Centrifugally Spun PVA/PVP Based B, N, F Doped Carbon Nanofiber Electrodes for Sodium Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Optimization for PVA Nanofibers
3.2. PVA/PVP Nanofibers with Different PVP Ratios
3.3. Carbonization of PVA/PVP Nanofibers
3.4. Structural and Electrochemical Characterization of Centrifugally Spun B, N, F-Doped Carbon Nanofibers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirican, M.; Yanilmaz, M.; Fu, K.; Lu, Y.; Kizil, H.; Zhang, X. Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries. J. Power Sources 2014, 264, 240–247. [Google Scholar] [CrossRef]
- Yoshio, M.; Brodd, R.J.; Kozawa, A. Lithium-Ion Batteries; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1. [Google Scholar]
- Perveen, T.; Siddiq, M.; Shahzad, N.; Ihsan, R.; Ahmad, A.; Shahzad, M.I. Prospects in anode materials for sodium ion batteries—A review. Renew. Sustain. Energy Rev. 2020, 119, 109549. [Google Scholar] [CrossRef]
- Kalathil, S.; Patil, S.A.; Pant, D. Microbial Fuel Cells: Electrode Materials. In Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier: Oxford, UK, 2018; pp. 309–318. [Google Scholar]
- Abbas, S.; Iftikhar, M.; Ur-Rehman, A. Carbon Anodes for Sodium-Ion Batteries; Materials Research Forum: Millersville, PA, USA, 2020. [Google Scholar]
- Yue, L.; Zhao, H.; Wu, Z.; Liang, J.; Lu, S.; Chen, G.; Gao, S.; Zhong, B.; Guo, X.; Sun, X. Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. J. Mater. Chem. A 2020, 8, 11493–11510. [Google Scholar] [CrossRef]
- Faccini, M.; Borja, G.; Boerrigter, M.; Martín, D.M.; Crespiera, S.M.; Vázquez-Campos, S.; Aubouy, L.; Amantia, D. Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J. Nanomater. 2015, 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Min, X.; Wu, X.; Wang, H.; Liu, J.; Zhang, Z.; Huang, Z.; Liu, Y.-G.; Fang, M. Microstructure and electrochemical properties of polyacrylonitrile-based carbon micro- and nanofibers fabricated by centrifugal spinning. Chem. Phys. Lett. 2017, 684, 14–19. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Zhang, S.; Xu, G.; Fu, K.; Lee, H.; Zhang, X. Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur. Polym. J. 2013, 49, 3834–3845. [Google Scholar] [CrossRef]
- Lu, Y.; Yanilmaz, M.; Chen, C.; Dirican, M.; Ge, Y.; Zhu, J.; Zhang, X. Centrifugally spun SnO2 microfibers composed of interconnected nanoparticles as the anode in sodium-ion batteries. ChemElectroChem 2015, 2, 1947–1956. [Google Scholar] [CrossRef]
- Atıcı, B.; Ünlü, C.H.; Yanilmaz, M. A Review on Centrifugally Spun Fibers and Their Applications. Polym. Rev. 2022, 62, 1–64. [Google Scholar] [CrossRef]
- Atıcı, B.; Ünlü, C.H.; Yanilmaz, M. A statistical analysis on the influence of process and solution properties on centrifugally spun nanofiber morphology. J. Ind. Text. 2021, 51, 613S–639S. [Google Scholar] [CrossRef]
- Yanilmaz, M.; Asiri, A.M.; Zhang, X. Centrifugally spun porous carbon microfibers as interlayer for Li–S batteries. J. Mater. Sci. 2020, 55, 3538–3548. [Google Scholar] [CrossRef]
- Abdolrazzaghian, E.; Zhu, J.; Kim, J.; Yanilmaz, M. MoS2-Decorated Graphene@porous Carbon Nanofiber Anodes via Centrifugal Spinning. Nanomaterials 2022, 12, 2505. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Fu, K.; Zhu, J.; Chen, C.; Yanilmaz, M.; Dirican, M.; Ge, Y.; Jiang, H.; Zhang, X. Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition. J. Mater. Sci. 2016, 51, 4549–4558. [Google Scholar] [CrossRef]
