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Abstract: Polyurethane foam materials have broad application prospects in practical engineering
as flame retardants, waterproof coatings, and grout repair materials due to advantages such as
light weight, quick forming, and good durability. Due to water’s low cost and convenience, water-
reactive Polyurethane foam materials are widely used in engineering. The content of the water has a
significant effect on the performance of polyurethane foams after molding. Polyurethane foams with
anti-seepage and reinforcement effects are used in complex water environments for long durations.
This study analyzed the effects of water content on properties and the diffusion mechanism of
polyurethane foam materials in water. Additionally, the effect of the water environment on the
polyurethane grouting material’s properties was summarized. Finally, this study discussed the future
research directions of polyurethane foam materials in a water environment.
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1. Introduction

Polyurethane is a block copolymer, and it was the first material used for the prepara-
tion of foam. The main chain is composed of repeated structural units of the carbamate
(-NHCOO-), which is prepared by a reaction of isocyanate and polyol [1–3]. Polyurethane
has a wide range of applications because it is adaptable and can be used under differ-
ent conditions by adjusting its constituent materials. Polyurethane can be divided into
polyurethane aqueous solution, dispersion, and emulsion based on the dispersion mor-
phology and particle size. It can be divided into single and double components according
to the form of use. It can be divided into polyurethane soft foam, polyurethane hard
foam, polyurethane semi-hard foam, polyurethane elastomer, polyurethane slurry, and
polyurethane coating based on its application [4].

China’s polyurethane industry began in the middle of the 20th century. After nearly
50 years of development, a variety of new or modified polyurethane grouting foam materi-
als have been formed. Polyurethane foams are mainly composed of isocyanate, polyols,
and polymer additives. The additives are divided into three categories, which are foaming
agents, foam stabilizers, and catalysts. According to whether there is water involved in
the reaction process, polyurethane grouting materials can be divided into water reactions
and non-water reactions. Water-reactive polyurethane can be divided into hydrophilic and
hydrophobic types according to the response of the cured body to water [5]. Compared
with cement-based geopolymer [6–8] and other grouting materials, polyurethane foam
material has irreplaceable advantages. High expansion is the polymer volume expansion
after a reaction up to 25 times the maximum expansion force of 10 Mpa [9]. Adjustable
reaction time is where polyurethane foam material can adjust the curing time of the material
by changing the additives; the fastest ten seconds can freely expand to the final 80% [10].
Good impermeability is where the permeability coefficient can reach 10−8 cm/s below [9].
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In recent years, polymer foam grouting materials have made significant breakthroughs
in engineering applications. The problem that cement mortar is not suitable for wet-set
loess areas can be solved by using the characteristics of rapid reaction of the polymer [11].
In order to solve the problem of track deformation caused by the settlement of ballast-
less track roadbeds of a high-speed railroad, the polymer grouting technology for rapid
repair of settlement of roadbeds of the high-speed railroad was developed [12]. In order
to solve the problem of water leakage and sand surging caused by uneven settlement
of underground pipelines, the polymer grouting method for sealing sand surging from
underground pipeline leakage was proposed [13]. For the problem of water surging from
tunnel leakage, the polymer grouting technology for rapid treatment of tunnel leakage
was proposed [14]. High polymer foam materials are widely used in rapid rescue projects
in the fields of water conservancy, transportation, and tunnels due to their fast reaction
and good impermeability. However, due to the complex environment of the building,
polyurethane foam materials are mostly used in water environments. Therefore, it is of
practical significance to study the effect of water on polyurethane foam materials for its
applications in practical engineering. In recent years, several scholars have studied the
effects of water as a blowing agent on polyurethane and the evolution of polyurethane
properties in a water environment.

This study focuses on the following aspects: (1) the effect of water as a foaming
agent on the physical properties of polyurethane foam materials; (2) the evolution of the
performance of polyurethane foam materials in a water environment considering moisture
absorption, mechanical properties, permeability, and grout diffusion behavior; and (3)
analysis of the mechanism of water on polyurethane foam materials. Studying the effect
of water on polyurethane foam materials using existing research can lay a theoretical
foundation for the subsequent research on the fracture performance of polyurethane grout
in a water environment and can provide a reference for the relevant tests of polyurethane
foam materials under water service conditions. It is crucial for the wide applications
of polyurethane foam materials, such as grouting repair material, in water conservancy
projects with large water inflow and strong permeability.

