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Abstract: Tissue engineering aims to develop in-vitro substitutes of native tissues. One approach of
tissue engineering relies on using bioreactors combined with biomimetic scaffolds to produce study
models or in-vitro substitutes. Bioreactors provide control over environmental parameters, place
and hold a scaffold under desired characteristics, and apply mechanical stimulation to scaffolds.
Polymers are often used for fabricating tissue-engineering scaffolds. In this study, polycaprolactone
(PCL) collagen-coated microfilament scaffolds were cell-seeded with C2C12 myoblasts; then, these
were grown inside a custom-built bioreactor. Cell attachment and proliferation on the scaffolds were
investigated. A loading pattern was used for mechanical stimulation of the cell-seeded scaffolds.
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Tissue engineering remains the focus of scientific research due to its applications in
Academic Editor: Anayancy biomedical areas and disease modeling. This field aims to reconstruct tissues and organs
Osorio-Madrazo through the use of cells, scaffolds, and environmental factors [1,2]. These three fields should
be integrated to produce optimal tissue functionality and promote cell development [3].
Myoblasts are able to regenerate and reproduce, however, they require a surface to anchor
in order to support tissue formation [4,5]. An appropriate cell matrix or scaffold plays a cru-
cial role in cell development [4,6]. Scaffolds for tissue engineering can be three-dimensional
structures that provide an adhesion surface for cell proliferation and differentiation [7,8],
for instance, important biological processes like gene expression, cellular mobilization, and
apoptosis can differ significantly between two-dimensional cultures and three-dimensional
cell cultures [9]. Scaffolds should comply with design parameters that mimic the mechan-
ical, physical, and biological properties of native muscular tissue [10,11]. Hence, when
manufacturing a scaffold for musculoskeletal tissue engineering applications, it must mimic
the skeletal muscle physiology and its mechanical properties [12,13]. In addition, a mus-
cular tissue engineering scaffold should aim to imitate the collective behavior of a muscle
This article is an open access article and have elastic properties [14]
distributed under the terms and Polycaprolactone (PCL) is a biomaterial widely used for scaffolds in tissue engineer-
conditions of the Creative Commons  ing. PCL is a synthetic polymer, biocompatible and bioabsorbable [15,16]. According to
Attribution (CC BY) license (https://  Siddiqui et al. [17], PCL stands out among other biomaterials for its capacity to be molded
creativecommons.org/licenses /by / into different shapes. Another very important feature of this material is that it has been
40/). approved by the Food and Drug Administration (FDA) for medical purposes [16,18]. PCL
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scaffolds can be designed with different architectures and can be fabricated by additive
manufacturing and electrospinning [19-21]. Mats, meshes, or porous structures can be
fabricated from this material [22-25]. Ghobeira et al. [26] reported PCL scaffolds fabricated
by a modified fused deposition modeling (FDM) method with random or aligned fiber
configurations. Other techniques rely on the thermoplastic properties of PCL, such as
extrusion and melting-drawing techniques [27,28]. These techniques are used to produce
individual polymeric fibers—bioprinting of fibers to create muscle-like structures can be
used [29].

Collagen is one of the principal components of the extracellular matrix and can be
naturally found in tendons, bones, and skin [30,31]. This natural polymer is commonly
used as a scaffolding material or coating material, as it promotes cell adhesion and prolifer-
ation [1,30]. Collagen used as a coating material has also been related to an enhancement
of the biocompatibility of a base material [24,32]. Other options include covering a sur-
face with hydroxyapatite (HA) to create a biocompatible layer. Egorov et al. [33] present
different coating techniques to enhance biocompatibility.