- Lu, Y.; Yanilmaz, M.; Chen, C.; Ge, Y.; Dirican, M.; Zhu, J.; Li, Y.; Zhang, X. Lithium-substituted sodium layered transition metal oxide fibers as cathodes for sodium-ion batteries. Energy Storage Mater. 2015, 1, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Sada, K.; Kokado, K.; Furukawa, Y. Polyacrylonitrile (PAN). In Encyclopedia of Polymeric Nanomaterials; Kobayashi, S., Müllen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1745–1750. [Google Scholar]
- Lu, Y.; Fu, K.; Zhang, S.; Li, Y.; Chen, C.; Zhu, J.; Yanilmaz, M.; Dirican, M.; Zhang, X. Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. J. Power Sources 2015, 273, 502–510. [Google Scholar] [CrossRef]
- Flores, D.; Villarreal, J.; Lopez, J.; Alcoutlabi, M. Production of carbon fibers through Forcespinning® for use as anode materials in sodium ion batteries. Mater. Sci. Eng. B 2018, 236, 70–75. [Google Scholar] [CrossRef]
- Al Rai, A.; Yanilmaz, M. High-performance nanostructured bio-based carbon electrodes for energy storage applications. Cellulose 2021, 28, 5169–5218. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.H.; Mohamad, A.B.; Al-Amiery, A.A. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef] [Green Version]
- Patra, N.; Salerno, M.; Cernik, M. 22-Electrospun polyvinyl alcohol/pectin composite nanofibers. In Electrospun Nanofibers; Afshari, M., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 599–608. [Google Scholar]
- Fatema, U.; Uddin, A.J.; Uemura, K.; Gotoh, Y. Fabrication of carbon fibers from electrospun poly(vinyl alcohol) nanofibers. Text. Res. J. 2011, 81, 659–672. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Feng, H.-M.; Wang, J.-P.; Yu, H.-Q. Structure evolution and optimization in the fabrication of PVA-based activated carbon fibers. J. Colloid Interface Sci. 2008, 321, 96–102. [Google Scholar] [CrossRef]
- Hiremath, P.; Nuguru, K.; Agrahari, V. Chapter 8-Material Attributes and Their Impact on Wet Granulation Process Performance. In Handbook of Pharmaceutical Wet Granulation; Narang, A.S., Badawy, S.I.F., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 263–315. [Google Scholar]
- Teodorescu, M.; Bercea, M. Poly(vinylpyrrolidone)–A Versatile Polymer for Biomedical and Beyond Medical Applications. Polym.-Plast. Technol. Eng. 2015, 54, 923–943. [Google Scholar] [CrossRef]
- Nie, G.; Zhao, X.; Luan, Y.; Jiang, J.; Kou, Z.; Wang, J. Key issues facing electrospun carbon nanofibers in energy applications: On-going approaches and challenges. Nanoscale 2020, 12, 13225–13248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, Y.; Zhu, J.; Kou, Z.; Hu, P.; Liu, L.; Li, S.; Mu, S.; Huang, Y. Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 2018, 52, 307–314. [Google Scholar] [CrossRef]
- Yanilmaz, M.; Zhang, X. Polymethylmethacrylate/polyacrylonitrile membranes via centrifugal spinning as separator in Li-ion batteries. Polymers 2015, 7, 629–643. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Sun, J. Research on the development of the centrifugal spinning. MATEC Web Conf. 2017, 95, 07003. [Google Scholar] [CrossRef] [Green Version]
- Alipour, R.; Khorshidi, A.; Shojaei, A.F.; Mashayekhi, F.; Moghaddam, M.J.M. Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers. Polym. Test. 2019, 79, 106022. [Google Scholar] [CrossRef]
