Effect of Thermal and Hydrothermal Accelerated Aging on 3D Printed Polylactic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Printing
2.3. Thermal Aging
2.4. Hydrothermal Aging
2.5. Characterization of Dimensional Stability after Aging Conditions
2.6. Characterization of Thermal Properties
2.7. Characterization of Thermal Stability
2.8. Characterization of Mechanical Properties
3. Results and Discussion
3.1. Dimensional Stability
3.2. Calorimetry
3.3. Thermogravimetry
3.4. Tensile Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | Additive Manufacturing |
FFF | Fused Filament Fabrication |
PLA | Polylactic acid |
DSC | Differential scanning calorimetry |
TGA | Thermogravimetric analysis |
R | Shrinkage ratio |
Length of the specimen before aging | |
Length of the aged specimens | |
Glass transition temperature | |
Crystallization temperature | |
Melting temperature | |
Enthalpy of crystallization | |
Heat of melting | |
Heat of melting for an infinitely large crystal | |
Degree of crystallinity | |
Temperature at 5% wt. mass loss |
References
- J’son & Partners Consulting. 3D Printing Market in Russia and the World (Additive Manufacturing). 2019. [Google Scholar]
- Peng, T.; Kellens, K.; Tang, R.; Chen, C.; Chen, G. Sustainability of additive manufacturing: An overview on its energy demand and environmental impact. Addit. Manuf. 2018, 21, 694–704. [Google Scholar] [CrossRef]
- Breški, T.; Hentschel, L.; Godec, D.; Đuretek, I. Suitability of Recycled PLA Filament Application in Fused Filament Fabrication Process. Tehnički Glas. 2021, 15, 491–497. [Google Scholar] [CrossRef]
- Sangeetha, V.H.; Deka, H.; Varghese, T.O.; Nayak, S.K. State of the Art and Future Prospectives of Poly(Lactic Acid) Based Blends and Composites. Polym. Compos. 2018, 39, 81–101. [Google Scholar] [CrossRef]
- Kuo, C.F.J.; Lan, W.L.; Chen, C.Y.; Tsai, H.C. Property modification and process parameter optimization design of polylactic acid composite materials. Part I: Polylactic acid toughening and photo-degradation modification and optimized parameter design. Text. Res. J. 2015, 85, 13–25. [Google Scholar] [CrossRef]
- Tanikella, N.G.; Wittbrodt, B.; Pearce, J.M. Tensile strength of commercial polymer materials for fused filament fabrication 3D printing. Addit. Manuf. 2017, 15, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Pillin, I.; Montrelay, N.; Bourmaud, A.; Grohens, Y. Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polym. Degrad. Stab. 2008, 93, 321–328. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [Green Version]
- Kolstad, J.J.; Vink, E.T.H.; Wilde, B.D.; Debeer, L. Assessment of anaerobic degradation of IngeoTM polylactides under accelerated landfill conditions. Polym. Degrad. Stab. 2012, 97, 1131–1141. [Google Scholar] [CrossRef]
- Jamshidian, M.; Tehrany, E.A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-Lactic Acid: Production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. [Google Scholar] [CrossRef]
- Fan, Y.; Nishida, H.; Shirai, Y.; Endo, T. Control of racemization for feedstock recycling of PLLA. Green Chem. 2003, 5, 575–579. [Google Scholar] [CrossRef]
- Lasprilla, A.J.; Martinez, G.A.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012, 30, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Tsukegi, T.; Motoyama, T.; Shirai, Y.; Nishida, H.; Endo, T. Racemization behavior of L,L-lactide during heating. Polym. Degrad. Stab. 2007, 92, 552–559. [Google Scholar] [CrossRef]
