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Abstract: In this work, the electrospinning technique is used to fabricate a polymer-polymer coaxial
structure nanofiber from the p-type regioregular polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and
the n-type conjugated ladder polymer poly(benzimidazobenzophenanthroline) (BBL) of orthogonal
solvents. Generally, the fabrication of polymeric coaxial nanostructures tends to be troublesome.
Using the electrospinning technique, P3HT was successfully used as the core, and the BBL as the
shell, thus conceptually forming a p-n junction that is cylindrical in form with diameters in a range
from 280 nm to 2.8 µm. The UV–VIS of P3HT/PS blend solution showed no evidence of separation
or precipitation, while the combined solutions of P3HT/PS and BBL were heterogeneous. TEM
images show a well-formed coaxial structure that is normally not expected due to rapid reaction and
solidification when mixed in vials in response to orthogonal solubility. For this reason, extruding it
by using electrostatic forces promoted a quick elongation of the polymers while forming a concise
interface. Single nanofiber electrical characterization demonstrated the conductivity of the coaxial
surface of ~1.4 × 10−4 S/m. Furthermore, electrospinning has proven to be a viable method for
the fabrication of pure semiconducting coaxial nanofibers that can lead to the desired fabrication of
fiber-based electronic devices.

Keywords: P3HT; BBL; organic semiconductors; flexible electronics

1. Introduction

Intelligent textiles, air/water filters, bone scaffolds, non-woven films, and drug de-
livery applications have all directly benefitted from the development of the reliable and
low-cost electrospinning techniques for fiber fabrication [1–6]. This technique has also been
successfully used to fabricate fibrous electronic devices, such as diodes, field effect tran-
sistors, photovoltaics, and sensors that use organic conductive-semiconductive polymers
(C-SPs) and other relevant materials forming composites [6–8]. These materials are known
to have preferred thermal stability [9], electrical conductivity [10,11], mechanical flexibil-
ity [12,13], and chemical/biological functionality [14,15]. Furthermore, polymeric materials
have been researched in coaxial arrangements by electrospinning for use in drug delivery
applications and the fabrication of hollow fiber channels, to name a few [16,17]. Previous
work has also been reported on organic semiconducting p-n junction nanofibers in a coaxial
core-shell (core-sheath) structure but with a focus on small-molecule (organic-organic)
heterojunctions and partial organic (organic/polymer-inorganic) heterojunctions rather
than polymeric heterojunctions [18]; however, to the best of our knowledge, electroactive
polymer-polymer coaxial heterojunctions have not yet been fabricated [15]. Therefore,
the fabrication of semiconducting-based coaxial nanofibers by using the electrospinning
technique is the main task of this work.

Based on these previous works, we expect that organic semiconductive coaxial nanofibers
could produce p-n junctions with electronic properties and fabrication reliability, thus making
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them excellent candidates for use in flexible electronics and cost-effective nanomanufactur-
ing [12]. Because of this, we propose the electrospinning technique for the fabrication of an
electroactive polymer-polymer heterojunction. More specifically, these novel organic semicon-
ductive p-n junctions have the potential to demonstrate high Ion/Ioff ratios and, in field-effect
transistor (FET) mode, a reduction in leakage current compared to thin film structures [19]. In
diode mode, a tunable depletion region may be achieved by the phase created by the outer
covering. In photovoltaic applications, the coaxial structure creates an optimal environment
for the generation of charges derived from light irradiation, increasing the photocurrent in the
semiconductor. Therefore, due to the large surface area that can be generated by nanofibers
(non-woven mesh or aligned nanofibers) in a small region, a coaxial p-n junction matrix will
be capable to perform as a sensor, photodiode, and as a photovoltaic cell. As a result, the
surface of the nanofibers can be functionalized for specific sensing and higher selectivity,
improving the performance for electronic applications [20].

Nanofibers of the semiconductive regioregular polymer poly(3-hexylthiophene-2,5-diyl)
(P3HT, with field effect mobilities as high as 0.1 cm2V−1s−1) [21,22] and thin films, as well
as self-assembled nanobelts, of the ladder polymer poly(benzimidazobenzophenanthroline)
(BBL, with electron mobilities of approximately 1 × 10−3 cm2 V−1 s−1 and 7 × 10−3 cm2 V−1

s−1, respectively) [23,24] have been previously characterized as having morphologies and
high-mobility behaviors that make them ideal candidates for organic electronics. [23,25,26].
However, fiber fabrication of pure P3HT is challenging (due to its low molecular weight [27]),
and under laboratory conditions, this material tends to degrade over time due to oxygen
exposure [28]. BBL, on the other hand, has been shown to exhibit high stability in air over a
long period of time, thus improving the shelf life of the formed devices [29]. Polystyrene (PS)
can be used to facilitate the formation of P3HT fibers.