Bioreactors represent a system capable of initiating, maintaining, and directing cell
growth and tissue formation [34]. These systems offer dynamic culture conditions that
are able to recreate the physiological environment of native tissue because variables like
temperature, pH, medium flow rate, nutrient supply, and gas can be controlled to match
the requirements of the cell culture [35,36]. Design and construction of bioreactors allow
the application of mechanical stimuli such as compression and tension to cell-seeded
scaffolds to modify their characteristics and get the desired outcome [9]. Mechanical
stimulation cues are especially relevant to muscle cells, which are intrinsically mechanical
sensitive [37]. Their actin cytoskeleton is directly related to the cell’s mechanical response
and its properties [38]. Different mechanical loading schemes can be used to elongate or
compress scaffolds, this way direct cell reactions may occur [29,39,40].

This study focuses on studying a cell-seeded musculoskeletal scaffold inside a custom-
made biomechanical stimulation system. A microfilament scaffold was fabricated to mimic
the three-dimensional native configuration of skeletal muscle tissue and it was coated with
collagen to enhance its biocompatibility. The microfilament was cell-seeded and placed
inside the in-vitro system while another cell-seeded scaffold was left as a control. The
test consisted in comparing myoblast cell proliferation on a microfilament scaffold inside
the study system to that of a microfilament scaffold inside a cell growth incubator. The
results of this test provided insights into whether the biomechanical stimulation system was
adequate towards cell growth, whether it complied with aseptic conditions, and whether
the environmental parameters, temperature, and CO,, were appropriate. Moreover, a
preliminary stimulation test was made on the microfilament scaffold. This work provided
information for future mechanical stimulation assays on cell-seeded scaffolds by using
myoblast cells combined with a biomimetic muscular scaffold inside the custom-made
study system.

2. Materials and Methods
2.1. Materials and Reagents

Polycaprolactone, PCL (Sigma-Aldrich, Mn 80,000 g/mol, Milwaukee, WI, USA)
pellets were used to fabricate PCL microfilaments for the scaffolds and Collagen I (Sigma-
Aldrich, Cat No. 125-50, lot 404, St. Louis, MO, USA) was used to coat the scaffolds.
The cells used through this work were murine myoblasts C2C12 cell-line (CRL-1772™)
(American Type Culture Collection, ATCC, Manassas, VA, USA).

Cell proliferation assays were performed in cell growth medium which consisted of
Gibco Dulbecco’s Modified Eagle Medium (DMEM-Grand Island, NY, USA) supplemented
with 1% glutamine (GIBCO, Grand Island, NY, USA), 1% penicillin-streptomycin (P/S)
(GIBCO, Grand Island, NY, USA), and 10% Fetal Bovine Serum (FBS) (GIBCO, Grand Island,
NY, USA). Triton™ X-100 (Lot LBC2688V SIGMA, Saint Louis, MO, USA) was used as
cell lysis reagent. Trypsin-EDTA 0.25% and Phosphate Buffer Saline (PBS-SIGMA, cat no.
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P4417, lot SLCC1522, Saint Louis, MO, USA) were used to detach/release cells from culture
vessel. Paraformaldehyde (PFA) (cat. No. 04042-500, Thermo Fisher Scientific™, Waltham,
MA, US) was used to fix the cells.

To analyze cell viability, AlamarBlue™ Cell Viability Reagent (Invitrogen™, Thermo
Fisher, cat. No. DAL1100, Eugene, OR, USA) was used. For nuclei and cytoskeleton
staining, 4’,6-diamidino-2-phenylindole (DAPI) (cat. No. sc-3598, Thermo Fisher Scientific)
plus Alexa Fluor™ 488 phalloidin (cat. No. A12379, Thermo Fisher Scientific) were used.
Bovine Serum Albumin (BSA) (cat. No. BP9700-100, Thermo Fisher Scientific) was used to
reduce nonspecific background staining.

All reagents for cell growth had analytical grade quality and proliferation test methods
were assessed under aseptic techniques and sterile conditions.