- Yaseen, M.; Ammara, O.; Ahmad, W.; Shakir, M.; Subhan, S.; Subhan, F.; Khan, K.; Iqbal, M.S. Preparation of titanium carbide reinforced polymer based composite nanofibers for enhanced humidity sensing. Sens. Actuators A Phys. 2021, 332, 113201. [Google Scholar] [CrossRef]
- Wen, P.; Hu, T.-G.; Wen, Y.; Li, K.-E.; Qiu, W.-P.; He, Z.-L.; Wang, H.; Wu, H. Development of Nervilia fordii extract-loaded electrospun pva/pvp nanocomposite for antioxidant packaging. Foods 2021, 10, 1728. [Google Scholar] [CrossRef]
- Bandatang, N.; Pongsomboon, S.-a.; Jumpapaeng, P.; Suwanakood, P.; Saengsuwan, S. Antimicrobial electrospun nanofiber mats of naoh-hydrolyzed chitosan (HCS)/PVP/PVA incorporated with in-situ synthesized agnps: Fabrication, characterization, and antibacterial activity. Int. J. Biol. Macromol. 2021, 190, 585–600. [Google Scholar] [CrossRef]
- Sakurai, K.; Maegawa, T.; Takahashi, T. Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 2000, 41, 7051–7056. [Google Scholar] [CrossRef]
- Feldstein, M.M.; Roos, A.; Chevallier, C.; Creton, C.; Dormidontova, E.E. Relation of glass transition temperature to the hydrogen bonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers: 3. Analysis of two glass transition temperatures featured for PVP solutions in liquid poly(ethylene glycol). Polymer 2003, 44, 1819–1834. [Google Scholar]
- Ed, D.R.L. Handbook of Water Soluble Gums and Resins; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Abd El-kader, M.; Abu-Abdeen, M. Thermal and mechanical studies of PVP/2-HEC blend films. Aust. J. Basic Appl. Sci. 2012, 6, 454–462. [Google Scholar]
- Abdullah@Shukry, N.A.; Ahmad Sekak, K.; Ahmad, M.R.; Effendi, T.J.B. Characteristics of Electrospun PVA-Aloe vera Nanofibres Produced via Electrospinning. In Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014), Singapore, 13 October 2014; Ahmad, M.R., Yahya, M.F., Eds.; Springer: Singapore, 2014; pp. 7–11. [Google Scholar]
- Mano, V.; Ribeiro E Silva, M.E.S.; Barbani, N.; Giusti, P. Binary blends based on poly(N-isopropylacrylamide): Miscibility studies with PVA, PVP, and PAA. J. Appl. Polym. Sci. 2004, 92, 743–748. [Google Scholar] [CrossRef]
- Attia, G.; Abd El-kader, M. Structural, optical and thermal characterization of PVA/2HEC polyblend films. Int. J. Electrochem. Sci. 2013, 8, 5672–5687. [Google Scholar]
- Saroj, A.L.; Krishnamoorthi, S.; Singh, R.K. Structural, thermal and electrical transport behaviour of polymer electrolytes based on PVA and imidazolium based ionic liquid. J. Non-Cryst. Solids 2017, 473, 87–95. [Google Scholar] [CrossRef]
- Yang, J.M.; Su, W.Y.; Leu, T.L.; Yang, M.C. Evaluation of chitosan/PVA blended hydrogel membranes. J. Membr. Sci. 2004, 236, 39–51. [Google Scholar] [CrossRef]
- Seok, J.Y.; Song, S.A.; Yang, I.; Woo, K.; Park, S.Y.; Park, J.H.; Kim, S.; Kim, S.S.; Yang, M. Hierarchically Porous Carbon Nanofibers with Controllable Porosity Derived from Iodinated Polyvinyl Alcohol for Supercapacitors. Adv. Mater. Interfaces 2020, 7, 2000513. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Yu, H.-Q.; Feng, H.-M. PVA-based activated carbon fibers with lotus root-like axially porous structure. Carbon 2006, 44, 2059–2068. [Google Scholar] [CrossRef]
- Salleh, W.N.W.; Ismail, A.F. Effect of Stabilization Condition on PEI/PVP-Based Carbon Hollow Fiber Membranes Properties. Sep. Sci. Technol. 2013, 48, 1030–1039. [Google Scholar] [CrossRef]