- Lim, L.T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Beltr, F.R.; Arrieta, M.P.; Elena, D.; Lozano-p, A.A.; Cenis, J.L.; Gaspar, G.; De, U. Effect of Yerba Mate and Silk Fibroin Nanoparticles on the Migration Properties in Ethanolic Food Simulants and Composting Disintegrability of Recycled PLA Nanocomposites. Polymers 2021, 13, 1925. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Barrasa, J.; Ferrández-Montero, A.; Ferrari, B.; Pastor, J.Y. Natural Ageing of PLA Filaments, Can It Be Frozen? Polymers 2022, 14, 3361. [Google Scholar] [CrossRef] [PubMed]
- Anderson, I. Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid. 3D Print. Addit. Manuf. 2017, 4, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Baechler, C.; Devuono, M.; Pearce, J.M. Distributed recycling of waste polymer into RepRap feedstock. Rapid Prototyp. J. 2013, 19, 118–125. [Google Scholar] [CrossRef]
- McNaney, T. A Note from CEO and Inventor of Filabot, Tyler McNaney. 2017. [Google Scholar]
- Woern, A.L.; McCaslin, J.R.; Pringle, A.M.; Pearce, J.M. RepRapable Recyclebot: Open source 3-D printable extruder for converting plastic to 3-D printing filament. HardwareX 2018, 4, e00026. [Google Scholar] [CrossRef]
- Lee, D.; Lee, Y.; Lee, K.; Ko, Y.; Kim, N. Development and Evaluation of a Distributed Recycling System for Making Filaments Reused in Three-Dimensional Printers. J. Manuf. Sci. Eng. Trans. ASME 2019, 141, 021007. [Google Scholar] [CrossRef]
- Vilaplana, F.; Karlsson, S. Quality concepts for the improved use of recycled polymeric materials: A review. Macromol. Mater. Eng. 2008, 293, 274–297. [Google Scholar] [CrossRef]
- Signori, F.; Coltelli, M.b.; Bronco, S. Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym. Degrad. Stab. 2009, 94, 74–82. [Google Scholar] [CrossRef]
- Yarahmadi, N.; Jakubowicz, I.; Enebro, J. Polylactic acid and its blends with petroleum-based resins: Effects of reprocessing and recycling on properties. J. Appl. Polym. Sci. 2016, 133, 1–9. [Google Scholar] [CrossRef]
- Lesaffre, N.; Bellayer, S.; Fontaine, G.; Jimenez, M.; Bourbigot, S. Revealing the impact of ageing on a flame retarded PLA. Polym. Degrad. Stab. 2016, 127, 88–97. [Google Scholar] [CrossRef]
- ISO 188:2011; Rubber, Vulcanized or Thermoplastic—Accelerated Ageing and Heat Resistance Tests. ISO: Geneva, Switzerland, 2013.
- ISO 291; Plastics—Standard Atmospheres for Conditioning and Testing. ISO: Geneva, Switzerland, 2008.
- Martínez-felipe, A.; Ek, M. Hydrothermal ageing of polylactide / sisal biocomposites . Studies of water absorption behaviour and Physico-Chemical performance. Polym. Degrad. Stab. 2014, 108, 212–222. [Google Scholar] [CrossRef]
- Jiang, N.; Li, Y.; Li, Y.; Yu, T.; Li, Y.; Li, D.; Xu, J.; Wang, C.; Shi, Y. Effect of short jute fi bers on the hydrolytic degradation behavior of poly(lactic acid). Polym. Degrad. Stab. 2020, 178, 109214. [Google Scholar] [CrossRef]
- Regazzi, A.; Léger, R.; Corn, S.; Ienny, P. Modelling Of Hydrothermal Aging of Short Flax Fiber Reinforced Composites. Compos. Part A 2016, 90, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Gorrasi, G.; Pantani, R. Hydrolysis and Biodegradation of Poly(lactic acid). In Synthesis, Structure and Properties of Poly(lactic acid); Di Lorenzo, M.L., Androsch, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 119–151. [Google Scholar] [CrossRef]
- ISO 20753:2018; Plastics—Test Specimens. ISO: Geneva, Switzerland, 2018.
