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Abstract: Biodegradable polylactide (PLA) has been widely utilized in people’s daily lives. In order
to improve the fire safety of PLA, ammonium polyphosphate (APP) was self-assembled onto the
surface of serpentine Ni3Si2O5(OH)4 through the electrostatic method, followed by mixing with PLA
by melt compounding. The APP-modified serpentine (serpentine@APP) dispersed uniformly in the
PLA matrix. Compared with pure PLA, the PLA composite with 2 wt% serpentine@APP reduced the
peak heat release rate (pHRR) and total heat release (THR) by 43.9% and 16.3%, respectively. The
combination of APP and serpentine exhibited suitable synergistic flame-retardant effects on the fire
safety enhancement of PLA. In addition, the dynamical rheological tests revealed that the presence of
APP and serpentine could reduce the viscosity of PLA composites. The plasticizing effects of APP
and serpentine benefited the processing of PLA. The mechanical properties of PLA/serpentine@APP
maintained suitable performance as pure PLA. This study provided a feasible way to enhance the fire
safety of PLA without sacrificing its mechanical properties.

Keywords: polylactide; serpentine; ammonium polyphosphate; composite; flame retardant;
mechanical property

1. Introduction

Biodegradable polymers have drawn considerable attention in both academia and
industry due to the increasing awareness of environmental pollution problems. Polylactide
(PLA) is a kind of bio-based and biodegradable polyester that shows promising applications
in various fields, such as packaging, automotives, and electronics [1–4]. It exhibits unique
properties such as suitable transparency, high mechanical strength, suitable processibility,
and non-toxicity. However, the intrinsic flammability of PLA limits its further applications
and development. Therefore, it is an important and urgent issue to improve the fire safety
performance of PLA [5–7]. Recently, flame-retardant PLA composites containing different
types of fillers, such as montmorillonite [8], carbon black [9], sepiolite [10], and carbon
nanotubes [11], have been extensively investigated. The addition of organic modified
montmorillonite (OMMT) enhanced the thermal stability and fire resistance of PLA signifi-
cantly due to its excellent physical barrier effect and char-forming effect [8]. Wen et al. [9]
grafted DOPO onto the surface of carbon black (CB-g-DOPO). The results revealed that
CB-g-DOPO was effective at improving the flame retardancy and mechanical properties of
PLA/CB composites. The peak heat release rate (pHRR) of the PLA composite containing
10 wt% CB-g-DOPO was reduced by 40.7% as compared with that of pure PLA. Jiang et al.
decorated natural sepiolite with DOPO (SEP-g-DOPO) through the reaction between amino
groups and salicylaldehyde. The presence of SEP-g-DOPO benefited the generation of
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the dense and continuous char layer, protecting the interior layer more efficiently during
combustion [10].

Two-dimensional (2D) layered materials have exhibited superior flame-retardant be-
haviors in a variety of polymer composites due to their barrier effect and promotion of
char residues [12,13]. Many researchers have explored 2D-based nanofillers in combi-
nation with flame-retardant additives to improve the fire performance of PLA [14]. A
combination of graphitic carbon nitride (g-C3N4) with melamine pyrophosphate (MPP) or
DOPO exhibited a significant reduction in pHRR and total heat release (THR) of PLA [15].
Xu et al. utilized melamine-cyanuric acid (MCA) hybrids as a shell layer to decorate lamel-
lar molybdenum disulfide (MoS2) plates and then mixed them with PLA through melt
blending [16]. The core-shell structure of MoS2 could suppress the pyrolysis rate and
promote the graphitization degree of char residues. Jing et al. demonstrated that the
core-shell flame-retardant/graphene oxide (GOH) hybrids could reduce fire hazards and
improve the toughness of PLA simultaneously [17]. Zhang et al. reconstructed layered
double hydroxides (LDH) with phosphotungstic acid [18]. The PLA composite obtained the
UL-94 V-0 rating and achieved a maximal LOI value of 48.3% with 18.0 wt% intumescent
flame retardant (IFR) and 2.0 wt% modified LDH. The modified LDH exhibited suitable
synergistic effects with intumescent flame retardant on the enhancement of fire resistance
of PLA.