2. Water Content Effect on the Properties of Polyurethane Foams

The type and amount of polyurethane foaming agent play a critical role in obtaining
the ideal hard foam [15]. Water, with its largest amount of activity, is selected as the
foaming agent among the formulations of all-water foaming polyurethane, one-component
water-active polyurethane grouting material, and rigid polyurethane foam because it is
economical, non-toxic, environmentally friendly, and has a simple reaction. Its content has
a significant effect on the performance of polyurethane foams.

2.1. Effect of Water Content on the Density of Polyurethane Foams

The density determines the performance of foaming materials. Several scholars [16–19]
investigated the effect of water as a foaming agent on the density of polyurethane foam and
observed that the foaming reaction gradually increases, and the density gradually decreases
with an increase in the water content. Song [20] investigated the effect of water content in
the polyether component on the process, properties, and microstructure of polyurethane
microporous elastomer using a one-step method. Han [21] studied the bubble morphology
of rigid polyurethane foam materials with different water contents using scanning electron
microscopy and observed that the cell diameter increases with the increase in water content,
and the density of polyurethane with higher water content was low. Wang [22] and
Amman [23] analyzed the effect of water on the density of the rigid polyurethane-imide
foam and obtained a similar conclusion.

The normalization method was used in this study to integrate the data to observe
the effect of foaming agent (water) consumption on the density of polyurethane foam
materials (Figure 1). The normalization method is a way to simplify the calculation; that is,
the dimensionless expression is transformed into a dimensionless expression. It is mainly
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proposed for the convenience of data processing. It can be observed from the results
that the density gradually decreases with an increase in the water content because the
CO2 in the pores of polyurethane foam materials is obtained by the reaction of water and
isocyanate. The increase in the water content increases the production of CO2 and the
number of micropores in the unit volume and decreases the thickness of the pore wall [24].
The formation of macropores by foaming is enhanced, which increases the pore size and
porosity of the foaming body. This results in a decrease in the density of polyurethane foam
materials [18]. The amount of CO2 and urea bonds generated by the reaction of water and
isocyanate increases accordingly, and the reaction releases excessive heat. The urea bond
further reacts with excess isocyanate at high temperatures to form a biuret compound. The
polyurethane foams formation reaction is as follows:

∼∼ NCO + H2O slow→ ∼∼ NH−

O
‖
C −OH slow→ ∼∼ NH2 + CO2 ↑ (1)

∼∼ NH2+ ∼∼ NCO fast→∼∼ NH−

O
‖
C −NH (2)
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2.2. Effect of Water Content on the Mechanical Properties of Polyurethane Foams

The mechanical properties of polyurethane foam materials are significantly dependent
upon their density. Various methods have been used to investigate the effect of water
on the mechanical properties of polyurethane foam materials. Ding [17] and Du [19]
investigated the effect of using water as a foaming agent on the tensile, flexural, and
compressive strength of polyurethane foam materials. The results demonstrated that the
tensile, flexural, and compressive strengths gradually decreased with an increase in the
water content. Song [20] investigated the effect of water content in a polyether component
on the tensile strength of polyurethane microporous elastomer and observed that the tensile
strength of the material significantly decreased with an increase in the water content in the
polyether component. Chen [25] used the method of polyether compounding to control
the viscosity of polyether, studied the mechanism of water dosage on the morphology
and mechanical properties of the foam, and explained the effect of water dosage on the
strength of polyurethane foam from a microscopic point of view. Liang [26] and Li [18]
studied the relationship between water as a foaming agent and the mechanical properties of
polyurethane foam plastics and obtained similar results. Ye [27] systematically explored the
effect of water on the mechanical properties of prepolymers by adding a certain proportion
of water to the prepolymer and using Fourier transformation infrared spectroscopy and
differential scanning calorimetry. It was found that the hardness of polyurethane elastomer
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decreased with the increase in water content. Zhao [28] studied the effect of water content
on the compressive strength of polyurethane foam. It was found that the compressive
strength decreased with the increase of water content. The method of normalization
processing was used to integrate the large range of research data obtained from various
studies to effectively observe the change in the trend of the data. The increase in foaming
agent content decreases the strength of the polyurethane foam (Figure 2).
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2.3. Effect of Water Content on Gelation Time, Cell Morphology, and Stability of Polyurethane
Foams

