Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Part
2.1. Material Preparation
2.2. Materials’ Characterization
2.3. Electrochemical Investigation
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armand, M.; Tarascon, J.-M. Building better batteries. J. Nat. 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.-S.; Chen, Z.; Freunberger, S.A.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L.F.; Cho, J.; Bruce, P.G. Challenges facing lithium batteries and electrical double-layer capacitors. J. Angew. Chem. Int. Ed. 2012, 51, 9994–10024. [Google Scholar] [CrossRef] [PubMed]
- Scrosati, B.; Hassoun, J.; Sun, Y.-K. Lithium-ion batteries. A look into the future. J. Energy Environ. Sci. 2011, 4, 3287–3295. [Google Scholar] [CrossRef]
- Blomgren, G.E. The development and future of lithium ion batteries. J. Electrochem. Soc. 2017, 164, 5019–5025. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, S.; Loveridge, M.; Beattie, S.D.; Jahn, M.; Dashwood, R.J.; Bhagat, R. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power Sources 2015, 286, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Mentbayeva, A.; Sukhishvili, S.; Naizakarayev, M.; Batyrgali, N. Ultrathin clay-containing layer-by-layer separator coating enhances performance of lithium-sulfur batteries. J. Electrochim. Acta 2021, 366, 137454. [Google Scholar] [CrossRef]
- Fongy, C.; Gaillot, A.-C.; Jouanneau, S.; Guyomard, D.; Lestriez, B. Ionic vs electronic power limitations and analysis of the fraction of wired grains in LiFePO [sub 4] composite electrodes. J. Electrochem. Soc. 2010, 157, A885. [Google Scholar] [CrossRef]
- Braun, P.V.; Cho, J.; Pikul, J.H.; King, W.P.; Zhang, H. High power rechargeable batteries. J. Curr. Opin. Solid State Mater. Sci. 2012, 16, 186–198. [Google Scholar] [CrossRef]
- Arthur, T.S.; Bates, D.J.; Cirigliano, N.; Johnson, D.C.; Malati, P.; Mosby, J.M.; Perre, E.; Rawls, M.T.; Prieto, A.L.; Dunn, B. Three-dimensional electrodes and battery architectures. J. MRS Bull. 2011, 36, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Long, J.W.; Dunn, B.; Rolison, D.R.; White, H.S. Three-dimensional battery architectures. J. Chem. Rev. 2004, 104, 4463–4492. [Google Scholar] [CrossRef]
- Bruce, P.G.; Scrosati, B.; Tarascon, J.M. Nanomaterials for rechargeable lithium batteries. J. Angew. Chem. Int. Ed. 2008, 47, 2930–2946. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.C.; Pandey, G.P. Solid polymer electrolytes: Materials designing and all solid-state battery applications: An overview. J. Phys. D Appl. Phys. 2008, 41, 223001. [Google Scholar] [CrossRef]
- Ergang, N.S.; Fierke, M.A.; Wang, Z.; Smyrl, W.H.; Stein, A. Fabrication of a fully infiltrated three-dimensional solid-state interpenetrating electrochemical cell. J. Electrochem. Soc. 2007, 154, A1135. [Google Scholar] [CrossRef]
- El-Enany, G.; Lacey, M.J.; Johns, P.A.; Owen, J.R. In situ growth of polymer electrolytes on lithium ion electrode surfaces. J. Electrochem. Commun. 2009, 11, 2320–2323. [Google Scholar] [CrossRef]
- Rhodes, C.P.; Long, J.W.; Doescher, M.S.; Dening, B.M.; Rolison, D.R. Charge insertion into hybrid nanoarchitectures: Mesoporous manganese oxide coated with ultrathin poly(phenylene oxide). J. Non-Cryst. Solids 2004, 350, 73–79. [Google Scholar] [CrossRef]
- Long, J.W.; Rolison, D.R. Architectural design, interior decoration, and three dimensional plumbing en route to multifunctional nanoarchitectures. J. Acc. Chem. Res. 2007, 40, 854–862. [Google Scholar] [CrossRef]
- Shao, D.; Yang, L.; Luo, K.; Chen, M.; Zeng, P.; Liu, H.; Liu, L.; Chang, B.; Luo, Z.; Wang, X. Preparation and performances of the modified gel composite electrolyte for application of quasi-solid-state lithium sulfur battery. J. Chem. Eng. 2020, 389, 124300. [Google Scholar] [CrossRef]
- Duan, H.; Yin, Y.-X.; Shi, Y.; Wang, P.-F.; Zhang, X.-D.; Yang, C.-P.; Shi, J.-L.; Wen, R.; Guo, Y.-G.; Wan, L.-J. Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. J. Am. Chem Soc. 2018, 140, 82–85. [Google Scholar] [CrossRef]
- Wu, S.; Yi, J.; Zhu, K.; Bai, S.; Liu, Y.; Qiao, Y.; Ishida, M.; Zhou, H. A super-hydrophobic quasi-solid electrolyte for Li-O2 battery with improved safety and cycle life in humid atmosphere. J. Adv. Energy Mater. 2016, 7, 1601759. [Google Scholar] [CrossRef]
