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Figure S1. Mass of insoluble fraction of the HFGEBA/PAMS system as a function of 

curing time. Intercept at Mass = 0 is 29.61 min with an interval of 1.68 min uncertainty 

at 95% confidence. 
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Figure S2. Average time - conversion calibration curves from two experiments at 40 ºC 

and second order polynomial fit curve along with 95% confidence bands. FTnIR spectra 

can be found in ref [4] of the manuscript. 
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Figure S3. A: Normalized complex viscosity as a function of curing time in log scale 

for 40ºC, 60ºC y 70ºC curing temperatures. Times at which viscosity diverge are taken 

as percolation times. B: DSC thermograms of the two pure monomers PAMS and 

HDGEBA 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Method to calculate thickness and compositional gradient on a PAMS-rich 

domain. Interphase thickness is defined as the distance between 20% and 80% of 

maximum intensity and compositional gradient as the slope between these two limits. 

The red arrow shows the distance along which fluorescence is recorded. 
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Figure S5. Compositional gradient and interphase thickness as a function of conversion 

for curing at 40ºC. 
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Figure S6. Diameter size distribution at conversion  = 0 
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Figure S7. Maximum and minimum droplet diameter as a function of epoxy 

conversion. Maximum diameter is almost proportional to the third moment of the 

diameter size distribution. 

 

Appendix: algorithm for the growth and coalescence of domains 

Simulation is performed according to the following steps: 

1) Gaussian distribution of particles. 

An initial volume fraction of domains is set, 𝜙𝐷
𝑁, and 𝑁 particles (105) are generated 

through Metropolis-Montecarlo with radius in the range   𝐿𝑅 < 𝑅𝑖 < 𝑈𝑅, where 𝐿𝑅and 

𝑈𝑅are the lower and upper cut-offs of the distribution. The probability of each size must 

comply with the Gaussian distribution: 

𝑦 =
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

(𝑅 − 〈𝑅〉)2

2𝜎2
) 

Where 〈𝑅〉 is the radius average and 𝜎 the radius standard deviation. In the following 

table appear the initial distributions that have been explored along with the initial 

volume fractions, average sizes, standard deviations, and lower and upper cut-offs 

Run 𝜙𝐷
𝑁 〈𝑅〉 (m)  (m) 𝐿𝑅 𝑈𝑅 

1 14 8.0 2.5 2 16 

2 16 8.0 2.5 2 16 

3 18 8.0 2.5 2 16 

4 20 8.0 2.5 2 16 

5 25 8.0 2.5 2 16 



6 30 8.0 2.5 2 16 

7 35 8.0 2.5 2 16 

8 40 8.0 2.5 2 16 

9 14 10.0 2.5 4 18 

10 16 10.0 2.5 4 18 

11 18 10.0 2.5 4 18 

12 20 10.0 2.5 4 18 

13 25 10.0 2.5 4 18 

14 30 10.0 2.5 4 18 

15 35 10.0 2.5 4 18 

16 40 10.0 2.5 4 18 

17 14 12.0 2.5 6 20 

18 16 12.0 2.5 6 20 

19 18 12.0 2.5 6 20 

20 20 12.0 2.5 6 20 

21 25 12.0 2.5 6 20 

22 30 12.0 2.5 6 20 

23 35 12.0 2.5 6 20 

24 40 12.0 2.5 6 20 

25 14 14.0 2.5 8 22 

26 16 14.0 2.5 8 22 

27 18 14.0 2.5 8 22 

28 20 14.0 2.5 8 22 

29 25 14.0 2.5 8 22 

30 30 14.0 2.5 8 22 

31 35 14.0 2.5 8 22 

32 40 14.0 2.5 8 22 

33 14 16.0 2.5 10 24 

34 16 16.0 2.5 10 24 

35 18 16.0 2.5 10 24 

36 20 16.0 2.5 10 24 

37 25 16.0 2.5 10 24 

38 30 16.0 2.5 10 24 

39 35 16.0 2.5 10 24 

40 40 16.0 2.5 10 24 

41 14 18.0 2.5 12 26 

42 16 18.0 2.5 12 26 

43 18 18.0 2.5 12 26 

44 20 18.0 2.5 12 26 

45 25 18.0 2.5 12 26 

46 30 18.0 2.5 12 26 

47 35 18.0 2.5 12 26 

48 40 18.0 2.5 12 26 

49 14 20.0 2.5 14 28 

50 16 20.0 2.5 14 28 

51 18 20.0 2.5 14 28 

52 20 20.0 2.5 14 28 

53 25 20.0 2.5 14 28 



54 30 20.0 2.5 14 28 

55 35 20.0 2.5 14 28 

56 40 20.0 2.5 14 28 

 

2) Stochastic filling of a box 

 

From the volume occupied by the generated 105 particles and the volume fraction value, 

the volume of the cell is determined. A grid of 75000 was made on each edge of the 

cell. The filling criterion is as follows: once a particle with radius R is selected, the grid 

position is randomly selected within the box. Then, it is checked that the grid position is 

not occupied; if not, a new grid position is randomly chosen, and the process is 

repeated. 