Serpentine [Ni3Si2O5(OH)4] is a type of transition metal silicate hydroxide that exists
extensively in the oceanic lithosphere [19]. It is a silicate with unlimited two-dimensional
extension made of Si-O tetrahedrons. The oxygen atop the unshared siloxane tetrahedron
possesses a residual negative charge (Scheme 1), which can react with Ni2+ to produce
Ni-O octahedron sheets. Lamellar serpentine nanosheets have been widely utilized for
catalysis [20], energy storage [21], and sensors [22]. It is rich in OH groups and has a similar
structure to LDH, making it potentially useful in the flame-retardant sector of polymer
matrices. However, the application of serpentine as a promising flame retardant in polymer
composites is rarely reported.
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In this work, lamellar serpentine nanosheets were synthesized by precipitation reac-
tions under hydrothermal conditions. Then ammonium polyphosphate (APP) was grafted
onto the serpentine nanosheets via electrostatic self-assembly by using 2-cyanoethyltriethox-
ysilane as a chemical bridge. The APP-functionalized serpentine (serpentine@APP) was
incorporated into the PLA matrix by melt compounding as a novel type of flame-retardant
hybrid filler. The effects of the as-fabricated serpentine@APP on the rheological proper-
ties, mechanical properties, and flame-retardant performance of PLA composites were
also investigated.



Polymers 2022, 14, 5255 3 of 15

2. Experimental
2.1. Materials

PLA (Ingeo 4032D) with a density of 1.25 g/cm3 was supplied by Natureworks
(Plymouth, MN, USA). Nickel chloride hexahydrate and sodium silicate were purchased
from Aladdin Bio-Chem Co., Ltd. (Shanghai, China). 2-cyanoethyltriethoxysilane, am-
monium polyphosphate (APP, n < 20), and isopropanol were supplied by J&K Co., Ltd.
(Beijing, China).

2.2. Preparation of Serpentine@APP Hybrid

The synthesis route of ammonium polyphosphate decorated serpentine (serpen-
tine@APP) was shown in Scheme 1. The serpentine Ni3Si2O5(OH)4 nanosheets were
synthesized by precipitation reactions under hydrothermal conditions [23]. Typically,
1 mmol of Na2SiO3 and 35 mL of DI water were mixed by vigorous stirring. Then, 1.5 mmol
of NiCl2 was introduced to the Na2SiO3 solution to generate light green precipitates. Sub-
sequently, the as-prepared suspension was moved into a 100 mL Teflon-lined stainless steel
container and heated in an oven at 180 ◦C for 12 h. To remove the excess OH-, Cl-, and
Na+ ions, the resulting hydrothermal treatment materials were centrifuged and rinsed with
DI water and isopropanol, respectively. The washed precipitate was collected after being
dried at 120 ◦C.

1.0 g of as-prepared Ni3Si2O5(OH)4 nanosheets were mixed with 200 mL of iso-
propanol by ultrasonication. Then the solution was treated with 100 µL of 2-cyanoet-
hyltriethoxysilane dropwise for 2 h at 90 ◦C, followed by centrifugation and rinsing with
DI water and isopropanol, respectively. A total of 5.0 g of APP was dissolved in 200 mL
of DI water with vigorous stirring to form a clear solution. After the APP was dispersed
completely, 1.0 g of silane-modified serpentine was subsequently added with vigorous
stirring. Then the mixture was centrifuged at 10,000 rpm for 15 min and dried in a vacuum
oven. The obtained APP-functionalized serpentine was denoted as serpentine@APP.

2.3. Preparation of PLA Composites

A counter-rotating internal mixer (PLASTIC-ORDER, Brabender, Germany) with a
rotation speed of 60 rpm was used to melt compound PLA composites containing 2 wt%
different types of fillers for 10 min at 180 ◦C. Following that, the samples were hot-molded
(185 ◦C, 10 min) into specimens of various sizes. The formulations of PLA composites are
shown in Table 1.

Table 1. Formulations of pure PLA and its composites.