- Torres, J.; Colev, M.; Owji, A.; DeMastry, Z.; Gordon, A. An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyp. J. 2016, 22, 387–404. [Google Scholar] [CrossRef]
- Tymrak, B.M.; Kreiger, M.; Pearce, J.M. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 2014, 58, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Solarski, S.; Ferreira, M.; Devaux, E. Ageing of polylactide and polylactide nanocomposite filaments. Polym. Degrad. Stab. 2008, 93, 707–713. [Google Scholar] [CrossRef]
- Boldizar, A.; Möller, K. Degradation of ABS during repeated processing and accelerated ageing. Polym. Degrad. Stab. 2003, 81, 359–366. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Barrio, I.; Lorenzo, V.; del Río, B.; Martínez Urreaga, J.; de la Orden, M.U. Valorization of poly(lactic acid) wastes via mechanical recycling: Improvement of the properties of the recycled polymer. Waste Manag. Res. 2019, 37, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Porfyris, A.; Vasilakos, S.; Zotiadis, C.; Papaspyrides, C.; Moser, K.; Van der Schueren, L.; Buyle, G.; Pavlidou, S.; Vouyiouka, S. Accelerated ageing and hydrolytic stabilization of poly(lactic acid) (PLA) under humidity and temperature conditioning. Polym. Test. 2018, 68, 315–332. [Google Scholar] [CrossRef]
- Avolio, R.; Castaldo, R.; Avella, M.; Cocca, M.; Gentile, G.; Fiori, S.; Errico, M.E. PLA-based plasticized nanocomposites: Effect of polymer/plasticizer/filler interactions on the time evolution of properties. Compos. Part Eng. 2018, 152, 267–274. [Google Scholar] [CrossRef]
- Mangin, R.; Vahabi, H.; Sonnier, R.; Chivas-Joly, C.; Lopez-Cuesta, J.M.; Cochez, M. Improving the resistance to hydrothermal ageing of flame-retarded PLA by incorporating miscible PMMA. Polym. Degrad. Stab. 2018, 155, 52–66. [Google Scholar] [CrossRef]
- Islam, M.S.; Pickering, K.L.; Foreman, N.J. Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly(lactic acid) (PLA) composites. Polym. Degrad. Stab. 2010, 95, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.K.; Hirtl, D.E. Degradation of PLA Fibers at Elevated Temperature and Humidity. Polym. Eng. Sci. 2015, 55, 1652–1660. [Google Scholar] [CrossRef]
- Acioli-Moura, R.; Sun, X.S. Thermal Degradation and Physical Aging of Poly(lactic acid) and its Blends With Starch Ricardo. Polym. Eng. Sci. 2008, 48, 829–836. [Google Scholar] [CrossRef]
- ISO 16012:2015; Plastics—Determination of Linear Dimensions of Test Specimens. ISO: Geneva, Switzerland, 2015.
- ISO 11357-1:2016; Plastics—Differential Scanning Calorimetry (DSC)—Part 1: General Principles. ISO: Geneva, Switzerland, 2016.
- ISO 527-2:2012; Plastics—Determination of tensile properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012.