2.2. Design and Fabrication of the In-Vitro Study System

The system for mechanical stimulation of a cell-seeded scaffold was made from 316
L stainless steel. It consisted of the following parts: the bioreactor, a water bath, and a
measurement system for environmental parameters setting. Figure 1 shows a diagram of
its connection array. The bioreactor provided a closed system for adequate cell growth and
had a top grip that could be connected to a universal testing machine. The bioreactor was
placed inside a water bath. The water bath kept the bioreactor at a constant temperature of
(37 £ 1) °C. Temperature was kept constant by circulating warm water with a peristaltic
pump at a rate of 120 r.p.m. The system for environmental parameters kept 5% CO, and
high humidity flowing into the bioreactor using a micropump. The bioreactor and the
water bath were CAD designed using software package (SolidWorks Corp., Waltham, MA,
USA) and then fabricated at a local workshop.

Top grip
Thermometer
‘\
.
CO, tubing H
—I
micropump ; 5 COzsensor
S
[
&
Rt waterbath
. |

Figure 1. Diagram and connection array of the biomechanical stimulation system.

2.3. Fabrication of the Scaffold and Its Assembly on the In-Vitro Study System

The microfilament was fabricated using PCL in an extruder (Filabot Ex2) at 80 °C
equipped with a 1 mm diameter die. Then, the microfilament was stretched until plastic
yield, e~97%. The average diameter of the fabricated microfilament was 90.69 % 6.37 pm,
as measured by optical microscopy. To assemble the scaffold, the microfilaments were
arranged as a parallel group of 61 microfilaments by organizing them between the knobs
of the grips (see Figure 2). In a previous study made by the authors, the details of the
fabrication procedure and mechanical properties of the microfilaments are reported [41].
Briefly, the average diameter of the fabricated microfilaments was 90 um. The Young
modulus of the scaffold was 2184 MPa, and the tensile yield stress was 275 Mpa. In
addition, this study showed that PCL microfilaments kept their mechanical properties for
5.3 x 10° cycles under constant loading [41].

The functionality of the biomechanical stimulation system was evaluated by contrast-
ing the cell proliferation inside the study system to that of a scaffold inside a commercial
incubator. The scaffold inside the commercial incubator was considered a positive control.
Two sets of grips were used: the mobile grip that was placed as part of the study system
(see Figure 2a) and the control grip that was kept inside a cell incubator (see Figure 2b).
The initial length of the scaffold was 17 mm for the mobile grip and for the control grip.
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After the scaffold was assembled on the grips, they were sterilized using 25 kGy of gamma
rays in a An Ob-Servo Ignis with a Co-60 source gamma irradiator (Izotop, Budapest,
Hungary) [42]. For each replica, a new scaffold was assembled and sterilized prior to

its use.
A @

/ Mobilertop, grip 61 microfilaments
v
DN - /-

61 microfilaments

(a) (b)

Figure 2. Diagram of grips with microfilament scaffolds. (a) shows the mobile grip system and

(b) shows the control grip.
2.4. Collagen Coating of the Microfilament Scaffold

The mobile grip was placed in a horizontal position on an aluminum holder with a
30 mm petri dish (see Figure 3a). The static grip was directly placed on a petri dish (see
Figure 3b). Both grips were placed in such a way that the microfilaments were facing down
to ensure the scaffold was in contact with cell culture medium. Once in this position, the
scaffolds were coated with collagen I. Approximately 800 uL of collagen was deposited
directly on the surface of the microfilaments. The coated scaffolds were then incubated at
37 °C for 30 min inside a cell culture incubator. After 30 min, the remaining collagen was
removed by aspiration, and the scaffolds were washed three times with sterile PBS.

(b)

Figure 3. Diagram for collagen coating and cell seeding of the scaffold. (a) Mobile grip in aluminum
base-holder and in (b) static grip in petri dish.