Sample PLA (wt%) APP (wt%) Serpentine
(wt%)

Serpentine@APP
(wt%)

PLA 100 – – –
PLA/APP 98 2 – –

PLA/serpentine 98 – 2 –
PLA/serpentine@APP 98 – – 2

2.4. Characterization

The morphology of serpentine, serpentine@APP, and PLA composites was observed
by scanning electron microscopy (SEM, FEI, Quata 250, Hillsboro, FL, USA). Before the
SEM observations, the samples were sputtered with a thin layer of gold. An atomic force
microscope (AFM, VEECO Nanoscope, Plainview, NY, USA) was used to measure the
thickness and morphology of the synthesized serpentine nanosheets in tapping mode. The
Fourier transform infrared (FT-IR) spectra were carried out on a Fourier transform infrared
spectrometer (Nicolet, Nexus 670, Ramsey, MN, USA) in the range of 400–4000 cm−1. The
elemental compositions were analyzed by X-ray photoelectron spectroscopy (XPS, Physical
Electronics, PHI 5802 spectrometer, Chanhassen, MN, USA). The thermal stability was
investigated by a thermogravimetric analyzer (TGA, Netzsch, TGA-209F3, Selb, Germany)
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in the temperature range of 30–700 ◦C under nitrogen flow. The heating rate was fixed
at 10 ◦C/min. The limiting oxygen index (LOI) was measured on an HC-2 oxygen index
instrument (Jiangning Analytical Instrument, Jiangning, China). The UL-94 rating of the
samples was evaluated by a vertical burning tester (FTT, Derby, UK). The fire characteristics
of the PLA composites were measured on a cone calorimeter (FTT, UK) under an external
heat flux of 35 kW/m2 based on the standard of ISO-5660. The structure of char residues
was analyzed by a Raman spectrometer (LabRAM ARAMIS, Villeneuve d’Ascq, Paris,
France). The dynamical rheological properties were measured on an Anton-Paar MCR-
302 dynamic rheometer (Graz, Austria). A dynamic mechanical analyzer (Netzsch, DMA
242, Weimar, Germany) was utilized to examine the dynamic mechanical properties in
tensile mode. The rectangular specimens with a dimension of 30 × 4 × 0.5 mm3 were
measured in the temperature range of 0–80 ◦C at a fixed heating rate of 3 ◦C/min. The
tensile properties were evaluated on an electronic testing machine (Type 5566, Instron,
Norwood, MA, USA). The dumbbell specimens with 75 × 4 × 1 mm3 were tested at a fixed
speed of 1 mm/min.

3. Results and Discussion
3.1. Characterization of Serpentine@APP

The morphology of the prepared serpentine is shown in Figure 1a. The serpentine
nanosheets exhibit a layered structure with a smooth surface. The AFM image in Figure 1b
confirms the lamellar structure. The height of the region marked by the white line in the
AFM image ranges from 0.6 to 0.7 nm, corresponding to the height of monolayer serpentine.
As for serpentine@APP, a rougher surface of serpentine@APP is clearly observed in Fig-
ure 1c,d, which is due to the charge self-assembling between APP and the silane-modified
serpentine. In Figure 1e, the corresponding EDX mapping images confirm the existence
of Si, Ni, P, and N elements, which disperses evenly onto the surface of serpentine@APP,
indicating APP has been successfully decorated onto the surface of serpentine.
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Figure 1. (a) SEM images of serpentine, (b) AFM image of serpentine (Insert is the height of the
selected curve); (c) SEM image, (d) TEM image, and (e) the corresponding EDX elemental mapping
of Si, Ni, N, and P elements of serpentine@APP.

