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Abstract: For the first time, metal–polymer complexes have been synthesized using hyperbranched
polyester polyfumaratomaleate as a matrix, the structure of which has been established by 1H NMR,
IR, electron spectroscopy, and elemental analysis methods. The formation of complexes with Gd(III)
and Dy(III) ions involving fumarate and maleate groups of the polyester was proved by IR and
electron spectroscopy methods. It was established that the structure of the coordination units has the
form of a square antiprism. The compositions and conditional logarithms of the stability constants of
the complexes were determined. It was established that complexation with lanthanide ions promotes
emission enhancement in the ligand.
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1. Introduction

Compounds of rare-earth elements are effectively used in contrasting reagents for
MRI imaging of organ and tissue pathologies [1–3]. To date, among the designated in-
organic ions, the most significant for practical commercial use are lanthanide complexes,
in particular, gadolinium (T1 contrast agents) and dysprosium (T2 contrast agents) [4–6].
For the effective use of lanthanide complex compounds for these purposes, it is necessary
to ensure their bioavailability and target properties, as well as guarantee their safety and
low toxicity to humans [7]. The latter quality is determined by the thermodynamic and
kinetic stability of complexes of lanthanide ions [8–12]. However, this problem has not yet
been fully resolved. One of the solutions is the search for new ligands for the chelation
of lanthanide ions. The use of polymeric ligands for these purposes makes it possible to
realize the effect of macromolecular stabilization and obtain more stable complexes [13,14].
The architecture of polymers and the nature of their functional groups are key factors in
these developments.

The use of hyperbranched polymers with a 3D architecture and a high density of
peripheral functional groups as a platform could be very promising for the creation and
stabilization of gadolinium and dysprosium complexes. Hyperbranched polymers are
densely packed macromolecules whose three-dimensional framework consists of a core and
branching short chains—dendrons. One representative of such structures is hyperbranched
polyesters of the Boltorn H series. These polymers consist of ethoxylated pentaerythritol as a
core and elementary units formed by polycondensation of 2,2-bis(hydroxymethyl)propionic
acid. These nanosized polyesters are industrially available, biodegradable, well-soluble in
various polar solvents, and have low toxicity, and the reactive terminal hydroxyl groups
can be easily modified to give them the desired set of properties. The introduction of
coordinatively active functional groups made it possible to obtain polydentate ligands
that form stable complexes with transition metal ions Co(II), Ni(II), and Cu(II) [13]. It
has been shown that metal complexes of polyester polycarboxylates form tetrahedral
and octahedral [15,16] coordination units and possess marked biological activity [15,17].
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The Cu(II) complex based on a third-generation hyperbranched polyester with terminal
fumarate groups possesses ferromagnetic properties [16]. At the same time, complexes of
hyperbranched polyesters with lanthanide ions are not known [18–20].

Since the luminescence mechanism of lanthanide coordination compounds consists of
light absorption by a ligand and energy transfer through its triplet level to the lanthanide
ion, which emits it as an electromagnetic wave, the molecular design of luminophores is
reduced to the search for suitable ligand–lanthanide pairs that form stable coordination
compounds and have an optimal ligand triplet level for the excitation of the corresponding
lanthanide ion resonance level [21]. Due to the weak complexing ability of lanthanides(III),
the formation of stable complexes is possible only for polydentate chelating ligands.

The thermodynamic stability of complexes of lanthanides with derivatives of maleic
and fumaric acids has been shown by numerous studies [22–26]. In connection to this, the
aim of this work is to synthesize and study the structure and photophysical properties of
new complexes of Gd(III) and Dy(III) ions with second-generation hyperbranched polyester
with end fumarate and maleate groups.