2.5. Cell Seeding and Biomechanica Stimulation System Arrangement

Cell seeding was made using the configuration showed in Figure 3. Approximately
4 x 10° C2C12 cells suspended in 200 pL of cell growth medium were directly seeded on
the scaffolds by adding a drop of cell suspension on the microfilaments. The scaffolds were



Polymers 2022, 14, 5427 50f 13

incubated for 1.5-2 h inside a cell culture incubator to promote cell attachment. Then, 3 mL
of cell culture medium was slowly added to the petri dish and scaffolds were kept inside
an incubator for 24 h.

The mobile grip with the cell-seeded scaffold was placed inside the bioreactor and the
bioreactor was placed inside the water bath (see Figure 4a). The control cell-seeded scaffold
was maintained in the petri dish and placed inside a cell culture incubator.

Bioreactor
Water bath

Mobile _|
adapter

Cell-seeded —
scaffold

‘.' J"'_&-!.-

/
(a) (b)

Figure 4. (a) Diagram of bioreactor inside water bath. (b) Static cell-seeded scaffold to be placed

inside the incubator.

2.6. Cell Viability Measurements

Cell proliferation was evaluated by measuring cell viability every 24 h after cell
seeding. Table 1 shows the experimental timeline of the viability measurements made.
Viability estimation was made by first removing cell growth medium from the cell-seeded
scaffolds. Then, 3 mL of solution of cell growth medium with 10% of AlamarBlue™
was prepared and subsequently added to the cell-seeded scaffolds. The scaffolds were
incubated at standard conditions (37 °C and 5% CO,) for 1 h. Then, the incubated solution
was collected and transferred into an optically clear flat bottom microplate. The reduced
compound from the AlamarBlue™ reagent was measured with relative fluorescence units
(RFU) using a Fluostar Optima (BMG LaBTech, San Diego, CT, USA) microplate reader at
544 nm /590 nm (Ex-Em) wavelength. This test was made three times for statistical analysis
and viability was reported as the mean + standard deviation.

Table 1. Experimental procedure followed on the microfilament scaffolds.

Time (h) Methodology Details Test

0 Cell seeding C2C12 Aluminum holder in incubator A0

o4 Viability t Al
measurements Mobile grip and control grip inside

48 Viability incubator A2
measurements

72 Viability Mobile grip located in A3
measurements biomechanical stimulation system

9% Viability and control grip inside incubator. Ad

measurements Cell density estimation




Polymers 2022, 14, 5427

6 of 13

2.7. Biomechanical Stimulation of a Cell-Seeded Scaffold

A mechanical stimulation test was used to probe a cell-seeded microfilament scaffold
under loading conditions for 24 h. Two samples were used, one was placed inside the
in-vitro system and the other sample was placed on a petri dish inside an incubator.

The loading pattern applied to the cell-seeded scaffolds is shown in Figure 5. The
scaffold was loaded until the sample reached an elongation of 1 mm. After 1 h of constant
displacement, cyclical loading was applied by using a sinusoidal wave function with a
frequency of 0.1 Hz and an amplitude of 1 mm. The scaffold was stressed for five cycles,
followed by load relaxation at 1 mm of elongation. The displacement plateau remained at
1 mm for 2 h and then this procedure was repeated 10 times. After 10 stimulation cycles,
the cells on the microfilament and the control sample were fixed and a staining procedure
was followed.

25 T

N

=
&

Displacement (mm)
—_

o
&)

2h

<€ 1 cycle rel

Figure 5. Loading pattern used on cell-seeded scaffold.

2.8. Cell Morphology on the Microfilament Scaffold

Cells were observed on the microfilament scaffolds using fluorescence microscopy.
The fixation of cells and staining were performed using the aluminum holding mechanism
and a petri dish shown in Figure 3. Scaffolds were washed with PBS and soaked in 4%
paraformaldehyde solution for 20 min., then they were washed three times with PBS. After
washing the scaffolds, they were incubated in 1% BSA /PBS for 20 min. to permeate the
cells; 0.1% of Triton X-100 in PBS was added for 5 min.