The XRD patterns of APP, serpentine, and serpentine@APP are depicted in Figure 2a.
The four diffraction peaks at 20.4◦, 25.3◦, 34.1◦, and 35.3◦ are assigned to the (110), (004),
(200), and (202) planes of serpentine, respectively, which are consistent with the serpentine
card (JCPDS no. 49-1859) [24,25]. Moreover, the diffraction peaks of serpentine are very
broad, which is consistent with the nanostructured nature of this material. The XRD
patterns indicate that the Ni3Si2O5(OH)4 nanosheets were synthesized successfully. There
are several small diffraction peaks between 20◦ and 31◦ for serpentine@APP, which are
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attributed to the grafted APP. In addition, the diffraction peak at 32.7◦ in APP disappears
in the pattern of serpentine@APP, suggesting there is a chemical interaction between
APP and serpentine. The FT-IR spectra of serpentine and serpentine@APP are shown
in Figure 2b. The sharp peaks at 3413 cm−1 and 1618 cm−1 are generated by the -OH
vibration in Ni3Si2O5(OH)4. The characteristic peak at 1042 cm−1 is owing to the Ni–O–Si
chemical bond [26]. The band at 619 cm−1 corresponds to the Ni–O bond. In addition, the
peak at 484 cm−1 is attributed to the symmetric stretching vibration of the Si–O bond [27].
These characteristic peaks further prove the formation of nickel silicate in the hybrid. The
chemical compositions of serpentine and serpentine@APP were evaluated by XPS, and
the corresponding data are shown in Figure 2c–e. In Figure 2c, the presence of Ni, Si, C,
and O is clearly observed in the full scan of the serpentine. The appearance of C may be
attributed to pollution from the environment. The high-resolution spectra of N 1s and P
2p of serpentine@APP in Figure 2d,e confirm that the APP was attached to the serpentine
successfully. To measure the thermal stability of APP, serpentine, and serpentine@APP
under a nitrogen atmosphere, the TGA curves are shown in Figure 2f, and the corresponding
TGA data are shown in Table S1. The pure APP begins to degrade (T10, the temperature
that corresponds to 10% weight loss) at 309.4 ◦C and to decompose most rapidly (Tmax,
the temperature that corresponds to the maximum weight loss rate) at 357.1 ◦C. As for
serpentine and serpentine@APP, both of them exhibit a quick decomposition stage below
100 ◦C, which is attributed to the loss of absorbed water. With the decoration of APP, the T10
for serpentine@APP increases from 106.5 to 182.1 ◦C as compared with pure serpentine. It is
because the decorated APP may serve as a protective coating, delaying the decomposition
of the serpentine [28]. These above results indicated that serpentine@APP had better
thermal stability than pure serpentine.
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3.2. Fractured Surface Analysis of PLA Composites

The morphology of the cryo-fractured surfaces of the pure PLA and its composites is
shown in Figure 3. It is evident that pure PLA has a smooth fractured surface (Figure 3a)
due to its brittle fracture at low temperatures. In Figure 3b, some APP particles are exposed
on the smooth surface of the PLA/APP composite. With the incorporation of serpentine,
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the PLA/serpentine composite (Figure 3c) exhibits a much rougher surface than that of
pure PLA. That is because the presence of rigid serpentine fillers can absorb more energy
and inhibit crack propagation during fracture. As for the PLA/serpentine@APP composite
(Figure 3d), the introduction of serpentine@APP also increases the cracks in the surface. In
addition, there are no cavities on the surfaces of PLA/serpentine and PLA/serpentine@APP
composites, indicating that both serpentine and serpentine@APP have suitable interfacial
interaction with the PLA matrix.
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and (d) PLA/serpentine@APP composites.

3.3. Thermal Stability

The thermal stability of PLA composites was evaluated by TGA, as shown in Figure 4.
The temperatures at 10% weight loss (T10), the temperatures at the maximum weight loss
rate (Tmax), and the char residues at 800 ◦C are listed in Table 2. All of the samples in
Figure 4a show a single primary decomposition stage between 300 and 400 ◦C, which
corresponds to random chain scission and particular chain-end scission. [29]. With the
incorporation of APP, the T10 of the PLA/APP composite increases from 346.2 to 349.7 ◦C
as compared with pure PLA. However, the incorporation of serpentine results in a slight
decrease in T10. It is speculated that serpentine containing a large number of hydrogen
groups has lower thermal stability, as shown in Figure 2f. After decoration with APP, the
T10 of the PLA/serpentine@APP shifts to a higher value (346.0 ◦C). The Tmax for pure PLA,
PLA/APP, PLA/serpentine, and PLA/serpentine@APP in Figure 4b is 379.0, 377.1, 373.5,
and 376.7 ◦C, respectively. As shown in Table 2, almost no char residue is observed for
the pure PLA at 800 ◦C. Meanwhile, the presence of APP and serpentine can increase the
char residue of PLA composites. The increased char residue weight can contribute to the
enhancement of fire safety for PLA composites.
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Table 2. TGA data for pure PLA and its composites.