2. Materials and Methods
2.1. Materials and Reagents

We used second-generation Boltorn H hyperbranched polyester polyol with 16 ter-
minal hydroxyl groups (Mr = 1750 g mol−1, Perstorp Speciality Chemicals AB, Sweden),
maleic anhydride (99%, Acros Organics, Waltham, MA, USA), SnCl2 (98%, Acros Organics,
Waltham, MA, USA), Gd(NO3)3·5H2O (99.9%, Acros Organics GmbH, Waltham, MA, USA),
and Dy(NO3)3·5H2O (99.9%, Alfa Aesar GmbH, Haverhill, MA, USA). The organic solvents
used were 1.4-dioxane, benzene, acetone, ethanol, methanol, and distilled water.

2.2. Equipment
1H NMR spectra were recorded on a Bruker Avance 400 multifunctional Fourier-

transform spectrometer with an operating frequency of 400 MHz in a DMSO-d6 solu-
tion. IR spectra were recorded on an Infralum FT-08 IR-Fourier spectrometer: resolution
1 cm−1, shooting range 4000~400 cm−1, KBr pellet. Electronic absorption spectra were
recorded on a Lambda 750 spectrophotometer (Perkin-Elmer, Waltham, MA, USA) in the
wavelength range of 230~860 nm at T = 25 ± 0.01 ◦C, with an absorbing layer thickness of
l = 1 cm. Elemental analysis was performed using a Euro EA 3000 CHNS analyzer (Italy).
Luminescence spectra were recorded using a fluorescent spectrometer LS 55 (Perkin-Elmer,
Waltham, MA, USA) with an excitation wavelength of 200 to 800 nm and an emission of
200 to 900 nm, excitation and emission slit of 5 nm, speed of 100 nm min−1 with weak gain
at T = 25 ± 0.01 ◦C, and the thickness of the absorbing layer l = 1.5 cm.

The composition and stability of complexes in the lanthanide salt–sodium salt systems
of hyperbranched polyester polyfumaratomaleate were determined by electron absorption
spectra using Job’s Method [27,28]. The composition and logarithms of the conditional stability
constants were calculated using the following parameters for the system: Gd(NO3)3-compound
2: c2 = 4.1 × 10−4 − 5.1 × 10−5 mol L−1, cGd(NO3)3 = 5.1 × 10−4 − 1.0 × 10−4 mol L−1,
λ = 255 nm, εcomplex = 7648.78 L·cm−1·mol−1, λ = 281 nm, εcomplex = 2715.26 L·cm−1·mol−1,
λ = 304 nm, εcomplex = 1132.75 L·cm−1·mol−1; for the system Dy(NO3)3-compound 2:
c2 = 4.1 × 10−4 − 5.1 × 10−5 mol L−1, cDy(NO3)3 = 5.1 × 10−4 − 1.0 × 10−4 mol L−1,
λ = 262 nm, εcomplex = 6423.92 L·cm−1·mol−1, λ = 279 nm, εcomplex = 2997.41 L·cm−1·mol−1,
λ = 302 nm, εcomplex = 1202.28 L·cm−1·mol−1.

2.3. Synthesis of Compounds
2.3.1. Synthesis of Hyperbranched Polyester with End Fumarate and Maleate Groups (1)

A 2.50 g (1.43 mmol) sample of second-generation hyperbranched polyester polyol
was incubated at 140 ◦C for 40 min for dehydration and destruction of the self-associates.
After cooling to 50 ◦C, the polymer was dissolved in 10 mL of 1.4-dioxane, then a solution
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of 1.96 g (19.99 mmol) maleic anhydride and 0.025 g SnCI2 (0.132 mmol) as a catalyst in
4 mL of 1.4-dioxane was added to the solution. The reaction was carried out under stirring
and at 100 ◦C for 36 h. The product was precipitated with benzene and dried in a thermal
vacuum cabinet at 50 ◦C and a vacuum of 1 mmHg until constant weight. Compound 1
was a light-yellow resin with a yield of 57%.