Next, 10 pL of phalloidin was diluted in 200 pL of PBS, added to the scaffolds, and
incubated for 20 min. Then, DAPI dye was diluted at a ratio of 1:1000 in PBS and added
to the scaffold and incubated for 5 min. The cells were rinsed three times with PBS. Once
the cells were stained, the scaffolds were removed from the grips and placed individually
in a petri dish for microscopy observation. A Leica DMi8 inverted fluorescence micro-
scope equipped with a FITC (Fluorescein isothiocyanate) LP (long pass) filter and DAPI
LP filter was used for visualization of the scaffolds. Image] software was used to edit
the micrographs and obtain a merge of both DAPI and Phalloidin dyes. At the end of
the experimental procedure, the cell nuclei number was estimated on each fluorescence
micrograph by using Image] 2.9.0/1.53t software [43]. The background was removed and
then a binary threshold applied. Particles were counted with an area that varied from
50 pm? to 600 um? and circularity from 0.2 to 0.8.

3. Results
3.1. Microfilament Scaffold and Assembly of the System
Figure 6 shows different sections of the assembled study system. In (a), the bioreactor

is shown. In (b), the bioreactor was placed inside the water bath. The study system held the
cell-seeded microfilament scaffold on a vertical position. An augmentation of the bioreactor
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is shown in (c), where the mobile grip with the microfilament scaffold is appreciated.
Figure 6d shows the static adapter in the petri dish. This scaffold remained in a horizontal
position in a cell incubator throughout the tests.

(a) (b)

@

Figure 6. (a) Closed bioreactor with input and output circulation hose; (b) in-vitro study system;
() scaffold in the mobile grip inside the bioreactor; (d) static grip with the scaffold.

3.2. Cell Viability Results on the Microfilament Scaffolds
Cell proliferation was assessed as the viability percentage (%) shown in Equation (1).

RFUscaffolds

viability (%) = RFUy,; ! 1)

RFUscaffolds were the fluorescent units of the scaffold at different times and RFU»4 1,
were the control fluorescent units. Viability indicated cells proliferated in the scaffold
inside both environments (see Figure 7). For test A1 (24 h, see Table 1), control sample had
(100 £ 24)% and (129 £ 71)% in mobile grip. At 48 h, test A2, cell viability of both scaffolds
decreased slightly. The change in cell proliferation was attributed to an adjustment of cells
to their new environment. At 72 h, test A3 (Table 1), cell viability of the mobile grip scaffold
was (276 £ 149)% and the control sample had (295 £ 147)%. Finally, at 96 h, test A4, cell
growth increased further. The mobile grip scaffold reached (394 & 146)%, and viability was
(456 + 59)% in the control scaffold.

Cell growth on both scaffolds showed the regular proliferation rate of C2C12 cells [44].
Cell viability from the mobile grip and control grip were contrasted and results showed
control scaffold had slightly higher viability through the assay; however, there were no
significant statistical differences between the two, for 24 h, p = 0.987; for 48 h, p = 0.402; for
72h,p =0.624; and for 96 h, p = 0.103.
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600 — W Scaffolds in mobile grip
| Scaffold in control
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300+
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Cell viability (%)

Cultivation time (h)

Figure 7. Viability of cells seeded on the collagen-coated PCL scaffolds.

As seen in Figure 6¢, the mobile grip held the microfilaments vertically aligned inside
the system. Results from this test showed that the variation in scaffold orientation did
not have a negative effect on cell growth, as there was not a significant change in cell
proliferation. For test A3 and A4 (see Table 1), cells grew in both scaffolds with the same
growth tendency. Therefore, cell proliferation was independent of the orientation of the
microfilament scaffolds. They could be placed in a horizontal position (control scaffold)
or in a vertical position (mobile grip scaffold) and cells would colonize and reproduce on
the scaffold.