For these reasons, the utility of organic semiconductive polymers-specifically, P3HT
and BBL-in forming one-dimensional (1D) coaxial p-n junctions can lead to the fabrication
of fully functional single-fiber organic electronics. The expectation is that devices can
directly be tethered in a single functional fiber that may increase the efficiency and even
lower power requirements for textile applications. More broadly, this research seeks to
address the technological challenges of using nanoelectronics and nanosensors for flexible,
low-power nanodevices (e.g., tethered and 1D components for chemical, vapor, and gas
sensing) by enhancing the nanometric morphology of the coaxial structure [30,31].

2. Materials and Methods

Electronic-grade p-type regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT)
(Mw > 45,000) from Lumtec (New Taipei City, Taiwan) and n-type polymer poly (ben-
zimidazobenzophenanthroline) (BBL) and polystyrene (PS) (Mw = 350,000), both from
Sigma-Aldrich (Burlington, MA, USA), (Figure 1), were used as received. Solutions of
PS were prepared with anhydrous chloroform (CHCl3) and used to dissolve the P3HT
(and to allow for subsequent UV/VIS characterization); methanesulfonic acid (MSA), from
Sigma-Aldrich (Burlington, MA, USA), was used to dissolve the BBL. Solutions were
prepared based on weight percent (wt.%). For the core-material solution of P3HT/PS,
7 wt.% PS/CHCl3 was used to lend mechanical support to the P3HT molecules; the final
concentration of P3HT in the P3HT/PS/CHCl3 blend was 0.4 wt.%. For the shell-material
solution, 0.39 wt.% BBL was dissolved in MSA. Each of the two solutions was thoroughly
blended with a magnetic stirrer until homogeneous equilibrium was achieved.

PS dissolved in chloroform is colorless; adding P3HT, which is red, imparts a red color
to the solution blend. Dissolving BBL in MSA yields a dark red solution; with continued
processing with CHCl3, BBL changes to a vivid blue-violet color [24]. UV/VIS spectra were
obtained (using an Evolution 201 PC spectrometer) for the solutions of pure PS, pure P3HT,
blended P3HT/PS, and pure BBL, to obtain the optical distinguishable characteristics of
the material solutions.
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Figure 1. Coaxial nanofiber was fabricated by using P3HT (a) and BBL (b) as the semiconducting
polymers. Because pure P3HT is unable to form fibers (due to its low molecular weight), PS (c) was
added to improve mechanical support for fiber formation.

To form the coaxial nanofibers from these solutions, the electrospinning technique was
employed, using two luer-lock syringes and a coaxial needle (Ramé-Hart Instrument Co.,
Succasunna, NJ, USA). The gauge sizes were 23 G for the core material and 18 G for the
shell material. The coaxial needle functioned as an anode, and a sheet of aluminum foil
served as a grounded cathode. A programmable syringe pump (pump rate = 3000 µL hr−1)
was used to maintain a slow, steady flow of the polymeric solutions into the electric field.
In this setup, the core needle concentrically separates the polymers that will be extruded
into the electric field. Without the application of high voltage, the polymers proceed to
meet at the tip and form a pendant drop that quickly reacts by interacting with the solvents
and therefore solidifying the polymers. When a voltage is applied to the concentric needles,
the electrocapillary effect induces charges on both solutions that change the interfacial
tension and consequentially decrease the surface tension, thus enhancing the formation of
the charged jet. It is recognized that the high net charge density provided by electroactive
polymers in the electrospinning jet increases the induced charges that reduces the surface
tension, leading to the formation of nanofibers [32]. At a critical voltage, the formation
of the Taylor cone occurs, and the partial solidification of the shell polymer over the
core polymer happens while the jet elongates toward the collector, therefore forming the
P3HT/PS core and the BBL shell coaxial fibers [33]. This setup resulted in the polymers
forming a Taylor cone that emitted a charged jet that continuously moved toward the
cathode. Fibers were formed when a critical voltage of 9 kV was applied at the tip of the
needle, overcoming the polymer surface tension, stretching the material, enhancing solvent
evaporation, and forming the coaxial nanofibers. The formed fibers were collected (i.e.,
attracted and deposited) onto the aluminum foil and over a silicon wafer (SiO2/Si) with
prepatterned gold electrodes.

For topological characterization of the nanofibers, TEM grids with 50 µm × 50 µm
apertures were passed near the cathode in a weaving motion to collect in-air nanofibers.
These fiber samples were first rinsed gently with deionized water to remove any residue of
MSA from the surface and then dried for 15 min at 70 ◦C prior to characterization. Images
were taken with a TEM (Phillips FEI Morgagni M 268).

3. Results and Discussions

In this work, coaxial semiconductive polymer-polymer nanofibers were fabricated
and morphologically characterized. The homogeneous composite P3HT/PS served as
the core, and the BBL solution formed the shell, thereby achieving the desired structure
(Figure 2). The p-n junctions thus formed can perform as diodes [34], sensors [35], and
transistors [23,36–38], as well as photodiodes for solar cell applications [39,40].