- Li, N.-W.; Yin, Y.-X.; Yang, C.-P.; Guo, Y.-G. An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. J. Adv. Mater. 2016, 28, 1853–1858. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Pei, A.; Chen, K.; Vailionis, A.; Li, Y.; Zheng, G.; Sun, J.; Cui, Y. Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium. J. ACS Cent. Sci. 2018, 4, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Lee, H.-W.; Gao, T.; Zheng, G.; Yao, H.; Wang, H.; Lu, Z.; Zhou, Y.; Liang, Z.; Liu, Z.; et al. Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode. J. Nano Lett. 2014, 14, 6016–6022. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lin, D.; Li, Y.; Chen, G.; Pei, A.; Nix, O.; Li, Y.; Cui, Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. J. Nat. Commun. 2018, 9, 3656. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.-M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. J. Nat. Commun. 2015, 6, 7436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathak, R.; Chen, K.; Gurung, A.; Reza, K.M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y.; et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. J. Nat. Commun. 2020, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Zhang, X.-Q.; Cheng, X.-B.; Peng, H.-J.; Zhao, C.-Z.; Yan, C.; Huang, J.-Q. Artificial Soft–Rigid Protective Layer for Dendrite-Free Lithium Metal Anode. J. Adv. Funct. Mater. 2018, 28, 1705838. [Google Scholar] [CrossRef]
- Moon, S.; Park, H.; Yoon, G.; Lee, M.H.; Park, K.-Y.; Kang, K. Simple and Effective Gas-Phase Doping for Lithium Metal Protection in Lithium Metal Batteries. J. Chem. Mater. 2017, 29, 9182–9191. [Google Scholar] [CrossRef]
- Lopez, J.; Pei, A.; Oh, J.Y.; Wang, G.-J.N.; Cui, Y.; Bao, Z. Effects of Polymer Coatings on Electrodeposited Lithium Metal. J. Am. Chem. Soc. 2018, 140, 11735–11744. [Google Scholar] [CrossRef]
- Luo, J.; Fang, C.-C.; Wu, N.-L. High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes. J. Adv. Energy Mater. 2018, 8, 1701482. [Google Scholar] [CrossRef]
- Liu, W.; Lin, D.; Pei, A.; Cui, Y. Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. J. Am. Chem. Soc. 2016, 138, 15443–15450. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, D.; Yuen, P.Y.; Liu, K.; Xie, J.; Dauskardt, R.H.; Cui, Y. An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. J. Adv. Mater. 2017, 29, 1605531. [Google Scholar] [CrossRef] [PubMed]
- Kazyak, E.; Wood, K.N.; Dasgupta, N.P. Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments. J. Chem. Mater. 2015, 27, 6457–6462. [Google Scholar] [CrossRef]
- Kozen, A.C.; Lin, C.-F.; Pearse, A.J.; Schroeder, M.A.; Han, X.; Hu, L.; Lee, S.-B.; Rubloff, G.W.; Noked, M. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. J. ACS Nano 2015, 9, 5884–5892. [Google Scholar] [CrossRef]
- Lu, Y.; Tu, Z.; Archer, L.A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. J. Nat. Mater. 2014, 13, 961–969. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. J. Nat. Energy 2016, 1, 16010. [Google Scholar] [CrossRef]
- Zhu, B.; Jin, Y.; Hu, X.; Zheng, Q.; Zhang, S.; Wang, Q.; Zhu, J. Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes. J. Adv. Mater. 2017, 29, 1603755. [Google Scholar] [CrossRef]
- Yu, Z.; Mackanic, D.G.; Michaels, W.; Lee, M.; Pei, A.; Feng, D.; Zhang, Q.; Tsao, Y.; Amanchukwu, C.V.; Yan, X.; et al. A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes. J. Joule 2019, 3, 2761–2776. [Google Scholar] [CrossRef]
- Putria, R.M.; Floweri, O.; Mayangsari, T.R.; Aimonad, A.H.; Iskandar, F. Preliminary study of electrochemical properties of polyethylene oxide (PEO) and polyvinyl alcohol (PVA) composites as material for solid polymer electrolyte. J. Mater. Today Proc. 2021, 44, 3375–3377. [Google Scholar] [CrossRef]
- Yang, L.-Y.; Cao, J.-H.; Cai, B.-R.; Liang, T.; Wu, D.-Y. Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries. J. Electrochim. Acta 2021, 382, 138346. [Google Scholar] [CrossRef]
- Tran, H.K.; Wu, Y.-S.; Chien, W.-C.; Wu, S.-H.; Jose, R.; Lue, S.J.; Yang, C.-C. Composite Polymer Electrolytes Based on PVA/PAN for All-Solid-State Lithium Metal Batteries Operated at Room Temperature. J. ACS Appl. Energy Mater. 2020, 3, 11024–11035. [Google Scholar] [CrossRef]