- Ju, J.; Kang, W.; Deng, N.; Li, L.; Zhao, Y.; Ma, X.; Fan, L.; Cheng, B. Preparation and characterization of PVA-based carbon nanofibers with honeycomb-like porous structure via electro-blown spinning method. Microporous Mesoporous Mater. 2017, 239, 416–425. [Google Scholar] [CrossRef]
- Cai, J.; Li, W.; Zhao, P.; Yu, J.; Yang, Z. Low-cost and high-performance electrospun carbon nanofiber film anodes. Int. J. Electrochem. Sci. 2018, 13, 2934–2944. [Google Scholar] [CrossRef]
- Peniche, C.; Zaldívar, D.; Pazos, M.; Páz, S.; Bulay, A.; Román, J.S. Study of the thermal degradation of poly(N-vinyl-2-pyrrolidone) by thermogravimetry–FTIR. J. Appl. Polym. Sci. 1993, 50, 485–493. [Google Scholar] [CrossRef]
- Loría-Bastarrachea, M.I.; Herrera-Kao, W.; Cauich-Rodríguez, J.V.; Cervantes-Uc, J.M.; Vázquez-Torres, H.; Ávila-Ortega, A. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J. Therm. Anal. Calorim. 2011, 104, 737–742. [Google Scholar] [CrossRef]
- Chai, S.; Zan, G.; Dong, K.; Wu, T.; Wu, Q. Approaching Superfoldable Thickness-Limit Carbon Nanofiber Membranes Transformed from Water-Soluble PVA. Nano Lett. 2021, 21, 8831–8838. [Google Scholar] [CrossRef] [PubMed]
- Yuniar, R.A.; Widiyastuti, W.; Setyawan, H.; Purwaningsih, H.; Machmudah, S.; Anggoro, D. Formation of Carbon Fibres From Polymer Poly(vinyl alcohol)/Acetylene Black using Electrospinning Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 543, 012030. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhang, D.; Ma, F.; Ou, Y.; Chen, Q.N.; Xie, S.; Li, J. Mesoporous carbon nanofibers with a high surface area electrospun from thermoplastic polyvinylpyrrolidone. Nanoscale 2012, 4, 7199–7204. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Chung, T.-S.; Pramoda, K.P. The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon. Microporous Mesoporous Mater. 2005, 84, 59–68. [Google Scholar] [CrossRef]
- Haichao, L.; Li, H.; Bubakir, M.M.; Yang, W.; Barhoum, A. Engineering Nanofibers as Electrode and Membrane Materials for Batteries, Supercapacitors, and Fuel Cells. In Handbook of Nanofibers; Barhoum, A., Bechelany, M., Makhlouf, A.S.H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1105–1130. [Google Scholar]
- Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, Y.; Song, X.; Long, J.; Wang, S.; Ding, L.-X.; Wang, H. Heteroatom doping and activation of carbon nanofibers enabling ultrafast and stable sodium storage. Electrochim. Acta 2018, 276, 304–310. [Google Scholar] [CrossRef]
- Chen, L.-F.; Huang, Z.-H.; Liang, H.-W.; Gao, H.-L.; Yu, S.-H. Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors. Adv. Funct. Mater. 2014, 24, 5104–5111. [Google Scholar] [CrossRef]
- Hao, R.; Lan, H.; Kuang, C.; Wang, H.; Guo, L. Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 2018, 128, 224–230. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, X.; Liang, Z.; Wang, C.; Sui, Y.; Zheng, B.; Ye, Y.; Ma, W.; Zhao, Q.; Qin, C. B/P/N/O co-doped hierarchical porous carbon nanofiber self-standing film with high volumetric and gravimetric capacitance performances for aqueous supercapacitors. Electrochim. Acta 2020, 337, 135800. [Google Scholar] [CrossRef]