Samples T10 (◦C) Tmax (◦C) Residues at 800 ◦C
(wt%)

PLA 346.2 379.0 0.21
PLA/APP 349.7 377.1 1.39

PLA/serpentine 341.5 373.5 1.72
PLA/serpentine@APP 346.0 376.7 1.95

3.4. Flame-Retardant Performance

The limited oxygen index (LOI) and UL-94 test results are summarized in Table 2. It
is clear that pure PLA has an LOI value of 19 and no rating in the UL-94 test, indicating
it is a flammable material. With the addition of serpentine@APP, the LOI value of PLA
composite increases from 19 to 25.5 but can only achieve a UL-94 V-1 rating. However, all
of the samples have dripping phenomena due to their low melting viscosity.

A cone calorimeter is a useful tool to evaluate the fire safety of polymers in real fire
accidents [30]. The heat release rate (HRR), total heat release (THR), and char residues
of PLA composites as a function of time are presented in Figure 5, and more detailed
parameters, including time to ignition (TTI), peak heat release rate (pHRR) are summarized
in Table 3. In Figure 5a, pure PLA exhibits a pHRR value of 507.8 kW/m2 and a THR
value of 57.1 MJ/m2. With the addition of APP, the pHRR of PLA/APP decreases to
419.7 kW/m2, which is decreased by 17.3% as compared to pure PLA. This is because the
thermal decomposition of APP can release free radical scavengers (·P and ·PO), which
may trap flammable radicals (·O, ·H, and ·OH), inhibit the burning reaction chain, and
generate more solid products [31]. As for PLA/serpentine, the presence of serpentine can
serve as a thermal barrier to prolong the escape paths for the flammable gases. In addition,
the nickel element in serpentine has a suitable catalytic carbonization effect that promotes
the formation of the char layer [32]. The PLA/serpentine@APP exhibits a pHRR value of
284.7 kW/m2 and a THR value of 47.8 MJ/m2, which are reduced by 43.9% and 16.3%,
respectively, as compared to those of pure PLA. In Figure 5b, it is clear that the slope of
PLA/serpentine@APP is lower than those of other curves, indicating that the combination
of APP and serpentine has suitable synergistic flame-retardant effects that suppress heat
release during combustion.
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Table 3. LOI, UL-94 test, and cone calorimeter data for pure PLA and its composites.

Samples LOI (%) UL-94 Rating Dripping TTI
(s)

PHRR
(kW/m2)

THR
(MJ/m2)

PLA 19 NR Yes 75 507.8 57.1
PLA/APP 22 V-2 Yes 77 419.7 51.8

PLA/serpentine 23.5 V-2 Yes 68 362.4 49.5
PLA/serpentine@APP 25.5 V-1 Yes 72 284.7 47.8

3.5. Char Residues Analysis

Figure 6 shows the photographs of char residues of PLA composites after the cone
calorimeter test. It is noted that pure PLA has been completely burned, and very little char
residue can be found in the aluminum foil. Meanwhile, the char residue of PLA/serpentine
shows a fluffy and discontinuous state. With the addition of APP, an extremely thin and
dense carbon layer is formed on the sample of PLA/APP after burning and adhering
to the tin foil at the bottom. Moreover, the char residue of PLA/serpentine@APP is
relatively continuous, and a large carbon block is formed on the surface. To investigate
the microstructure of char residues, the SEM images of the char residues are shown in
Figure 7. PLA/APP has a compact and continuous char layer in Figure 7a due to the
presence of phosphorus derivatives in APP. It is observed that the lamellarly structured
serpentine of PLA/serpentine is loosely distributed after combustion, and the area of the
continuous carbon layer is small (Figure 7b). While the serpentine in the char residue of
PLA/serpentine@APP is bonded together to form an effective carbon layer, which acts as a
barrier to the diffusion of O2 and heat, preventing further combustion of the substrate. A
small amount of pores appears in the carbon layer of PLA/serpentine@APP (Figure 7c),
which may be caused by the release of incombustible gases (CO, CO2, and NH3) into the
gas phase by APP before the decomposition of the PLA matrix during the combustion
process [33]. The presence of serpentine@APP contributes to the formation of more dense
and complete carbon layers, which can more effectively prevent the exchange of heat and
pyrolysis gas products with the external area [34], thereby delaying and restricting the
development of combustion to achieve the flame-retardant effect.
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Figure 7. SEM images of the char residues of (a) PLA/APP, (b) PLA/serpentine, and
(c) PLA/serpentine@APP.