1H NMR spectrum [(CD3)2SO], δ ppm: 0.90–1.27 (36 H, CH3); 3.29–3.66 (24 H, CH2O);
3.95–4.36 (48 H, CH2OC(O)); 6.22–6.32 (12 H, CH=CHcis); 6.37–6.46 (12 H, CH=CHtrans).
IR spectrum, ν, cm−1: 3712−3118 (O−Ha.); 3712−3118, 2777, 2587 (O−Hc.a.); 3095, 3064
(C−HC=C); 2970, 2923, 2890, 2863 (CH3, CH2); 1735 (C=Oester,c.a.); 1640 (C=Ccis); 1467, 1417,
1377 [δ (CH3, CH2)]; 1417, 685, 644, 614, 412 [δ (C−HC=C,cis)]; 1296−1009 (C−Oester,ether,a.,c.a.);
918 [δ (O−Hc.a)]; 894, 868, 820 [δ (C−HC=C,trans)]. Elemental analysis. Found, %: C 50.42;
H 5.18. C121H148O80. Calculated, %: C 51.11; H 4.89. UV–Vis spectrum (DMSO), λmax, nm
[ε, L·cm−1·mol−1]: 260 ROH n→σ*, CH=CH π→π*, RC(O)OR’ n→π* [3601]; 288 C(O)OH
n→π* [614.3].

2.3.2. Synthesis of the Sodium Salt of Hyperbranched Polyester Polyfumaratomaleate (2)

A sample of 1.50 g (0.513 mmol) of compound 1 was dissolved in 10 mL acetone and
0.019 molar NaHCO3 in 5 mL ethanol/water (1:1) was added. Product 2 was separated by
filtration and dried in a thermal vacuum cabinet at 50 ◦C and a vacuum of 1 mmHg until
constant weight. Compound 2 was a light-yellow powder with a yield of 65%.

IR spectrum, ν, cm−1: 3685−3078 (O−Ha.); 3101 (C−HC=C); 2955−2855 (CH3, CH2);
1732 (C=Oester); 1593, 1423 (C(O)O−); 1469−1358 [δ (CH3, CH2)]; 1423, 671, 609, 420
[δ (C−HC=C,cis)]; 1304−1014 (C−Oester,ether,a.,c.a.); 879, 833, 817 [δ (C−HC=C,trans)]. Elemen-
tal analysis. Found, %: C 46.19; H 4.36; Na 8.77. C121H136Na12O80. Calculated, %: C 46.55;
H 4.05; Na 8.34. UV–Vis spectrum (DMSO), λmax, nm [ε, L·cm−1·mol−1]: 272 ROH n→σ*,
CH=CH π→π*, RC(O)OR’ n→π* [3866]; 305 C(O)O− n→π* [1009].

2.3.3. General Methodology for the Synthesis of Gd(III) (3) and Dy(III) (4) Complexes with
Compound (2)

Molar solutions of Gd(NO3)3·5H2O and Dy(NO3)3·5H2O in 5 mL of methanol were
added to solutions of 0.5 g (0.157 mmol) of product 2 in 2 mL of methanol 0.0022. The
isolated complexes were dried in a thermal vacuum oven at 50 ◦C and a vacuum of
1 mmHg until constant weight.

The Gd(III) complex 3 is an amorphous substance of light-gold color, 85% yield.
IR spectrum, ν, cm−1: 3685−3044 (O−Ha.); 3063 (C−HC=C); 2959−2854 (CH3, CH2);
1732 (C=Oester.); 1647, 774 [δ (NO3

−)]; 1577, 1508−1342 (C(O)O−); 1508−1342 [δ (CH3,
CH2)]; 1508−1342, 671, 609, 420 [δ (C−HC=C,cis)]; 1300−1006 (C−Oester,ether,a.,c.a.); 856, 814
[δ (C−HC=C,trans)]. Elemental analysis. Found, %: C 38.14; H 4.06; S, 6.46; Gd 15.85.
C126H160Gd4O88S8. Calculated, %: C 37.87; H 4.11; S, 6.13; Gd 16.03. UV–Vis spectrum
(DMSO), λmax, nm: 254 ROH n→σ*, CH=CH π→π*, RC(O)OR’ n→π*; 304 C(O)O− n→π*,
Gd(III) 8S7/2→6P7/2, 6P5/2,

