fabric impregnated with a shear thickening fluid. Int. J. Impact Eng. 2016, 90, 61–71. [Google Scholar] [CrossRef]
- Laha, A.; Majumdar, A. Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics. Appl. Clay Sci. 2016, 132–133, 468–474. [Google Scholar] [CrossRef]
- Tryznowski, M.; Gołofit, T.; Gürgen, S.; Kręcisz, P.; Chmielewski, M. Unexpected Method of High-Viscosity Shear Thickening Fluids Based on Polypropylene Glycols Development via Thermal Treatment. Materials 2022, 15, 5818. [Google Scholar] [CrossRef] [PubMed]
- Gürgen, S.; Kuşhan, M.C. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 2017, 64, 296–306. [Google Scholar] [CrossRef]
- Yang, H.H. Kevlar Aramid Fibre; John Wiley & Sons: Chichester, UK, 1993. [Google Scholar]
- Jassal, M.; Ghosh, S. Aramid fibres—An overview. Indian J. Fibre Text. Res. 2002, 27, 290–306. [Google Scholar]
- Qin, J.; Guo, B.; Zhang, L.; Wang, T.; Zhang, G.; Shi, X. Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid. Compos. Part B Eng. 2019, 183, 107686. [Google Scholar] [CrossRef]
- Naik, S.; Dandagwhal, R.; Loharkar, P.K. A review on various aspects of Kevlar composites used in ballistic applications. Mater. Today Proc. 2020, 21, 1366–1374. [Google Scholar] [CrossRef]
- Yang, C.-C.; Ngo, T.; Tran, P. Influences of weaving architectures on the impact resistance of multi-layer fabrics. Mater. Des. 2015, 85, 282–295. [Google Scholar] [CrossRef]
- Lafitte, M.H.; Bunsell, A.R. The fatigue behaviour of Kevlar-29 fibres. J. Mater. Sci. 1982, 17, 2391–2397. [Google Scholar] [CrossRef]
- Prasad, V.V.; Talupula, S. A Review on Reinforcement of Basalt and Aramid (Kevlar 129). Mater. Today Proc. 2018, 5, 5993–5998. [Google Scholar] [CrossRef]
- Manero, A.; Gibson, J.; Freihofer, G.; Gou, J.; Raghavan, S. Evaluating the effect of nano-particle additives in Kevlar® 29 impact resistant composites. Compos. Sci. Technol. 2015, 116, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Malakooti, M.H.; Hwang, H.-S.; Goulbourne, N.C.; Sodano, H.A. Role of ZnO nanowire arrays on the impact response of aramid fabrics. Compos. Part B Eng. 2017, 127, 222–231. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, G.; Zhou, L.; Li, J.; Shi, X. Dynamic/quasi-static stab-resistance and mechanical properties of soft body armour composites constructed from Kevlar fabrics and shear thickening fluids. RSC Adv. 2017, 7, 39803–39813. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kumar, S.K.S.; Park, Y.; Kwon, H.; Kim, C.-G. High-velocity impact onto a high-frictional fabric treated with adhesive spray coating and shear thickening fluid impregnation. Compos. Part B Eng. 2020, 185, 107742–107757. [Google Scholar] [CrossRef]
- Arora, S.; Majumdar, A.; Butola, B.S. Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics. Compos. Struct. 2019, 210, 41–48. [Google Scholar] [CrossRef]
- Lu, Z.; Yuan, Z.; Chen, X.; Qiu, J. Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact. Compos. Struct. 2019, 227, 111208. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y.; Cao, S.; Xuan, S.; Jiang, W.; Gong, X. Conductive shear thickening gel/Kevlar wearable fabrics: A flexible body armor with mechano-electric coupling ballistic performance. Compos. Sci. Technol. 2019, 182, 107782. [Google Scholar] [CrossRef]
- Chang, C.-P.; Shih, C.-H.; You, J.-L.; Youh, M.-J.; Liu, Y.-M.; Ger, M.-D. Preparation and Ballistic Performance of a Multi-Layer Armor System Composed of Kevlar/Polyurea Composites and Shear Thickening Fluid (STF)-Filled Paper Honeycomb Panels. Polymers 2021, 13, 3080. [Google Scholar] [CrossRef] [PubMed]
- Khodadadi, A.; Liaghat, G.; Vahid, S.; Sabet, A.; Hadavinia, H. Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid. Compos. Part B Eng. 2019, 162, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Bass, C.R.; Salzar, R.S.; Lucas, S.R.; Davis, M.; Donnellan, L.; Folk, B. Injury risk in behind armor blunt thoracic trauma. Int. J. Occup. Saf. Erg. 2006, 124, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Cheeseman, B.A.; Bogetti, T.A. Ballistic impact into fabric and compliant composite laminates. Compos. Struct. 2003, 61, 161–173. [Google Scholar] [CrossRef]
- 2003-IJ-R-029; Ballistic Resistance of Body Armor NIJ Standard-0101.06. United States National Institute of Justice Standard (NIJ): Washington, DC, USA, 2008.