The chemical composition of the char residues after the cone calorimeter test was
analyzed by XPS, as shown in Figure 8. The XPS full scan spectra in Figure 8a confirm
the existence of C, O, Ni, P, and Si elements in the char residues. In Figure 8b,c, the high
resolution of the C 1s XPS spectra reveals that the peaks of the C=O (290.7 eV), C–O
(288.3 eV), and C–C (284.8 eV) bonds can be fitted separately. Furthermore, the content of
C=O and C–O bonds in the carbon residue of the PLA/serpentine sample is lower than
that of the PLA/serpentine@APP sample. The molten flow of the PLA matrix during
combustion breaks up the carbon layer formation, leading to more contact with air and
promoting a more complete combustion of PLA/serpentine. However, it is difficult for the
APP to flow with the PLA matrix melt in the PLA/serpentine@APP sample. Meanwhile, it
will accelerate the dehydration of the matrix, which is conducive to the rapid formation
of a preliminary complete carbon layer after combustion, thereby reducing the contact
with O2, promoting the incomplete combustion of the matrix, and increasing the content
of C=O and C–O [35]. The high resolution of the P 2p spectrum in Figure 8d further
confirms the presence of phosphorus groups in PLA/serpentine@APP. The peaks of the
P–O (133.7 eV) and P=O bond (132.4 eV) can be fitted separately [36]. Previous studies
have demonstrated that the accumulation of phosphorus-containing compounds on the
surface of the carbon layer will reduce the permeability of the carbon layer, which is more
conducive to improving the barrier properties of the carbon layer [37].
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The graphitization degree of the char residues was analyzed by Raman spectra [38].
The two broad bands around 1380 and 1590 cm−1 in Figure 9 correspond to the dis-
ordered carbon structure of the D band and the graphitized structure of the G band,
respectively [39,40]. The integral strength ratio (ID/IG) of the D band and the G band
can measure the degree of graphitization. The lower the ratio, the higher the degree of
graphitization of the carbon layer [41,42]. It is noted that the ID/IG of char residues of
PLA/serpentine@APP is 3.00 (Figure 9a), which is lower than those of PLA/serpentine
(ID/IG = 3.67, Figure 9b) and PLA/APP (ID/IG = 3.39, Figure 9c). The results show that the
APP-modified serpentine can obtain a carbon layer with a higher degree of graphitization
than the serpentine alone. APP will form pyrophosphoric acid or polyphosphoric acid in
the process of thermal decomposition [43], which will destroy the PLA bone chain and the
hydroxyl group in the matrix to form a higher-quality carbon layer. The highly graphitized
carbon structure layer can act as a flame-retardant barrier that keeps the fire from spreading
during the combustion process of the substrate.