6I7/2, 6I9/2, 6I17/2, 6I11/2, 6I13/2, 6I15/2, 6D9/2.
The Dy(III) complex 4 is an amorphous compound of light-beige color, 89% yield. IR

spectrum, ν, cm−1: 3692−3036 (O−Ha.); 3105 (C−HC=C); 2959−2858 (CH3, CH2); 1732
(C=Oester.); 1643, 814, 714 [δ (NO3

−)]; 1585, 1462−1350 (C(O)O−); 1462−1350 [δ (CH3,
CH2)]; 1462−1350, 663, 609, 428 [δ (C−HC=C,cis)]; 1304−1006 (C−Oester,ether,a.,c.a.); 852, 814
[δ (C−HC=C,trans)]. Elemental analysis. Found, %: C 36.43; H 3.89; S, 11.31; Dy 15.28.
C129H164Gd4O88S15. Calculated, %: C 36.09; H 4.11; S, 11.43; Dy 15.36. UV–Vis spectrum
(DMSO), λmax, nm: 260 ROH n→σ*, CH=CH π→π*, RC(O)OR’ n→π*; 302 C(O)O− n→π*;
350 Dy(III) 6H15/2→6P7/2; 365 Dy(III) 6H15/2→4P5/2; 387 Dy(III) H15/2→4I13/2; 450 Dy(III)
6H15/2→4I15/2; 758 Dy(III) 6H15/2→6F3/2; 808 Dy(III) 6H15/2→6F5/2.

3. Results

Hyperbranched polyester polyfumaratomaleate 1 was synthesized by the reaction of
second-generation hyperbranched polyester polyol with maleic anhydride (Figure 1A).
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Product 1 was obtained as a light-yellow resin in a 57% yield. To study the complexing
properties of the polymer product with lanthanide ions, at the first stage, sodium salt of
hyperbranched polymer 2 was synthesized in a 65% yield (Figure 1B), then complexes with
Gd(III) ions 3 and Dy(III) 4 were obtained (Figure 1C).
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Figure 1. Synthesis of hyperbranched polyester polyfumaratomaleate 1, salt 2 and complexes with
Gd(III) 3 and Dy(III) 4 ions (A-the process of adding maleic anhydride to a polyester polyol and
obtaining polyfumaratomaleate (1), B-stage of synthesis of sodium salt of hyperbranched polyfu-
maratomaleate (2), C-stage of synthesis of hyperbranched polyfumaratomaleate complexes with
Gd(III) (3) and Dy(III) (4) ions).

3.1. 1H NMR Spectra

When comparing the 1H NMR spectra of compound 1 with the original hyperbranched
polyester polyol, we observe the appearance of the resonance signal of olefin protons in the
fumarate and maleate fragments in the region of 6.21–6.48 ppm (Figure 2) [29].
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Figure 2. 1H NMR spectra of the original hyperbranched polyester polyol (Boltorn H20) and com-
pound 1; *—DMSO proton resonance.
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In the process of attachment of maleic anhydride to the polyester polyol, the cis-
configuration of the double bond of the terminal fragments partially transforms into the
trans-form. The degree of isomerization of maleate groups (6.32–6.22 ppm) into fumarate
groups (6.46–6.37 ppm) in the macromolecule of compound 1 was determined by the
ratio of the integral intensities of the resonance signals of protons at the double bond of
fumarate groups to the resonance sum of olefin protons, the degree of isomerization being
approximately 50% [30].

The degree of functionalization of end hydroxyl groups of hyperbranched polyester
polyol was estimated by calculating the ratio of the integral signal intensities of olefin and
methyl groups of the polyester complex ester skeleton. It was found that the degree of
functionalization is 75%; compound 1 contains six fumarate and six maleate fragments.