- Karahan, M.; Kuş, A.; Eren, R. An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics. Int. J. Impact Eng. 2007, 35, 499–510. [Google Scholar] [CrossRef]
- Liu, T.Y.; Wu, Q.P.; Sun, B.Q.; Han, F.T. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer. Sci. Rep. 2016, 6, 31632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Chen, X.; Wells, G. Influence of yarn gripping on the ballistic performance of woven fabrics from ultra-high molecular weight polyethylene fibre. Compos. Part B Eng. 2014, 62, 198–204. [Google Scholar] [CrossRef]
- Abtew, M.A.; Boussu, F.; Bruniaux, P.; Loghin, C.; Cristian, I. Ballistic impact mechanisms—A review on textiles and fibrer-reinforced composites impact responses. Compos. Struct. 2019, 223, 110966. [Google Scholar] [CrossRef]
- Bahei-El-Din, Y.A.; Dvorak, G.J.; Fredricksen, O.J. A blast-tolerant sandwich plate design with a polyurea interlayer. Int. J. Solids Struct. 2006, 43, 7644–7658. [Google Scholar] [CrossRef] [Green Version]
- El Sayed, T.; Mock, W., Jr.; Mota, A.; Fraternali, F.; Ortiz, M. Computational assessment of ballistic impact on a high strength structural steel/polyurea composite plate. Comput. Mech. 2009, 43, 525–534. [Google Scholar] [CrossRef]
- Ackland, K.; Anderson, C.; Ngo, T. Deformation of polyurea-coated steel plates under localised blast loading. Int. J. Impact Eng. 2013, 51, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Amini, M.; Simon, J.; Nemat-Nasser, S. Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments. Mech. Mater. 2010, 42, 615–627. [Google Scholar] [CrossRef]
- Ribeiro, M.P.; da Silveira, P.H.P.M.; de Oliveira Braga, F.; Monteiro, S.N. Fabric Impregnation with Shear Thickening Fluid for Ballistic Armor Polymer Composites: An Updated Overview. Polymers 2022, 14, 4357. [Google Scholar] [CrossRef] [PubMed]
Results for Ballistic Test | |||||||
---|---|---|---|---|---|---|---|
Plate ID | Composition | Layers | Areal Density (g/cm2) | Projectile Speed (m/s) | BFS (mm) | Ammo Type | NIJ 0101.06 Test Level |
P1 | Neat Kevlar | 19 | 0.85 | 417 | 43.7 | 9 mm FMJ | II |
S1 | Polyurea Elastomers /Kevlar | 17 | 0.83 | 413 | 36.2 | 9 mm FMJ | II |
S2 | Polyurea Elastomers /Kevlar | 15 | 0.75 | 414 | 43.7 | 0.44 mag | II |
P2 | Neat Kevlar | 47 | 2.06 | 447 | 43.1 | 0.44 mag | IIIA |
S3 | Polyurea Elastomers /Kevlar | 24 | 1.10 | 451 | 66.3 | 0.44 mag | IIIA |
S4 | Polyurea Elastomers /Kevlar | 37 | 1.76 | 446 | 42.6 | 0.44 mag | IIIA |
S5 | Polyurea Elastomers /Kevlar(solidify) | 37 | 1.77 | 424 | 34.3 | 0.44 mag | IIIA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, C.-H.; You, J.-L.; Lee, Y.-L.; Cheng, A.-Y.; Chang, C.-P.; Liu, Y.-M.; Ger, M.-D. Design and Ballistic Performance of Hybrid Plates Manufactured from Aramid Composites for Developing Multilayered Armor Systems. Polymers 2022, 14, 5026. https://doi.org/10.3390/polym14225026
Shih C-H, You J-L, Lee Y-L, Cheng A-Y, Chang C-P, Liu Y-M, Ger M-D. Design and Ballistic Performance of Hybrid Plates Manufactured from Aramid Composites for Developing Multilayered Armor Systems. Polymers. 2022; 14(22):5026. https://doi.org/10.3390/polym14225026
Chicago/Turabian StyleShih, Cheng-Hung, Jhu-Lin You, Yung-Lung Lee, An-Yu Cheng, Chang-Pin Chang, Yih-Ming Liu, and Ming-Der Ger. 2022. "Design and Ballistic Performance of Hybrid Plates Manufactured from Aramid Composites for Developing Multilayered Armor Systems" Polymers 14, no. 22: 5026. https://doi.org/10.3390/polym14225026
APA StyleShih, C. -H., You, J. -L., Lee, Y. -L., Cheng, A. -Y., Chang, C. -P., Liu, Y. -M., & Ger, M. -D. (2022). Design and Ballistic Performance of Hybrid Plates Manufactured from Aramid Composites for Developing Multilayered Armor Systems. Polymers, 14(22), 5026. https://doi.org/10.3390/polym14225026