- Kim, K.W.; Lee, B.H.; Kim, H.J.; Sriroth, K.; Dorgan, J.R. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J. Therm. Anal. Calorim. 2012, 108, 1131–1139. [Google Scholar] [CrossRef]
- Rocca-Smith, J.R.; Whyte, O.; Brachais, C.H.; Champion, D.; Piasente, F.; Marcuzzo, E.; Sensidoni, A.; Debeaufort, F.; Karbowiak, T. Beyond Biodegradability of Poly(lactic acid): Physical and Chemical Stability in Humid Environments. ACS Sustain. Chem. Eng. 2017, 5, 2751–2762. [Google Scholar] [CrossRef]
- Cai, H.; Dave, V.; Gross, R.A.; McCarthy, S.P. Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J. Polym. Sci. Part B Polym. Phys. 1996, 34, 2701–2708. [Google Scholar] [CrossRef]
- Malmgren, T.; Mays, J.; Pyda, M. Characterization of poly(lactic acid) by size exclusion chromatography, differential refractometry, light scattering and thermal analysis. J. Therm. Anal. Calorim. 2006, 83, 35–40. [Google Scholar] [CrossRef]
- Torrado Perez, A.R.; Roberson, D.A.; Wicker, R.B. Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J. Fail. Anal. Prev. 2014, 14, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Beltrán, F.R.; Lorenzo, V.; Acosta, J.; de la Orden, M.U.; Martínez Urreaga, J. Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid). J. Environ. Manag. 2018, 216, 25–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarasua, J.R.; Prud’homme, R.E.; Wisniewski, M.; Borgne, A.L.; Spassky, N. Crystallization and Melting Behavior of Polylactides. Macromolecules 1998, 31, 3895–3905. [Google Scholar] [CrossRef]
- Żenkiewicz, M.; Richert, J.; Rytlewski, P.; Moraczewski, K.; Stepczyńska, M.; Karasiewicz, T. Characterisation of multi-extruded poly(lactic acid). Polym. Test. 2009, 28, 412–418. [Google Scholar] [CrossRef]
- Pluta, M.; Galeski, A.; Alexandre, M.; Paul, M.A.; Dubois, P. Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. J. Appl. Polym. Sci. 2002, 86, 1497–1506. [Google Scholar] [CrossRef]
- Nam, P.H.; Maiti, P.; Okamoto, M.; Kotaka, T.; Hasegawa, N.; Usuki, A. A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites. Polymer 2001, 42, 9633–9640. [Google Scholar] [CrossRef]
- Gallagher, P.K.; Cheng, S.Z.D. Handbook of Thermal Analysis and Calorimetry: Application to Polymers and Plastics; Elsevier Science B.V.: Amsterdam, The Netherlands, 2002; Volume 3, p. 828. [Google Scholar]
- Sin, L.T.; Tueen, B.S. Polylactic Acid A Practical Guide for the Processing, Manufacturing, and Applications of PLA, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; p. 405. [Google Scholar] [CrossRef]
- ISO 2602:1980; Statistical Interpretation of Test Results—Estimation of the Mean—Confidence Interval. ISO: Geneva, Switzerland, 1980.
Aging Time at °C | Approximate Time |
---|---|
(h) | (Day) |
0 | 0 |
8 | 2.5–5 |
16 | 5–10 |
24 | 10–16 |
48 | 16–24 |
72 | 24–56 |
168 | 56–112 |
672 | 224–448 |
1344 | 448–896 |
Aging Time | ||||||||
---|---|---|---|---|---|---|---|---|
(h) | (C) | (C) | J/g | (C) | (J/g) | (%) | (C) | |
Unaged | 0 | 58 | 118 | 27 | 151 | 28 | 1.1 | 292 |
Thermal | 8 | 61 | 118 | 27 | 153 | 28 | 1.1 | 309 |
16 | 61 | 118 | 30 | 153 | 28 | - | 301 | |
24 | 60 | 118 | 29 | 153 | 28 | - | 281 | |