3.2. IR Spectra

When comparing the IR spectra of the original polyester polyol with compound 1
(Figure 3A), there is a decrease in the intensity of the bands of valent vibrations of hydroxyl
groups in the region of 3712−3118 cm−1 and an appearance of bands at 2777 and 2587 cm−1,
due to the presence of bound valent vibrations O−H in the carboxylate fragments [31]. A
decrease in the intensity of the C−O bond valence oscillation bands of the original polyester
polyol at 1048 and 1009 cm−1 is also observed. The appearance of C−H absorption bands
of the valence vibrations of the double bond as a duplet at 3096 cm−1 and 3064 cm−1

confirms the presence of fumarate and maleate groups [32]. Cis-trans-isomerization is also
confirmed by the appearance of triplet peaks of the strain vibrations of C−HC=C bonds at
894, 868, 820 cm−1 (tras-isomer) and 685, 644, 614 cm−1 (cis-isomer). An approximation
of the absorption bands of compound 1 at 1735 and 1640 cm−1 by the Gaussian method
showed the presence of bands of valent vibrations of C=O bonds in the ester and acidic
fragments at 1738 and 1695 cm−1, and the bands at 1648 and 1632 cm−1 correspond to
valent vibrations of C=C bonds in the fumarate and maleate groups (Figure 3B) [32,33].
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Figure 3. Infrared spectra of Boltorn H20 and compound 1 (A) and approximation of absorption
bands of compound 1 in the region of 1760 and 1535 cm−1 (B).

In the IR spectrum of compound 2, the presence of valence bands of asymmetric
vibrations of carboxylate anion groups of fumarate and maleate fragments at 1599 and
1564 cm−1 (Figure 4B) was found [34]. After an approximation of the absorption bands
by the Gaussian method in the region from 1675 to 1375 cm−1, the presence of a band of
valence vibrations of the C=C bond at 1641 cm−1 in the maleate and fumarate groups was
observed [32,33]. The band at 1461 cm−1 corresponds to valence symmetric vibrations in
the carboxylate anion group, and the band at 1423 cm−1 is attributed to strain vibrations of
the C−HC=C bond in the maleate fragment [34].

A comparison of the IR spectra of the Gd(III) complex (3) with compound (2) (Figure 5)
demonstrated an increase in the intensity of the C=O stretching vibration bands in the ester
group at 1732 cm−1. In addition, there is a decrease in the intensity of the peaks of the
stretching vibrations of C(O)O– and C=O bonds at 1577, 1508–1342 and 1041, 1006 cm−1.
In addition, when comparing the IR spectra of the Dy(III) complex (3) with compound (2),
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an increase in the intensity of the bands of the stretching vibrations of the C=O bond in
the ester group at 1732 cm−1 and a decrease in the intensity of the bands of the stretching
vibrations of the C(O)O– and C=O bonds at 1585, 1462–1350 and 1304–1006 cm−1.
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Figure 5. IR spectra of sodium salt 2 and Gd(III) 3 and Dy(III) 4 complexes.

All these facts suggest that the Gd(III) and Dy(III) ions in complexes 3 and 4 are
in coordination with the oxygen atoms of the carboxylate anionic and ester groups. In
addition, the coordination sites of complexes 3 and 4 contain nitro groups at 1647, 774, and
1643, 814, 714 cm−1.

3.3. Electronic Spectra

Hyperbranched polyester polyfumaratomaleate 1 and its complexes with Gd(III) and
Dy(III) ions were studied by spectrophotometry. The obtained plots were subjected to
interpolation by the Gaussian distribution function, and the results of the analysis are
presented in Figure 6 and Table 1.

An examination of the electronic spectrum of compound 1 solution in DMSO
(Figure 6A) revealed the presence of absorption bands at 259 and 263 nm, referred to
as π→π* transitions in the olefin fragments of fumarate and maleate groups. The absorp-
tion band at 288 nm corresponds to n→π* transitions in the carboxylate group [35]. The
interpolation of the absorption bands of compound 2 solution in DMSO (Figure 6B) showed
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the disappearance of the absorption band at 288 nm and the appearance of bands at 282
and 305 nm related to n→π* transitions in carboxylate anion fragments of fumarate and
maleate groups [35].
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Figure 6. Electronic absorption spectra of compounds 1 and 2, interpolated from the Gaus-
sian distribution function in the wavelength regions 250–350 (A) and 245–350 nm (B) in DMSO,
c1,2 = 1 × 10−3 mol·L−1; Gd(III) 3 and Dy(III) complexes 4, interpolated from the Gaussian distribution
function in the wavelength regions 250–350, c3 = 5.0× 10−4 (C) and 247–350 nm, c4 = 5.0× 10−3 mol·L−1

(D), in the region from 335 nm to 860 nm (E) in DMSO.