In addition to density and basic mechanical properties, the water content affects the
gelation time and thermal conductivity of polyurethane. The gel time of polymer foam
means the period from slurry mixing to curing and forming, which is one of the important
physical properties of polyurethane foam. Li [29], Song [20], and Wang [30] studied the
effect of water consumption on gelation time. The gelation time of polyurethane foam ma-
terials increased with an increase in the water content. The gelation time slightly decreased
with an increase in water consumption when the water consumption was low. Subse-
quently, the gelation time was gradually prolonged with an increase in water consumption.
The cellular morphology became larger and non-uniform when the water content was
increased [21,31]. Because of the fast reaction rate between the water molecule and iso-
cyanate group, the cell structure of polyurethane foam materials was brittle [32,33]. Luo [34]
discussed the effect of water content on the properties of waterborne polyurethane foam
materials. The increase in water content increased the strength of the hydrogen bond of the
N-H stretching vibration peak and widened the average particle size distribution of the
emulsion. Zheng [35] studied the polyurethane foaming and hydrolysis resistance of the
foam in a highly humid environment using infrared spectroscopy, scanning electron micro-
scope, and compression performance tests. The water content affected the thermoacoustic
performance of polyurethane foam when it was used as a thermal insulation material.
Polyurethane foam absorbed a small amount of water and had good impermeability [36].
Lu [37] investigated the stimulation response to polyurethane shape memory polymer
hydrogen bonding by changing the water content in ethanol/water mixtures. In addition,
the humidity had a significant effect on the viscoelastic mechanical properties [38] and
dimensional changes [39,40] in rigid polyurethane foam. Moreover, trace amounts of water
can be used as chain extenders to improve the molecular weight and mechanical properties
of polyurethane prepolymers [41].
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3. The Diffusion of Polyurethane Grout in Water Environment
3.1. Experimental Studies of Polyurethane Grout Diffusion

Polyurethane foam materials are widely used in engineering due to their good scour
resistance when used as a grouting material [42]. In practical engineering applications,
polyurethane foam materials are injected into the repair area in the form of grout. Before
forming, the grout comes into contact with the repair area, and then it is solidified and
formed after a period of time. Polyurethane foam materials have different diffusion
behaviors in different media and are characterized by sheet-splitting diffusion in the soil.
Figure 3 shows the form and dimensions of foam spreading through soil fissures of different
widths [43]. Figure 3a shows foam spreading through a 20 mm crack, whereas Figure 3b
shows that the foam can fill much smaller cracks. In general, the wider the crack, the
farther the polyurethane foam diffuses, as shown in Figure 3a, where foam dendrites
form at the soil foam interface. The diffusion characteristics of cleavage and penetration
cementation exist in the dry sand layer, which forms a curing body that is thick at the center
and thin on both sides [44]. The experiment and simulation calculation of fracture grouting
were applied to study the diffusion form of polyurethane in anhydrous rock. It was
found that the polyurethane grout diffused concentrically, and the diffusion rate decreased
continuously [45,46]. The diffusion form and range of polyurethane grout directly affect
the strength of polyurethane foam after molding. Therefore, it is of practical significance to
study the diffusion characteristics of polyurethane grout to enhance the controllability of
grouting.
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The above studies were aimed at the changes in the properties of polyurethane foam
materials in dry environments. In the application of practical engineering, polyurethane
grout was used in a complex service environment. The diffusion behavior of polyurethane
grouting in water-bearing cracks was affected by groundwater pressure and groundwater
temperature [45]. The research object of grout diffusion under the influence of dynamic
water was constant density grout in several studies [47–51]. The first domestic and foreign
dynamic water grouting model test bench was developed in 2008. The test bench performed
fissure dynamic water environment simulation and conducted fissure dynamic water
grouting sealing tests [52]. However, this research focused on cement grouting. Li [53]
developed a model test device and test method for polymer fracture grouting under
dynamic water conditions, which provided a more complete means for testing the diffusion
characteristics of polymer fracture grouting under dynamic water conditions. It was found
that polyurethane diffused approximately circularly in the center of the grouting hole in
fissure water with this test device (Figure 4). The diffusion radius decreased with an increase
in the water pressure when the grouting amount was constant [45]. Zhang [54] used a
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concrete slab to simulate dam cracks for a water penetration model test and established
the relationship between grouting pressure, fracture characteristics and slurry diffusion
radius. It was observed that the pressure field change in the grouting–water system
could be divided into three stages. The pressure sharply increased under the driving and
transmission of grouting pressure in the first stage. The flow field pressure increased
in the second stage due to the secondary pressure caused by the foam expansion of the
polyurethane grouting. Finally, the slurry stopped diffusion in the third stage [55].