- Wang, Y.; Gan, R.; Zhao, S.; Ma, W.; Zhang, X.; Song, Y.; Ma, C.; Shi, J. B, N, F tri-doped lignin-derived carbon nanofibers as an efficient metal-free bifunctional electrocatalyst for ORR and OER in rechargeable liquid/solid-state Zn-air batteries. Appl. Surf. Sci. 2022, 598, 153891. [Google Scholar] [CrossRef]
- Cao, L.; Zhou, X.; Li, Z.; Su, K.; Cheng, B. Nitrogen and fluorine hybridization state tuning in hierarchical honeycomb-like carbon nanofibers for optimized electrocatalytic ORR in alkaline and acidic electrolytes. J. Power Sources 2019, 413, 376–383. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, C.; Zhou, M.; Fu, Q.; Zhao, C.; Wu, M.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Li, Z.; Cui, K.; Boyer, S.; Karpuzov, D.; Mitlin, D. Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy 2016, 23, 129–137. [Google Scholar] [CrossRef]
- Sun, K.; Yang, Q.; Zheng, Y.; Zhao, G.; Zhu, Y.; Zheng, X.; Ma, G. High performance symmetric supercapacitor based on sunflower marrow carbon electrode material. Int. J. Electrochem. Sci. 2017, 12, 2606–2617. [Google Scholar]
- Jian, Z.; Luo, W.; Ji, X. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569. [Google Scholar] [CrossRef]
- Liang, J.; Zhao, J.; Li, Y.; Lee, K.-T.; Liu, C.; Lin, H.; Cheng, Q.; Lan, Q.; Wu, L.; Tang, S. In situ SiO2 etching strategy to prepare rice husk-derived porous carbons for supercapacitor application. J. Taiwan Inst. Chem. Eng. 2017, 81, 383–390. [Google Scholar] [CrossRef]
- Lota, G.; Fic, K.; Frackowiak, E. Carbon nanotubes and their composites in electrochemical applications. Energy Environ. Sci. 2011, 4, 1592–1605. [Google Scholar] [CrossRef]
- Hulicova-Jurcakova, D.; Seredych, M.; Lu, G.Q.; Bandosz, T.J. Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors. Adv. Funct. Mater. 2009, 19, 438–447. [Google Scholar] [CrossRef]
- Chen, W.; Wan, M.; Liu, Q.; Xiong, X.; Yu, F.; Huang, Y. Heteroatom-Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodium-Ion Batteries. Small Methods 2019, 3, 1800323. [Google Scholar] [CrossRef]
- Yu, M.; Yin, Z.; Yan, G.; Wang, Z.; Guo, H.; Li, G.; Liu, Y.; Li, L.; Wang, J. Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-Doped mesoporous carbon nanofiber. J. Power Sources 2020, 449, 227514. [Google Scholar] [CrossRef]
- Lin, Y.; Qiu, Z.; Li, D.; Ullah, S.; Hai, Y.; Xin, H.; Liao, W.; Yang, B.; Fan, H.; Xu, J. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 2018, 11, 67–74. [Google Scholar] [CrossRef]
- Wu, C.; Shen, L.; Chen, S.; Jiang, Y.; Kopold, P.; van Aken, P.A.; Maier, J.; Yu, Y. Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage. Energy Storage Mater. 2018, 10, 122–129. [Google Scholar] [CrossRef]
- Meng, Y.; Li, Y.; Xia, J.; Hu, Q.; Ke, X.; Ren, G.; Zhu, F. F-doped LiFePO@N/B/F-doped carbon as high performance cathode materials for Li-ion batteries. Appl. Surf. Sci. 2019, 476, 761–768. [Google Scholar] [CrossRef]
- Yi, M.; Li, N.; Lu, B.; Li, L.; Zhu, Z.; Zhang, J. Single-atom Pt decorated in heteroatom (N, B, and F)-doped ReS2 Grown on Mo2CTx for efficient pH-universal hydrogen evolution reaction and flexible Zn–air batteries. Energy Storage Mater. 2021, 42, 418–429. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, L.; Wei, X.; Long, Z.; Guo, X.; Qiu, X. One-Pot Synthesis of Novel B, N Co–Doped Carbon Materials for High-Performance Sodium-Ion Batteries. ChemistrySelect 2019, 4, 6445–6450. [Google Scholar] [CrossRef]