The interpolation of the absorption bands of the complexes with Gd(III) ions 3
(Figure 6C) and Dy(III) 4 (Figure 6D,E) in DMSO solutions showed that all the absorption
bands present in the spectrum of compound 2 were preserved. The absorption band at
304 nm in compound 3 is attributed to f→f transitions in the Gd(III) ion from the 8S7/2
level to the 6P7/2, 6P5/2,

6 I7/2, 6I9/2
6I17/2, 6I11/2, 6I13/2, 6I15/2, 6D9/2 levels, indicating the

presence of eight coordinated Gd(III) ions in the DMSO solution (Figure 6C) [36]. In the
spectrum of the Dy(III) complex 4, the appearance of bands at 350, 365, 387, 450, 758, and
808 nm was observed in the visible region (Figure 6E), which correspond to transitions
between the ground state 6H5/2 and multiple excited states belonging to the configuration
4f9 of the ion Dy(III) from 6H15/2 to 6P7/2, 4P5/2, 4I13/2, 4I15/2, 6F3/2 and 6F5/2, respec-
tively [37–42]. It was found that complex 4 with Dy(III) ions has a coordination node in the
form of a square antiprism [43,44].
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Table 1. Deconvolution of electronic spectra of compounds 1, 2 and complexes Gd(III) 3, Dy(III) 4
in DMSO.

(1)
λ, nm

(2)
λ, nm

(3)
λ, nm

(4)
λ, nm Transition Band, Bond and Metal Literature

255 256 255 255 n→σ* ROH [35]
259 259 258 258 π→π* CH=CH (cis) [35]
263 264 263 263 π→π* CH=CH (trans) [35]
272 272 269 269 n→π* RC(O)OR’ [35]

- 282 281 279 n→π* C(O)O− (cis) [45,46]
288 - - - n→π* C(O)OH [47]

- 305 304 302 n→π* C(O)O− (trans) [45,46]

- - 304 -
8S7/2→6P7/2, 6P5/2,

6I7/2, 6I9/2,
6I17/2, 6I11/2, 6I13/2, 6I15/2, 6D9/2,

Gd(III) [36]

- - -
305,

365, 387,
450, 758, 808

6H15/2→6P7/2, 4P5/2, 4I13/2, 4I15/2;
6F3/2; 6F5/2

Dy(III) [43,44]

The electronic absorption spectra of the system [Gd(III) and Dy(III) salts—compound 2]
were studied (Figure 7). The band at 262 nm (4.27 A) has a hypsochrome effect with a
hypsochrome shift up to 253 nm (0.11 A for compound 3 and 0.04 A for compound 4 when
the molar ratios of Gd(III)/Dy(III):compound 2 increase from 0.25:1 to 9:1 (Figure 7A,C)).
The band at 304 nm (0.59 A) of compound 3 (Figure 7A) and the band at 302 nm (0.62 A) of
compound 4 (Figure 7C) have only a hypsochrome effect to an optical density of 0.03 A
and 0.02 A, respectively. All this indicates the participation of carboxylate anions in the
coordination with lanthanide ions in the whole range of molar ratios studied. The overall
spectral pattern of the [lanthanide(III)-compound 2] system is similar to the position of
the absorption bands in the individual complexes 3 and 4, indicating the identity of the
coordination unit geometry in the condensed phase and in solution, and confirming the
realization of the coordination unit geometry with Gd(III) and Dy(III) ions of the square
anti-prism type [48,49].