At low concentrations of P3HT, it is difficult for the electrospinning technique to
generate well-formed fibers. This difficulty is due to low molecular weight hindering the
formation of molecular entanglements, and this, in turn, results in a solution extensional
viscosity too low to form fibers. To overcome this impediment, PS was added to the P3HT
solution to provide mechanical support for fiber formation without compromising the
semiconductive property of P3HT [41–43]. At 7 wt.% PS, the solution was sufficiently
viscous and electrically charged by the P3HT that core fibers with a diameter of 200 nm
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were formed. The BBL solution required no additional polymer for fiber production; the
PS in the core-material solution did indirectly help to form and support the final structure.
This method could also make the PS fiber composite electroactive as the semiconductor
carrier [44]. As noted above, the PS and P3HT polymers were dissolved in CHCl3. BBL
does not dissolve in CHCl3, resulting in the extrusion of uniformly coated BBL shell and
P3HT/PS core nanofibers (Figure 3) moving from a viscous to a flexible state, to solvent
evaporation and stretching to form a polymer-polymer coaxial nanofiber.
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nanofiber devices.
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Figure 3. Continuous fabrication of coaxial nanofiber p-n junctions, using the electrospinning
technique. The BBL solution (a, blue) forms the shell/sheath, and the P3HT/PS solution (b, red)
forms the core. An electric field overcomes the surface tension, stretching the solution and forming
nanofibers. Inset: (c) The coaxial needle tip and magnification (d) after the Taylor cone formation,
with the diode symbols representing the continuous heterojunction formed between the core and
the shell.

The UV/VIS spectrum of the P3HT/PS polymer composite was compared to the
spectra of the pure (in CHCl3) PS and P3HT solution (Figure 4). Over the wavelength
range examined, the spectrum of the colorless PS solution is featureless. The P3HT solution
exhibits an absorption peak at approximately 450 nm, as does the P3HT/PS blend. This
peak is attributable to the π-π* transition of the electronic absorption spectra, as previously
documented for pure P3HT [26]. The coincidence of these peak positions indicates that the
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PS and P3HT polymers are homogeneously integrated within the blend solution, without
phase separation or chemical interaction. Measuring the UV/VIS spectra in this way also
enabled the BBL to show the absorption peak that defines its optical band gap. The BBL
spectrum showed a peak at approximately 380 nm and a wider peak at approximately
540 nm, consistent with previous results [40,45], due to the onset of π-π* transition; this
spectrum is characteristic of this ladder polymer [46]. These π-π* transitions determine the
band gaps of P3HT and BBL, which are generally 2.2 eV and 1.9 eV, respectively [46,47], in
agreement with the optical band gap cutoff values determined from the UV–VIS spectra
shown in Figure 4.
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Figure 4. Comparison of the UV/VIS spectra of pure PS (7 wt.%), pure P3HT (2 wt.% in CHCl3),
and the P3HT/PS (0.4 wt.%/7 wt.%) blend indicates that adding polystyrene does not change the
physical or optical characteristics of P3HT. The BBL solution (0.39 wt.%) exhibits its characteristic
broad absorption peak at approximately 540 nm.

While the P3HT/PS blend solution showed no evidence of separation or precipitation,
the combined solutions of P3HT/PS and BBL were heterogeneous. The reason is that
BBL is insoluble in CHCl3, and P3HT is insoluble in MSA. These characteristics led to the
successful formation of nanometric coaxial fibers. Transmission electron microscopy (TEM)
images of the fibers show well-formed core and shell structures (Figure 5). The smallest
nanofiber examined had a total diameter of approximately 225 nm, with a core diameter of
approximately 194 nm and a stable BBL shell thickness of 31 nm.

With the electrospinning technique, a variety of fiber sizes can be generated within a
single production run. However, the diameters of the coaxial nanofiber can be controlled
(e.g., solvent-types, concentration of the solutions, molecular weights, and pump rate).
Figure 6 shows electrospun fibers from a single run, with outside diameters ranging
from approximately 280 (a) to 2772 (d) nanometers. The variety of sizes is due to weak
agglomeration at the syringe tip because of quick core-shell interaction, which slightly
changes the material extrusion into the electric field. A subsequent production run can
yield coaxial nanofibers with a narrow range of diameters. Future work aims to fabricate
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nanofibers of a single specific diameter by fine-tuning the solution concentrations and
feeding rates, controlling the solution’s interaction rate at the concentric needle tip.
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Figure 6. TEM images of coaxial nanofibers (P3HT/PS core (white arrow) with BBL shell (black
arrow)) created simultaneously within a single run of the electrospinning technique. Scale bars
are 1 µm (a), 2 µm (b,c), and 5 µm (d).

Electrical characterization was performed for a single nanofiber, collected between
two gold electrodes during the electrospinning process, as shown in Figure 7. The fiber was
deposited by rapidly waving the electrodes perpendicularly to the spinning direction near
the collector. The formed device was dipped in deionized water and vacuum dried at 70 ◦C
for 15 min, ensuring electrical contact on the electrodes. The fiber has a diameter of 1.2 µm
with electrode separation of 40 µm. The electrical connections are made directly to the shell
of the fiber, therefore characterizing the BBL. The fiber showed a linear IV characterization
with a conductivity of ~ 1.4×10−4 S/m.
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