3.3. Cell Morphology on the Scaffolds

DAPI/phalloidin staining confirmed presence of cells on the microfilaments. This
procedure was used to contrast whether there was a difference between cell morphology
on the microfilaments in the grip system and that of the control microfilament sample.
Besides, the visualization of the cells on the scaffold could be used to verify the results of
the viability assay.

Figure 8a shows the fluorescence micrograph of cells grown on the microfilaments
located at the mobile grips, while Figure 8b shows cells on the control scaffold. Both micro-
graphs demonstrated presence of cells. Complete nuclei were distinguished as round blue
circles on the surface of a microfilament. The estimated nuclei count in Figure 8a,b was 150
and 110, respectively. A white arrow inside the figure indicates where the microfilaments’
limits are. This result confirmed that cells remained attached to and distributed on the
surface of the scaffolds. Some cells stretched across the microfilaments, making a slight
connection between the microfilaments.

microfilament

Figure 8. (a) Scaffold inside the in-vitro study system without mechanical stimulation and (b) control
scaffold inside the incubator. Fluorescence micrographs used 20 x. Actin filaments of the cytoskeleton
are green, and nuclei are blue.
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3.4. Cell Morphology of the Biomechanically Stimulated Scaffolds

Figure 9a shows the fluorescence micrographs after 24 h mechanical stimulation of a
sample scaffold, and (b) shows the control scaffold. Cell nuclei were 20 in Figure 9a and
82 in Figure 9b. Results confirmed cells remained attached to the scaffold through the
loading procedure. Further studies should be conducted to study mechanical stimulation
parameters in order to find the best possible outcome for cells.

microfilament

(@)

Figure 9. (a) Microfilament after 24 h of mechanical stimulation and (b) microfilament without

mechanical stimulation. Both micrographs were taken at 20 x where actin filaments of the cytoskeleton
are visible in green, and nuclei are visible in blue.

4. Discussion

This work used PCL as raw material for scaffold fabrication because it is biocompatible,
has appropriate mechanical properties, and is susceptible to be molded into different
shapes [15,17]. Cylindrical, long structures, namely the microfilaments, were chosen as
they imitated the myofibers that compose native skeletal muscles. Scaffolds for tissue
engineering applications have similar mechanical, physical, and biological properties to
those of native tissue [10,11]. These were fabricated by extrusion using a solvent-free
method that reduced costs and kept PCL intrinsic properties, as it reduced addition of
cell-toxic substances [41].

Microfilaments were arranged as three-dimensional scaffolds on the grip system. This
structure replicated the spatial organization of skeletal muscle by organizing the scaffold
as parallelly grouped microfilaments [45]. In addition, the scaffold arrangement allowed
similar culture conditions to those to in-vivo conditions [29,46]. The fabrication method,
in conjunction with the microfilament organization in the grips, allowed this scaffold to
benefit from the intrinsic properties of PCL and benefit from using a 3D scaffold. In contrast,
PCL is often produced by electrospinning to produce 2D meshes [23,26,29,47].

The grips were designed to hold the microfilaments as a bundle or aggregate of
microfilaments and, therefore, utilize their mechanical properties as a group. This was an
important attribute, since skeletal muscular tissue, in nature, reacts to force as an aggregate.
The mechanical properties of skeletal muscle are the result of grouped fiber behavior.
Therefore, these properties cannot be inferred from individual fibers [13,48].

The mobile grip system and the static grips allowed to immobilize the scaffold for
surface coating. Since collagen can directly influence cell adhesion, growth, and prolifera-
tion, it was applied as a coating to the PCL scaffold to enhance its physicochemical and
biological properties [29,32,49]. C2C12 cells bind to the tripeptide Arg-Gly-Asp present
in collagen, increasing PCL bioactivity [50]. Cell seeding was made on the immobilized
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scaffold as myoblasts are anchorage-dependent cells; therefore, they require an adequate
surface to begin their growth and proliferate [51].