Polymers 2022, 14, x FOR PEER REVIEW 6 of 18 
 

 

water grouting sealing tests [52]. However, this research focused on cement grouting. Li 
[53] developed a model test device and test method for polymer fracture grouting under 
dynamic water conditions, which provided a more complete means for testing the diffu-
sion characteristics of polymer fracture grouting under dynamic water conditions. It was 
found that polyurethane diffused approximately circularly in the center of the grouting 
hole in fissure water with this test device (Figure 4). The diffusion radius decreased with 
an increase in the water pressure when the grouting amount was constant [45]. Zhang [54] 
used a concrete slab to simulate dam cracks for a water penetration model test and estab-
lished the relationship between grouting pressure, fracture characteristics and slurry dif-
fusion radius. It was observed that the pressure field change in the grouting–water system 
could be divided into three stages. The pressure sharply increased under the driving and 
transmission of grouting pressure in the first stage. The flow field pressure increased in 
the second stage due to the secondary pressure caused by the foam expansion of the pol-
yurethane grouting. Finally, the slurry stopped diffusion in the third stage [55]. 

 
Figure 4. Change in flow-field pressure and grout diffusion morphology with time. (a) The end of 
the static pressure injection stage was set as the initial time (0 s) at which the initial diffusion ra-
dius was defined. (b) The shape of grout diffusion for 10 seconds. (c) The shape of grout diffusion 
for 20 seconds. (d) The shape of grout diffusion for 30 s. Scale bar is 0.1 cm. Reproduced from [45], 
with permission from Elsevier, 2021. 

3.2. Diffusion Mechanism of Polyurethane Grout  
According to the different rheological types of grout, the grouting diffusion theories 

of the fractured rock mass can be divided into the Newton and Bingham grout diffusion 
theories [56–58]. The fluidity of a Newtonian grout depends only on its viscosity, which 
is constant at a certain pressure and temperature. The grouting material is an organic 
grouting material. Its viscosity gradually changes with time, and it has a viscosity-time-
varying characteristic. The diffusion morphology and law are different from those of con-
ventional grouting materials such as cement slurry and sodium silicate. It is a typical non-
Newtonian fluid. The Bingham fluid model can determine the viscosity-time-varying 
characteristics of organic grouting materials, which are closely related to the properties of 
the grout [59]. Liu [49] divided the diffusion of polyurethane grout into grouting diffusion 
and secondary expansion diffusion stages based on the Bingham fluid model and deduced 
the diffusion radius of waterborne polyurethane in dynamic water. 

The grouting diffusion radius formula of the grouting diffusion stage is as follows: 
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Elsevier, 2021.

3.2. Diffusion Mechanism of Polyurethane Grout

According to the different rheological types of grout, the grouting diffusion theories
of the fractured rock mass can be divided into the Newton and Bingham grout diffusion
theories [56–58]. The fluidity of a Newtonian grout depends only on its viscosity, which is
constant at a certain pressure and temperature. The grouting material is an organic grouting
material. Its viscosity gradually changes with time, and it has a viscosity-time-varying
characteristic. The diffusion morphology and law are different from those of conventional
grouting materials such as cement slurry and sodium silicate. It is a typical non-Newtonian
fluid. The Bingham fluid model can determine the viscosity-time-varying characteristics
of organic grouting materials, which are closely related to the properties of the grout [59].
Liu [49] divided the diffusion of polyurethane grout into grouting diffusion and secondary
expansion diffusion stages based on the Bingham fluid model and deduced the diffusion
radius of waterborne polyurethane in dynamic water.

The grouting diffusion radius formula of the grouting diffusion stage is as follows: t =
6η ln r

r0
(r−r0)

2

(p0+pw−pc)·b2−τ0·b·(r−r0)

pw = ± 1
2 ρw(ν cos θ)2

(3)

The final diffusion radius formula after grouting stops is as follows:
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R = r0eA√1 + 2ω

eA − 1
[

6r0η
τ0tb A− 1

]
= b(p0+pw−pc)

τ0r0

pw = ± 1
2 ρw(ν cos θ)2

(4)

In the formula: Pw—dynamic hydrostatic energy; adjacent diffusion considers “+”,
countercurrent diffusion considers “−”; R—final diffusion radius of slurry; t—grouting
time; b—fracture opening; P0—injection pressure; Pc—hydrostatic pressure; ρw—density
of water; ν—water flow rate; r—diffusion radius during grouting process; r0—radius of
grouting hole; τ0—shear yield stress of slurry; η—initial viscosity of slurry; ω—injected
water expansion rate; and θ—angle between diffusion radius and hydrodynamic flow
direction.