- Chen, X.; Liu, H.; Zhou, M.; Fang, G.; Zhang, H.; Cai, Z.; Zhao, X.; Xiao, L.; Liu, S.; Zhang, Y. Construting sTable 2 × 2 tunnel-structured K1.28Ti8O16@N-doped carbon nanofibers for ultralong cycling sodium-ion batteries. Electrochim. Acta 2022, 401, 139522. [Google Scholar] [CrossRef]
- Ruan, B.; Wang, J.; Shi, D.; Xu, Y.; Chou, S.; Liu, H.; Wang, J. A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 19011–19017. [Google Scholar] [CrossRef]
- Yan, X.; Liang, S.; Shi, H.; Hu, Y.; Liu, L.; Xu, Z. Nitrogen-enriched carbon nanofibers with tunable semi-ionic CF bonds as a stable long cycle anode for sodium-ion batteries. J. Colloid Interface Sci. 2021, 583, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, L.; Lu, L.; Fan, M.; Yuan, F.; Sun, B.; Qian, J.; Hao, Q.; Sun, D. Preparation of bacterial cellulose based nitrogen-doped carbon nanofibers and their applications in the oxygen reduction reaction and sodium–ion battery. New J. Chem. 2018, 42, 7407–7415. [Google Scholar] [CrossRef]
PVA/PVP | Viscosity | Surface Tension (mN/m) | Average Fiber Diameter (nm) |
---|---|---|---|
100/0 | 395 | 44 | 690 |
75/25 | 361 | 41 | 738 |
50/50 | 306 | 33 | 747 |
25/50 | 254 | 28 | 1093 |
0/100 | 104 | 27 | 2286 |
Nanofiber | Stabilization | Heating Rate for Stabilization (°C/min) | Carbonization | Heating Rate for Carbonization (°C/min) | Carbon Yield, % |
---|---|---|---|---|---|
PVA/PVP-1 | 24 h stabilization at 150 °C, 6 h stabilization at 280 °C | 5 | carbonization at 800 °C for 2 h | 2 | 6.02 |
PVA/PVP-2 | No stabilization | - | carbonization at 650 °C for 2 h | 2 | 11.61 |
PVA/PVP-3 | 24 h stabilization at 150 °C, 6 h stabilization at 280 °C | 5 | Carbonization at 650 °C for 2 h | 2 | 19.69 |
PVA/PVP-4 | Stabilization in air at 280 °C for 6 h | 5 | Carbonization at 650 °C for 2 h | 2 | 19.00 |
PVA/PVP-5 | Stabilization in air at 150 °C for 24 h | 5 | Carbonization at 650 °C for 120 min | 2 | 15.93 |
PVA/PVP-6 | 2 h stabilization at 150 °C, 2.5 h stabilization at 280 °C | 5 | Carbonization at 650 °C for 2 h | 2 | 5.80 |
PVA/PVP-7 | Stabilization at 280 °C for 2.5 h | 5 | Carbonization at 800 °C for 2 h | 2 | 4.78 |
PVA/PVP-8 | 20 °C to 50 °C, 120 min | 1 | 20 °C to 50 °C, 1 h | 1 | 27.16 |
50 °C to 150 °C, 16 h | 0.5 | 50 °C to 220 °C, 1 h | 1 | ||
220 °C to 250 °C, 1 h | 0.5 | ||||
150 °C to 220 °C, 8 h | 0.5 | 250 °C to 800 °C, 2 h | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanilmaz, M.; Abdolrazzaghian, E.; Chen, L.; Kim, J.; Kim, J.J. Centrifugally Spun PVA/PVP Based B, N, F Doped Carbon Nanofiber Electrodes for Sodium Ion Batteries. Polymers 2022, 14, 5541. https://doi.org/10.3390/polym14245541
Yanilmaz M, Abdolrazzaghian E, Chen L, Kim J, Kim JJ. Centrifugally Spun PVA/PVP Based B, N, F Doped Carbon Nanofiber Electrodes for Sodium Ion Batteries. Polymers. 2022; 14(24):5541. https://doi.org/10.3390/polym14245541
Chicago/Turabian StyleYanilmaz, Meltem, Elham Abdolrazzaghian, Lei Chen, Juran Kim, and Jung Joong Kim. 2022. "Centrifugally Spun PVA/PVP Based B, N, F Doped Carbon Nanofiber Electrodes for Sodium Ion Batteries" Polymers 14, no. 24: 5541. https://doi.org/10.3390/polym14245541
APA StyleYanilmaz, M., Abdolrazzaghian, E., Chen, L., Kim, J., & Kim, J. J. (2022). Centrifugally Spun PVA/PVP Based B, N, F Doped Carbon Nanofiber Electrodes for Sodium Ion Batteries. Polymers, 14(24), 5541. https://doi.org/10.3390/polym14245541