Viability measurements showed PCL microfilaments comprised a suitable scaffold
for cell proliferation, since, throughout the study, cell viability increased (see Figure 7). In
addition, the collagen-coated microfilament scaffold confirmed its ability to support cell
adhesion and its function as a colonization surface. This was also confirmed with the actin
from cell cytoskeleton that was visible directly following the surface of the microfilament,
and several scattered nuclei are appreciated on the scaffold in Figure 8. The surface area
covered by the nuclei was estimated as a density; nuclei number per microfilament area
yielded 13% and 21% in the in-vitro system and control scaffold, respectively. These results
confirmed that the biomechanical study system complied with the characteristics that
bioreactors require for three-dimensional in-vitro cell culture. Bioreactors provide the
optimal environment for cell growth phases, as they provide different conditions for tissue
or cells. For instance, Frleta et at. [52] proved that cultivation of diatoms in a controlled
bioreactor progressed faster than in an Erlenmeyer flask. In our study, both cell cultures
grew in a similar way.

As a result, the system provided suitable conditions for cell survival, growth, and
proliferation. The main advantage was the possibility to simulate and modify in-vivo cell
growth conditions. For this study, conditions were kept as C2C12 cells required; however,
the system allowed for higher or lower CO, % concentration tests to be performed. Also,
the system provided a temperature range for cell growth testing. Bioreactors in tissue
engineering have proved essential for the development of three-dimensional cell cultures—
the chosen conditions depend on the requirements of the investigated tissue [35,36,53].

Mechanical stimulation applied to cells grown on scaffolds has proven to be effective
in the fabrication of skeletal muscle tissue engineering structures [1,54,55]. Several loading
patterns have been tested in the literature to increase cell proliferation, promote cell differ-
entiation, and cell orientation along the longitudinal axis of the scaffold [2,6,45,56-58]. In
this study, a simple loading pattern was used to assess whether cells remained attached to
the scaffold after 24 h. This test was carried out to probe the functionality of the bioreactor;
however, the designed system is capable of performing more complex analysis. Results
show cells on the surface of the filament. Their morphology seemed extended, mononu-
cleated, and flat, indicating that they were healthy (see Figure 9). The nuclei number
per microfilament area was 9% for the mechanically stimulated scaffold and 28% for the
control scaffold. This test showed very promising results, as it confirmed that the biome-
chanical stimulation system was able to provide an in-vitro environment for inoculated
microfilament scaffold.

Mechanical stimulation directs cell physiological changes more quickly than those pre-
sented by growth factors; therefore, future research will use different stimulation patterns
on the microfilaments. Stimulation patterns include variables such as frequency, intensity,
force, and loading time [59]. For example, low stimulation frequencies can induce differen-
tiation, while very strong stimuli can fatally damage cells [60]. In addition, future studies
may include evaluation of the biological state of the cell by studying actin cytoskeleton and
its associated proteins [38].

5. Conclusions

This study demonstrated that the collagen-coated PCL microfilament scaffold provided
a suitable template for adhesion and proliferation of C2C12 cells. Cells were uniformly
distributed along the surface of the microfilaments. The scaffold had a biocompatible
surface that facilitated cellular recognition and, consequently, cellular adhesion. Also,
scaffold had a 3D configuration that resembled skeletal muscle, properly mimicking its
biological structure. The biomechanical stimulation system was proved to work as an
in-vitro test cell growth, indicating that it provided suitable environmental conditions
such as the required temperature and CO,. These characteristics ensured the survival,
growth, and proliferation of the myoblasts on the scaffolds. Overall, the tissue-engineered
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PCL-based scaffold was found to be a promising model for the study of skeletal muscle and
the study system proved promising as a bioreactor for mechanical stimulation of scaffolds.

6. Patents

A patent for the biomechanical stimulation system is currently under evaluation. No
278368 (IN2021563599), with classification C12N 58, A6L 27/38.
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