Numerical simulation is widely used in the study of polyurethane grout diffusion
due to its simple advantages [48,60,61]. A numerical approach for simulating the grout
diffusion with variable density in two-dimensional fracture was developed based on the
computational fluid dynamics theory, and the numerical solution of the two-phase flow
system of polymer and water was attained [62]. The Bingham constitutive model was
applied to describe the grouting flow behavior, and the numerical model was established
to determine the effect of various grouting parameters on the grouting diffusion erosion
process [48]. Statistical analysis demonstrated that the grouting effect under the same
roughness and the flow condition was related to the aperture variation coefficient (COV).
Hao [46] regarded the expansion and diffusion of polymer grout in water-filled cracks as
the mutual displacement process between grout and water. A three-dimensional simulation
method for the flow and diffusion of self-expanding grout in flat cracks was established
based on the structured grid system. The diffusion characteristics of polymer grout were
studied considering the grouting hole as the center; the diffusion of polymer grout in the
cracks was approximately disk-shaped to uniform around.

The abovementioned studies investigated the diffusion mechanism of polyurethane
grout under the condition of fissure dynamic water using theoretical formulas and numeri-
cal simulation. The results demonstrated that the diffusion radius of polyurethane could
be deduced using the Bingham grout diffusion theory, and its underwater diffusion was
divided into the grouting diffusion and secondary expansion diffusion stages. However, at
present, the diffusion model and theory of grouting materials under dynamic water cracks
are mostly biased towards non-expansive grout such as cement, which cannot evaluate the
diffusion characteristics of polymer grouting materials with self-expansion characteristics
in cracks.

4. Effect of Water Environment on the Polyurethane Foams Material’s Properties

Multiple studies were conducted to evaluate the hygroscopic properties of com-
posite polyurethane foam materials under an unpressurized water environment [63–69].
Polyurethane foam materials are a multifunctional polymer compound that has been mainly
used in water conservancy projects for anti-seepage reinforcement, pipeline insulation,
and mechanical wear-resistant coating. Polyurethane foam materials are affected by water
molecules due to the complexity of the engineering environment. Several studies demon-
strated that the morphology, quality, and mechanical properties of polyurethane foam
materials change in a humid environment. Polyurethane foam materials in the service state
underwater are subjected to high water pressure when they are used as repair materials in
deep water engineering, and moisture has a higher degree of penetration into the material
along its internal micropores [70–72]. Additionally, the performance of polyurethane foam
materials varies depending on the depth of the water environment [13].