- Nurpeissova, A.; Adi, A.; Aishova, A.; Mukanova, A.; Kim, S.-S.; Bakenov, Z. Synergistic effect of 3D current collector structure and Ni inactive matrix on the electrochemical performances of Sn-based anodes for lithium-ion batteries. J. Mater. Today Energy 2020, 16, 100397. [Google Scholar] [CrossRef]
- Alipoori, S.; Mazinani, S.; Aboutalebi, S.; Sharif, F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. J. Energy Storage 2020, 27, 101072. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X.; Chen, L. Understanding of Effects of Nano-Al2O3 Particles on Ionic Conductivity of Composite Polymer Electrolytes. J. Electrochem. Solid-State Lett. 2003, 6, E40–E44. [Google Scholar] [CrossRef]
- Nguyen, M.H.T.; Oh, E.-S. Application of a new acrylonitrile/butylacrylate water-based binder for negative electrodes of lithium-ion batteries. J. Electrochem. Commun. 2013, 35, 45–48. [Google Scholar] [CrossRef]
- Ngai, K.S.; Ramesh, S.; Ramesh, K.; Juan, J.C. A review of polymer electrolytes: Fundamental, approaches and applications. J. Ion. 2016, 22, 1259–1279. [Google Scholar] [CrossRef]
- Chodankar, R.; Dubal, P.; Lokhande, C.; Lokhande, D. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors. J. Colloid Interface Sci. 2015, 460, 370–376. [Google Scholar] [CrossRef]
- Youngseok, S.; Junesun, H.; Sukyung, L.; Balamurugan, T.; Jae-Hun, K.; Peter, J.; Jeno, G.; Heeman, C. Synthesis of a high-capacity NiO/Ni foam anode for advanced lithium-ion batteries. J. Adv. Eng. Mater. 2020, 22, 2000351. [Google Scholar] [CrossRef]
- Jo, H.; Kim, M.J.; Choi, H.; Sung, Y.-E.; Choe, H.; Dunand, D.C. Morphological Study of Directionally Freeze-Cast Nickel Foams. J. Metall. Mater. Trans. E 2016, 3, 46. [Google Scholar] [CrossRef]
- Jankovi’c, B.; Adnadevi´c, B.; Mentus, S. The kinetic study of temperature-programmed reduction of nickel oxide in hydrogen atmosphere. J. Chem. Eng. Sci. 2008, 63, 567. [Google Scholar] [CrossRef]
- Tolganbek, N.; Mentbayeva, A.; Serik, N.; Batyrgali, N.; Naizakarayev, M.; Kanamura, K.; Bakenov, Z. Design and preparation of thin film gel polymer electrolyte for 3D Li-ion battery. J. Power Sources 2021, 493, 229686. [Google Scholar] [CrossRef]
- Kamyabi, M.A.; Hajari, N. Preparation of mesoporous silica templated metal nanostructure on Ni foam substrate and its application for the determination of hydrogen peroxide. J. Appl. Electrochem. 2016, 46, 951–962. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, M.; Li, J.; Tong, X. Facile hydrothermal synthesis of flower like Co-doped NiO hierarchical nanosheets as anode materials for lithium-ion batteries. J. R. Soc. Chem. 2015, 5, 91493–91499. [Google Scholar] [CrossRef]
- Spinner, N.S.; Palmieri, A.; Beauregard, N.; Zhang, L.C.; Campanella, J.; Mustain, W.E. Influence of conductivity on the capacity retention of NiO anodes in Li-ion batteries. J. Power Sources 2015, 276, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, D.; Wang, Q.; Chen, H. Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery. J. Power Sources 2010, 195, 7432. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Ye, Y.S.; Chiu, T.M.; Pan, C.J.; Hwang, B.J. Size effect of nickel oxide for lithium ion battery anode. J. Power Sources 2014, 253, 27. [Google Scholar] [CrossRef]
- Mai, Y.J.; Tu, J.P.; Xia, X.H.; Gu, C.D.; Wang, X.L. Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries. J. Power Sources 2011, 196, 6388–6393. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tleukenov, Y.-T.; Kalimuldina, G.; Arinova, A.; Issatayev, N.; Bakenov, Z.; Nurpeissova, A. Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Polymers 2022, 14, 5327. https://doi.org/10.3390/polym14235327
Tleukenov Y-T, Kalimuldina G, Arinova A, Issatayev N, Bakenov Z, Nurpeissova A. Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Polymers. 2022; 14(23):5327. https://doi.org/10.3390/polym14235327
Chicago/Turabian StyleTleukenov, Yer-Targyn, Gulnur Kalimuldina, Anar Arinova, Nurbolat Issatayev, Zhumabay Bakenov, and Arailym Nurpeissova. 2022. "Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries" Polymers 14, no. 23: 5327. https://doi.org/10.3390/polym14235327
APA StyleTleukenov, Y. -T., Kalimuldina, G., Arinova, A., Issatayev, N., Bakenov, Z., & Nurpeissova, A. (2022). Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Polymers, 14(23), 5327. https://doi.org/10.3390/polym14235327