3) Growth  

 

The process of growth and coalescence is depicted in the following scheme. Two parent 

molecules i,j grow by a diffusion step of epoxy in which conversion changes from 𝛼𝑘 to 

𝛼𝑘+1. During the diffusion/reaction step, particles remain fixed at their positions.  

 

 

Volume fraction changes with conversion as 𝜙(𝛼) = 𝜙𝐷
𝑁 + 𝛼 · [1 − 𝜙𝐷

𝑁] where  𝜙𝐷
𝑁 is 

the initial volume fraction of domains. Therefore, when conversion changes from 𝛼𝑘 to 

𝛼𝑘+1, volume fraction changes as Δ𝜙(𝛼) = 𝜙(𝛼𝑘+1) − 𝜙(𝛼𝑘) = [1 − 𝜙𝐷
𝑁] ·

[𝛼𝑘+1 − 𝛼𝑘]. Calling 𝛿𝛼 = [𝛼𝑘+1 − 𝛼𝑘], the volume of epoxy component that enters the 

domains is Δ𝑉 = 𝑉𝑇[1 − 𝜙𝐷
𝑁]𝛿𝛼. This volume is distributed among all the particles of 

the box according to their surface since mass transfer occurs through the surface of 

domains. Consequently, the volume of each particle, 𝑉𝑖, will increase and amount 

𝛿𝑉𝑖  given by: 

𝛿𝑉𝑖 = 𝑉𝑇[1 − 𝜙𝐷
𝑁]𝛿𝛼 ·

𝑆(𝛼𝑘)𝑖

∑ 𝑆(𝛼𝑘)𝑖
𝑁
𝑖=1

 

The volume of the particle when the system has experienced a conversion change 𝛿𝛼 

will now be 

𝑉(𝛼𝑘+1)𝑖 = 𝑉(𝛼𝑘)𝑖 + 𝛿𝑉𝑖 

 

And the new radius will be 

𝑅(𝛼𝑘+1)𝑖 = (
3 · 𝑉(𝛼𝑘+1)𝑖

4𝜋
)

1
3
 

 

 



4) Coalescence 

After each 𝛿𝛼, that has been set at 𝛿𝛼 = 0.003, the distance between a particle and the 

next neighbour 𝑑(𝛼𝑘+1)𝑖𝑗is calculated, considering periodic boundary conditions, as: 

 

𝑑𝑋 = 𝑋𝑖 − 𝑋𝑗; 𝑑𝑌 = 𝑌𝑖 − 𝑌𝑗; 𝑑𝑍 = 𝑍𝑖 − 𝑍𝑗 

 

When 𝑑(𝛼𝑘+1)𝑖𝑗 = √𝑑𝑋
2 + 𝑑𝑌

2 + 𝑑𝑍
2 ≤ 𝑅(𝛼𝑘+1)𝑖 + 𝑅(𝛼𝑘+1)

𝑗
, a coalescent event will occur 

forming the daughter particle m.  

 

Volume of the new particle will be the sum of the volumes of the parent i,j particles and 

the new radius 𝑅𝑚, will be 

 

𝑅𝑚 = (𝑅𝑖
3 + 𝑅𝑗

3)
1
3 

 

The coordinates of the centre will be the coordinates of the centre of mass, given by: 

 

𝑋𝑚 = 𝑋𝑖 ·
𝑅𝑖

3

𝑅𝑖
3 + 𝑅𝑗

3 + 𝑋𝑗 ·
𝑅𝑗

3

𝑅𝑖
3 + 𝑅𝑗

3 

𝑌𝑚 = 𝑌𝑖 ·
𝑅𝑖

3

𝑅𝑖
3 + 𝑅𝑗

3 + 𝑌𝑗 ·
𝑅𝑗

3

𝑅𝑖
3 + 𝑅𝑗

3 

𝑍𝑚 = 𝑍𝑖 ·
𝑅𝑖

3

𝑅𝑖
3 + 𝑅𝑗

3 + 𝑍𝑗 ·
𝑅𝑗

3

𝑅𝑖
3 + 𝑅𝑗

3 

 