4.1. Effect of Water Environment on Moisture Absorption Rate and Volume Shrinkage of
Polyurethane Foams

Polyurethane foam materials have water swelling properties [73], and the change in
the moisture absorption rate affects its water absorption performance. Sabbahi et al. [74–77]
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conducted experiments on the water absorption of polyurethane foam using the gravimetric
method. The polyurethane foam materials repeatedly adsorbed and desorbed water, and
it was observed that the diffusion rate constantly changed. The absorption kinetics in the
first stage is slower than that after several soaking treatments. The diffusion rate during
the first immersion was low, and the material transfer coefficient on the surface of the
first stage was limited. Mei [70] and Li [78] investigated the moisture absorption rate of
reinforced polyurethane foam. It was observed that the diffusion of water in the material
was rapid in the initial stage, and the diffusion rate decreased with the passage of time
and finally reached saturation. Wang [79] investigated the durability of polyurethane
foam materials using polyurethane foam soaked in water as a control group and studied
the variation in the elastic modulus of polyurethane foam materials of different densities
with soaking time. The elastic modulus of polyurethane foam samples fluctuated near the
initial value with an increase in the soaking time and did not significantly change with
soaking time. A few scholars [80–83] studied the physical properties of polyurethane foam
materials in frozen soil environments and found that the water absorption increased with
the increase in soaking time. Figure 5 summarizes the change in the moisture absorption
rate of foam materials with soaking time. The study demonstrated that the moisture
absorption rate of polyurethane foam materials gradually increased with an increase in
the soaking time until saturation, and the moisture absorption rate rapidly increased in
the initial stage. The change in the moisture absorption rate gradually decreased with the
passage of time [84]. As can be seen from the figure, the moisture absorption rate was
faster in Mei’s study [70] than in the other studies. Because Mei [70] adds a certain amount
of hollow beads to polyurethane, the main component of hollow beads is polar material,
and the specific surface area is large, so hollow beads are easy to absorb water. Water
also has varying degrees of effect on the shrinkage of polyurethane foam materials. Water
penetrates into the material during absorption and occupies the internal pores, reducing
the crystallization rate of the material. This offsets the shear stress between a few molecules.
Therefore, the shrinkage of polyurethane foam materials after water absorption is less than
that before water absorption. Shi [85] and Lu [86] investigated the change in the volume of
polyurethane foam materials with different densities before and after water absorption and
observed that the volume of polyurethane foam materials decreased after water absorption,
which is consistent with that of the abovementioned results.
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The moisture absorption rate of polyurethane foam materials is affected by several
factors. Density is an important factor that affects the moisture absorption properties of
polyurethane foam materials. High-density polyurethane foam materials have a dense
interior and fewer pores, which results in higher moisture absorption than that of low-
density polyurethane foam materials [85,87]. Additionally, temperature and humidity are
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important factors that affect material properties, wherein humidity is an important factor
that leads to the aging reactions of polyurethane foam materials. The moisture absorption
of polyurethane foam materials has been extensively studied in temperature and humidity
environments. The water diffusion rate increases with increasing temperature and humidity,
and the moisture absorption rate significantly increases with an increase in environmental
temperature and humidity [78,88]. Additionally, the surface state of polyurethane foam
materials affects water absorption. Chen et al. [89] investigated the effect of the surface state
of polyurethane foam on their water absorption rate. The results showed that the water
absorption of the uncoated sample was 2.2%, while the water absorption of the coated
sample was 0.1%. They observed that the water absorption rate was low when the metal
film was coated on the surface of the foam material because the metal material had a very
low water permeability, and it acted as a barrier layer to the foam. In addition, the moisture
absorption rate of polyurethane changes with a change in the pore size and specific surface
area [90].

4.2. Effect of Water Environment on Mechanical Properties of Polyurethane Foams

Water can considerably affect the mechanical properties of polyurethane foam materi-
als. Mourad [91] and Chou [92] evaluated the effect of moisture absorption of polyurethane
foam materials on their modulus of elasticity and strength. The change in the compres-
sive properties of polyurethane foam materials can be neglected in a saline environment.
However, its flexural modulus and strength decrease [93]. Yang [94] studied the water
absorption of polyurethane foam materials after soaking for 24 h and measured the com-
pressive strength before and after water absorption. The results demonstrated that the
compressive strength after water absorption was slightly lower than that before water
absorption. However, the overall difference was low. Subsequently, in 2017, Lu [86] studied
the water absorption and compressive strength of polyurethane foam materials soaked
for 96 h and observed that their compressive strength after water absorption was higher.
The explanation for this phenomenon was that water molecules occupied the pores inside
polyurethane foam materials and increased their strength. Liang [95] studied the compres-
sive and flexural strength of polyurethane foam before and after water absorption in 2019.
With the change in water absorption time, it was observed that the compressive strength
of liquid polymer foam was divided into two stages. The compressive strength increased
in the first stage with an increase in soaking time, wherein the water penetrated the open
pores of the polyurethane foam materials and filled the pores, which increased its strength.
The compressive strength gradually decreased with an increase in the immersion time
after the water saturation. The water destroyed the cell wall in this stage, which resulted
in a decrease in the material strength. The former phenomenon was summarized and
explained in this paper. Gibson and Ashby [96,97] studied the mechanical properties of
foam materials. Studies have shown that the mechanical properties of the foam are related
to the characteristics of its cell wall, which verifies the accuracy of the above research.
A few studies have been conducted on the effect of moisture absorption on the tensile
strength of polyurethane foam materials. It was observed that the tensile strength and
tensile modulus decreased with an increase in the moisture absorption time of polyurethane
foam materials [91,95,98].

4.3. Effect of Water Environment on Permeability of Polyurethane Foams

Previous studies demonstrated that polyurethane grouting materials have a continu-
ous self-contained skin and can attain greater than 95% of the high-strength interconnection
wall closed pore with ideal impermeability, and its permeability coefficient is approximately
10−8 cm/s [43,99–101]. Okumura [102] conducted a water permeability test on rutted slabs
after polymer repair to verify the waterproofing effect of polymer adhesion. However,
these studies did not provide test methods and relevant test data.