48 | 59 | 117 | 32 | 149 | 27 | - | 294 | |
72 | 60 | 115 | 32 | 149 | 29 | - | 272 | |
168 | 62 | 115 | 26 | 150 | 28 | 2.2 | 298 | |
672 | 59 | 113 | 29 | 149 * | 29 | 0 | 303 | |
1344 | 59 | 112 | 27 | 149 * | 28 | 1.1 | 266 | |
Hydrothermal | 24 | 58 | 125 | 15 | 151 | 18 | 3.2 | 311 |
48 | 59 | 123 | 11 | 149 | 20 | 4.3 | 305 | |
72 | 58 | 123 | 16 | 153 | 20 | 4.3 | 278 | |
168 | 57 | 115 | 23 | 149 | 27 | 4.3 | 287 | |
672 | 59 | 111 | 27 | 147 * | 31 | 4.3 | 303 | |
1344 | 58 | 104 | 31 | 155 * | 39 | 8.6 | 264 |
Aging Time | Tensile Yield Strength | Young’s Modulus | Elongation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Average | Standard Deviation | Repeat-Ability | Average | Standard Deviation | Repeat-Ability | Average | Standard Deviation | Repeat-Ability | ||
(h) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (%) | (%) | (%) | |
Unaged | 0 | 28.746 | 1.002 | 2.226 | 1800.208 | 150.395 | 323.839 | 2.34 | 0.19 | 0.45 |
Thermal | 8 | 31.189 | 1.322 | 3.378 | 2158.489 | 117.927 | 307.523 | 2.19 | 0.14 | 0.33 |
16 | 33.164 | 1.129 | 2.775 | 2115.412 | 157.063 | 356.287 | 2.39 | 0.16 | 0.37 | |
24 | 36.799 | 1.154 | 2.894 | 2134.546 | 286.843 | 475.852 | 2.53 | 0.21 | 0.50 | |
48 | 29.135 | 1.681 | 3.845 | 1612.385 | 312.078 | 429.898 | 2.49 | 0.22 | 0.54 | |
72 | 29.721 | 1.551 | 3.875 | 1875.389 | 71.578 | 152.065 | 2.28 | 0.21 | 0.56 | |
168 | 29.516 | 0.495 | 1.133 | 1968.879 | 102.064 | 261.783 | 2.05 | 0.23 | 0.57 | |
672 | 32.602 | 0.477 | 0.927 | 2141.455 | 48.957 | 123.278 | 2.06 | 0.46 | 0.98 | |
1344 | 31.126 | 2.851 | 7.579 | 2077.937 | 186.864 | 443.046 | 2.00 | 0.46 | 0.66 | |
Hydrothermal | 24 | 33.454 | 1.238 | 3.328 | 1552.181 | 74.724 | 177.765 | 3.16 | 0.15 | 1.30 |
48 | 32.672 | 2.040 | 4.950 | 1652.115 | 243.715 | 651.275 | 2.94 | 0.43 | 1.06 | |
72 | 32.530 | 1.218 | 2.943 | 1340.578 | 322.173 | 825.923 | 3.05 | 0.29 | 0.60 | |
168 | 29.613 | 1.259 | 2.441 | 1664.317 | 144.847 | 365.233 | 2.81 | 0.49 | 1.20 | |
672 | 29.816 | 2.190 | 4.598 | 1962.120 | 94.488 | 237.910 | 2.40 | 0.57 | 1.35 | |
1344 | 20.890 | 4.240 | 10.727 | 1598.108 | 383.587 | 936.971 | 1.74 | 0.19 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergaliyeva, S.; Sales, D.L.; Delgado, F.J.; Bolegenova, S.; Molina, S.I. Effect of Thermal and Hydrothermal Accelerated Aging on 3D Printed Polylactic Acid. Polymers 2022, 14, 5256. https://doi.org/10.3390/polym14235256
Bergaliyeva S, Sales DL, Delgado FJ, Bolegenova S, Molina SI. Effect of Thermal and Hydrothermal Accelerated Aging on 3D Printed Polylactic Acid. Polymers. 2022; 14(23):5256. https://doi.org/10.3390/polym14235256
Chicago/Turabian StyleBergaliyeva, Saltanat, David L. Sales, Francisco J. Delgado, Saltanat Bolegenova, and Sergio I. Molina. 2022. "Effect of Thermal and Hydrothermal Accelerated Aging on 3D Printed Polylactic Acid" Polymers 14, no. 23: 5256. https://doi.org/10.3390/polym14235256
APA StyleBergaliyeva, S., Sales, D. L., Delgado, F. J., Bolegenova, S., & Molina, S. I. (2022). Effect of Thermal and Hydrothermal Accelerated Aging on 3D Printed Polylactic Acid. Polymers, 14(23), 5256. https://doi.org/10.3390/polym14235256