 λ

c cc c

λ

Figure 7. Electronic absorption spectra of compound 2 (dashed line), Gd(NO3)3·5H2O and
Dy(NO3)3·5H2O (dashed and dotted line), [Gd(NO3)3/Dy(NO3)3—compound 2] (solid line) in the wave-
length region 250–350 nm, c2 = 4.1× 10−4–5.1× 10−5 mol·L−1, cM(NO3)3 = 5.1× 10−4–1.0× 10−4 mol·L−1

[M = Gy(III), Dy(III)] (A,C); Dependence of the optical density of the system [Gd(NO3)3/Dy(NO3)3—
combination 2] at λ= 304 and 302 nm in DMSO on the ratio cL/cGd(III)/Dy(III) (B,D).

It was found that, in the systems [Gd/Dy—compound 2] in solution, the complex
form of M:L = 4:1 is formed, that is, there is one lanthanide ion per three fumaratomaleate
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groups of the polymer, which is confirmed by the elemental analysis data (Figure 7B,D).
The logarithms of the conditional stability constants for Gd(III) 3 and Dy(III) 4 complexes
were lgβ = 4.59 ± 0.26 and 4.84 ± 0.07, which indicates the high stability of the complexes
with Gd(III) and Dy(III) ions based on hyperbranched polyester polyfumaratomaleate [50].

3.4. Luminessence

The emission of hyperbranched polyester polyfumaratomaleate 1 and its complexes
with Gd(III) 3 and Dy(III) ions 4 was studied in DMF solution at room temperature
(1 × 10−4 mol·L−1). Electron spectroscopy showed that the most electrons are absorbed
in the 254–260 nm region. However, the maximum absorbed is observed at excitation
λ = 235 ± 2 nm, which is due to the high polarity of the solvent used (Figure 8A) [51].
The emission of complexes (3) and (4) is observed in the range from 550 to 650 nm in the
visible part of the spectrum (Figure 8B). The peak at 583 nm in the spectrum of complex
(4) is attributed to the 4F9/2→6H15/2 Dy(III) transition; the emitting light of the complex
is yellow–green [52,53]. The peak at 618 nm for complex 3 is attributed to the energy
transition from the T1 level of the ligand to the main singlet level (S0).
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4. Conclusions

The reaction of the addition of maleic anhydride to hyperbranched second-generation
polyester polyol obtained hyperbranched polyester polyfumaratomaleate 1 in a 57% yield.
The structure of compound 1 was proved by 1H NMR, IR and electron spectroscopy,
and the presence of six fumarate and six maleate fragments at terminal positions was
established. The hyperbranched terminally decorated polyester (1) was successfully used
as a polydentate ligand for doping with Gd(III) and Dy(III) rare-earth cations.

New complexes with Gd(III) 3 and Dy(III) 4 ions were synthesized based on ligand
1. The oxygen atoms of fumarate and maleate groups participate in complexation with
Gd(III) and Dy(III) ions by IR and electron spectroscopy. According to UV–Vis spec-
trophotometry, three carboxyl groups of the terminal fumarate or maleate fragments are
involved in the coordination of one metal ion. The Gd(III) and Dy(III) coordination sites
have the composition [MO6X2] (M= Gd(III), Dy(III), X= NO3

− or H2Ocoordination) and
have a quadratic-antiprismatic geometry. The logarithms of the stability constants are
lgβ = 4.59 ± 0.26 and 4.84 ± 0.07, respectively. The complexation with Gd(III) and Dy(III)
ions promotes the luminescence enhancement in comparison with ligand 1 by 16.77 and
202.08 times. The significant difference in the emission intensity of the complex with Dy(III)
ions 4 as compared with complex with Gd(III) ions 3 (approximately 18 times) appears
to be due to the fact that, in Gd(III), in the first excited state 6P7/2, Gd(III) is too far away
to accept the energy on the triplet excited state of the ligand [52,53]. The studies will be
continued to clarify the possibility of using these complexes as contrast agents in MRI.
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