In 1966, Gent [103] performed experimental and theoretical research on the perme-
ability of ordinary polyurethane I and membrane-free polyurethane II. The porosity of
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each foam was calculated according to the volume density of the foam and the density of
the matrix material, which was approximately 0.97. The relationship between the perme-
ability and average pore diameter was obtained by experiments. However, the seepage
pressure of polyurethane foam materials was not provided. Xin [104] investigated the per-
meability of composite material and observed that it had optimum water retention capacity.
Mondal [105] studied the water resistance of rigid polyurethane foam by simulation, dis-
cussed the effect of sample size, different rupture strength functions, average cell number,
the minimum distance between cells, cell volume distribution, different assumptions of
rupture strength and random distribution of window rupture strength on the hydraulic
resistance of the model foam, and experimentally verified the results. Wang [106] and
Zhang [54] investigated the permeability properties of polyurethane foam materials with
densities in the range of 0.11–0.61 g/cm3 and observed that the permeability resistance
of polymeric materials increased with an increase in the density of polymeric materials.
The test results are shown in Figure 6; however, because they employed the permeability
evaluation method of hydraulic concrete, they were unsuitable for polyurethane foam
materials. Subsequently, permeation tests were conducted using Global Digital Systems
(GDS) pressure controllers in Rowe cells on polyurethane foams with a density in the range
of 37–145 kg/m3 and investigated the relationship between polyurethane foam materials
density and permeability at a pressure of 25 kPa [43]. It was observed that the permeability
of polyurethane foam in this density range varied in the range of 10−8–10−9, and the
uniform material with a large density did not allow the flow of water due to the closed
pore structure of the material. Although the tensile strength and elongation at break of
polyurethane foam materials soaked in water, acid, and alkali solution for a long time
exhibited a decreasing trend, it exhibited good impermeability [107]. The abovementioned
studies have experimentally and theoretically proved that polyurethane foam materials
have good impermeability, which can be applied to anti-seepage and leakage compensation
in practical engineering.
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4.4. Moisture Absorption Mechanism of Polyurethane Foams

The physical and mechanical properties of polyurethane foam materials are closely
related to their microstructure. Hence, a qualitative and quantitative analysis of the polymer
microstructure is crucial. Polyurethane foam materials can be considered three-dimensional
foam material according to the stacking pattern of the foam body and the characteristics of
the cell surface and cell edge [5,108]. The corresponding micromechanical model can be
obtained by studying the cell wall and cell pore size of polyurethane foam [109]. At present,
the analysis of the moisture absorption mechanism of polyurethane foam materials mainly
observes the change in the polyurethane foam after water treatment through microscopic
experiments. Liang [95] selected specimens before and after water absorption and observed
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that the vesicle wall of liquid-containing foam was severely damaged. This was due to the
immersion of the foam material in water. The water in the bubble structure of the specimens
initially destroyed the bubble wall. A few scholars [86,89] analyzed the water absorption
and desorption mechanism of foam materials from the perspective of bubble structure.
Figure 7 shows the water penetration and cell expansion of the foam after different soaking
times [69]. Lu [86] observed the vesicles of polyurethane foam materials before and after
water absorption using scanning electron microscopy and divided the diffusion of water
in polymers into the following three parts: diffusion of water on the surface of materials;
diffusion of water in closed pores; and the diffusion of water in fractured pores. The
diffusion of water in the above three aspects did not have a distinct order because a few
bubbles deformed and collapsed during the foaming process, which resulted in the rupture
of the pore wall to form cracks or holes, and the location of these cracks and holes were
randomly distributed.
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Braun [110] used magnetic resonance imaging to study the water absorption of
polyurethane foam. He conducted non-destructive and three-dimensional monitoring and
analysis of the liquid absorption behavior of different parts of the material. Cnudde [111]
applied high-speed neutron probing to the study of fluid absorption in porous materials
and obtained optimum results. Pilli [112] measured the diffusion of water in polyurethane
foam materials using the nuclear reaction analysis (NRA) technique. Idolor et al. [113]
proposed a damage detection technique for polymer composites using naturally absorbed
water as an imaging reagent to analyze the interaction and damage correlation lag be-
tween polymer and water. Wang [114] analyzed the mechanism of water damage at the
interface between polyurethane and rock using surface free energy (SFE) theory. X-ray
microscopy [115], digital imaging correlation (DIC), acoustic emission (AE) [116], and the
fluorescence probe in situ fluorescence method [117] can monitor the moisture absorption
and damage mechanism of polyurethane foam materials.