3.6. Rheological Behavior of PLA Composites

The linear viscoelastic region of pure PLA and its composites was determined by the
dynamical strain sweep tests [44,45], as depicted in Figure S1. All of the materials show
a linear viscoelastic domain up to 30% strain. The apparent shear-thinning phenomena
occur when the shear amplitude is above 30% strain. Therefore, the dynamical frequency
sweep experiment was carried out using a strain amplitude of 1% to avoid non-linear
behavior at low frequencies [46]. The complex viscosity (η*), storage modulus (G’), loss
modulus (G”), and damping factor (tanδ) as a function of frequency are shown in Figure 10.
It is noted that a Newtonian plateau in the low-frequency region is observed for all of the
samples in Figure 10a, followed by a shear-thinning tendency at the high-frequency region.
In addition, the shear-thinning phenomenon of pure PLA is more profound than that of
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PLA/sepentine@APP, indicating that the presence of sepentine@APP contributes to the
disentanglement of PLA chains. Interestingly, it is noted that the addition of serpentine will
result in a decrease in the η* of PLA composites. It can be attributed to the plasticizing effect
of the 2D serpentine, which can decrease the rectangle of the polymer chains. In Figure 10b,c,
the G’ and G” show a similar decrease tendency. However, the PLA composite containing
serpentine has a greater storage modulus at low frequencies and a more pronounced decline
at high frequencies. This phenomenon may be attributed to the 2D serpentine flake being
oriented at a high rotation speed, which is consistent with other 2D materials. Interestingly,
the PLA/sepentine@APP composite has a much lower storage modulus than that of APP
or serpentine applied solely in the high-frequency region. It is speculated that the low
molecular weight APP has a suitable synergistic plasticizing effect with serpentine. The
value of tanδ represents the ratio between G’ and G”, which indicates the dissipation of
heat energy. In Figure 10d, the values of tanδ are decreased obviously with the addition of
serpentine and sepentine@APP at the low-frequency region. This is because the presence
of serpentine or sepentine@APP contributes to the elasticity improvement of PLA.
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3.7. Mechanical Properties of PLA Composites

Figure 11a displays the tensile stress versus strain curves of PLA composites, and
the relevant data are provided in Table 4. In Figure 11a, all of the samples display the
typical brittle behavior that breaks at certain places quickly after the yielding point. The
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pure PLA has a maximum tensile stress of 59.4 MPa, and an elongation at break of 6.05%.
The stiffness of serpentine is considered to be the reason why the Young’s modulus of
PLA/serpentine jumps from 1476.6 to 1553.3 MPa when compared to pure PLA. However,
the mechanical properties of PLA/serpentine@APP somewhat deteriorate when compared
to PLA/serpentine. That is because the APP has a small molecular weight and is grafted
onto the surface of the serpentine by electrostatic interaction, leading to reduced tensile
strength and elongation at break. As shown in Figure 11b, the storage modulus of PLA/APP
is lower than that of pure PLA in the whole temperature range. Accordingly, it can be
explained by the fact that the addition of APP has a plasticizing effect on PLA.
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Figure 11. (a) Tensile stress versus strain of tensile test, (b) storage modulus of dynamical mechanical
analysis of pure PLA and its composites.

Table 4. Tensile properties for pure PLA and its composites.

Samples Tensile Stress (MPa) Young’s Modulus
(MPa)

Elongation at Break
(%)

PLA 59.4 ± 2.3 1476.6 ± 74.1 6.05 ± 0.49
PLA/serpentine 57.9 ± 2.8 1553.3 ± 73.9 4.97 ± 0.56

PLA/serpentine@APP 56.6 ± 1.5 1493.2 ± 44.3 4.83 ± 0.21

4. Conclusions

In this study, serpentine Ni3Si2O5(OH)4 was first synthesized by precipitation reac-
tions under hydrothermal conditions. Then APP was electrostatically grafted onto the
surface of serpentine to create a novel type of hybrid flame-retardant additive (serpen-
tine@APP), followed by mixing with PLA by melt compounding. The PLA composite
containing 2 wt% serpentine@APP exhibited suitable fire safety enhancement with a 43.9%
reduction in pHRR and a 16.3% reduction in THR as compared to those of pure PLA.
This is because the decomposition of APP will release free radical scavengers, the thermal
barrier effect of serpentine, and the catalytic carbonization effect of the nickel element in
serpentine. The presence of serpentine@APP could reduce the complex viscosity of PLA,
which improved its processability. In addition, the tensile stress and elongation at the break
of PLA/serpentine@APP showed a small decrease as compared to pure PLA. This research
offers a feasible strategy to develop a flame-retardant hybrid filler to increase the fire safety
of PLA.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym14235255/s1, Figure S1: Strain sweep of pure PLA and its
composites; Table S1: TGA data of APP, serpentine and serpentine@APP.
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