The diffusion of small molecules in polyurethane foam materials can be studied by
adsorption kinetics. Hakala [117] obtained the water absorption quality of polyurethane
foam materials by using the integral Equation (5):

Mt

M∞
= 1− 8

π2

∞

∑
n=0

1

(2n + 1)2 exp

[
−D(2n + 1)2π2t

l2

]
(5)

where Mt is the moisture absorption rate of the sample at t time, M∞ is the moisture
absorption rate when the sample reaches saturation, D is the diffusion coefficient, and l is
the sample thickness.
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At the initial stage of moisture absorption, both absorption and desorption curves are
functions of t1/2, so Equation (5) can be simplified to:

Mt

M∞
=

4
l

(
D
π

)1/2
t1/2 (6)

The theoretical data of diffusion coefficient obtained by the traditional one-dimensional
diffusion numerical model are not universal. Therefore, ref. [118] studied the diffusion
of water in rigid polyurethane foam materials from the static and dynamic aspects by
dissolving soluble NaCl in water and determining the correlation between the change in
impedance spectroscopy resistance value and the microscopic diffusion. The mechanism
of water collapse diffusion was proposed by combining it with the dynamic diffusion
results of water on the surface and inside the foam system (Figure 8). The water molecules
gradually expanded to form a film with an increase in adsorption, and the thickness of the
film increased with an increase in water absorption. The ruptured film collapsed into the
next layer when the water weight reached the yield point of the film. Finally, the water
reached the bottom layer of the foam.
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The abovementioned studies demonstrated that water damages the internal bubbles
of polyurethane foam materials, which affects the performance of polyurethane foam
materials. However, polyurethane foam materials include open and closed pores. Therefore,
water cannot enter the closed pores when the water pressure is insufficient and can only
damage the open pores. The research conducted on polyurethane foam materials in the
water environment has focused on parameters such as hygroscopicity or impermeability.
The abovementioned research demonstrates that polyurethane foam materials have good
water pressure resistance in different environments. However, a uniform specification was
absent for this aspect in the existing literature, and the test methods and equipment were
different. Moreover, polyurethane should be in a state of multi-axial water pressure when
it is used as a repair material in deep water engineering. However, a detailed study on
this aspect has not been conducted. Moreover, a few studies have been conducted on the
change in the water absorption process (cell diameter) in the existing literature. However,
the overall moisture absorption capacity of the system has not been evaluated.

5. Conclusions

Polyurethane foam materials are widely used in various fields due to their light
weight, high strength, and good durability. It is used in construction industries such as
water conservancy roadbeds as a repair material due to its short reaction time and high
expansion. The methods, contents, and results of the research on the effect of water on the
performance of polyurethane foam materials are summarized using three aspects: effect
of water content on polyurethane foam materials preparation, moisture absorption of
polyurethane foam, and polyurethane foam materials performance in a water environment.
The literature was reviewed as follows:

(1) The polyurethane foaming reaction is enhanced when water is used as a foaming
agent, but the density, as well as the mechanical properties, such as tensile and compres-
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sive strength, is gradually reduced with an increase in the amount of water. Due to the
hydrophilic nature of the polymer chain in the polyurethane foam materials, it can absorb
a large amount of water, resulting in the gradual transformation of the consolidation from
a porous bubble to a gelatin, so the gelation time of the hydrophilic polyurethane slurry
gradually increases with the increase in water content;

(2) The diffusion of polyurethane grouting under water is divided into the grouting
diffusion stage and the secondary expansion diffusion stage. The diffusion characteristics
are centered on the grouting hole and uniformly diffused around the crack in a disk shape;

(3) The moisture absorption rate gradually increases with an increase in the water
immersion time until saturation when polyurethane foam is in the water environment.
Additionally, the shrinkage rate is reduced, and the compressive strength initially increases
and subsequently decreases. This is observed because water fills the open pores when it
enters the polyurethane foam materials, which increases the strength and subsequently
damages the walls of the bubble pores, which reduces the strength.

The challenges for the application of polyurethane foam materials are as follows:
(1) At present, the research on the moisture absorption performance of polyurethane

foam materials mostly focuses on macroscopy, microscopic and microscopic research and
lacks a complete moisture absorption evaluation system;

(2) Polyurethane foam materials are subjected to multi-axial water pressure when it
is used in deep water projects. However, the study conducted on the water pressure of
polyurethane foam has not considered the effect of multi-axial water pressure;

(3) The change in the performance of polyurethane foam materials in the water envi-
ronment lacks a complete system. An analytical and in-depth discussion on the fracture
mechanism of water affecting polyurethane foam materials has not been performed.
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