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Abstract: Highly reliable and accurate melt temperature measurements in the barrel are necessary for
stable injection molding. Conventional sheath-type thermocouples are insufficiently responsive for
measuring melt temperatures during molding. Herein, machine learning models were built to predict
the melt temperature after plasticizing. To supply reliably labeled melt temperatures to the models,
an optimized temperature sensor was developed. Based on measured high-quality temperature data,
three machine learning models were built. The first model accepted process setting parameters as
inputs and was built for comparisons with previous models. The second model accepted additional
measured process parameters related to material energy flow during plasticizing. Finally, the third
model included the specific heat and part weights reflecting the material energy, in addition to the
features of the second model. Thus, the third model outperformed the others, and its loss decreased
by more than 70%. Meanwhile, the coefficient of determination increased by about 0.5 more than
those of the first model. To reduce the dataset size for new materials, a transfer learning model
was built using the third model, which showed a high prediction performance and reliability with
a smaller dataset. Additionally, the reliability of the input features to the machine learning models
were evaluated by shapley additive explanations (SHAP) analysis.

Keywords: injection molding; melt temperature; temperature sensor; machine learning; melt temper-
ature estimation

1. Introduction

Injection molding technology is one of the mass-production manufacturing technolo-
gies for plastic-based materials, in which producers are required to achieve high product
quality while maintaining a high level of reproducibility. The main process variables that
affect product quality and reproducibility are the filling speed, packing pressure and time,
cooling conditions, and melt temperature. Among these, melt temperature is an important
factor that is deeply related to the rheological properties, especially viscosity [1]. It is often
assumed that the melt temperature is similar to the barrel heater temperature, which is
maintained at a constant value during the mold cycle. This assumption is used even in
commercial injection molding computer-aided engineering (CAE) programs [2,3], wherein
the melt temperature is commonly input as a constant value.

However, it has been reported that the temperature of the melt injected into a mold
shows deviations from the barrel temperature and varies during an injection cycle. Amano
and Utsugi measured the melt temperature in the barrel chamber and reported the quali-
tative relationships among the melt temperature and major plasticizing conditions, such
as the rotational speed of the screw, the barrel temperature, and the back pressure [4,5].
In particular, the phenomenon and cause of melt temperature fluctuations during the
injection cycle were investigated. Isayev and Hosaki measured the melt temperatures at
various locations in the mold using thermocouples, from the filling to the ejection stages,
to investigate melt temperature behaviors in the rubber molding process [6]. Although
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temperature measurements in the mold are advantageous for analyzing the melt tem-
perature behaviors in the mold, they are not appropriate for quantifying the effects of
the plasticizing conditions on the melt temperature, because the measured temperatures
include the effects of the increase by compression and heat transfer to the mold. Jeon
et al. measured the melt temperature profile using a relatively sensitive thermocouple
sensor installed in the nozzle [7]; they reported that the melt temperature reacted to the
plasticizing conditions, such as the screw rotational speed, and showed a large difference
from the barrel temperature. Specifically, the melt temperature showed a large fluctuation
of more than 25 ◦C under a specific condition. Numerical studies on the melt temperature
have also been reported. Straka et al. developed a computational fluid dynamics model to
explain the plasticizing process in the barrel [8]; they studied the thermal homogeneity of
the melt from the calculated pressure and found that the melt temperature varied along the
screw in a similar pattern to the results reported in the experimental study.

The misconceptions regarding the melt temperature may cause discrepancies between
the designed and production results based on factors in the filling stage, such as melt
viscosity, heat transfer to the mold, solidified layer formation, shear heating, and filling
pattern; further, critical problems may also be caused in the production of precise prod-
ucts [9]. Zhou and Mallick reported that the melt temperature affected the orientations of
anisotropic materials, which caused yield stress and fatigue strength of the products [10].
Wu and Liang reported that the melt temperature is related to the formation and size of the
weldline [11]. Kamal et al. noted the melt temperature and pressure as the most important
factors influencing the part weights and their corresponding built part weight prediction
models [12]. Dubay et al. introduced a model predictive control approach to improve
the melt quality by reducing the difference between the setting and the actual values [13].
According to previous research, it is necessary to comprehend the melt temperature to
ensure a successful injection molding technology, because uncertainties regarding the melt
temperature indicate uncertainties with respect to the part quality.

It is difficult to measure the temperature of the melt injected into a mold during the
molding cycle. Polymeric materials have low thermal conductivities, so the temperature
gradients of the materials are large. Further, these materials generate high shear stress
in the flow owing to the high viscosity. The temperature sensors for the melt should
endure temperatures of up to 300 ◦C and pressures of up to 100 MPa [14]. There are
various available temperature sensors, such as thermocouples, thermistors, infrared sensors,
and ultrasonic sensors. Among these, thermocouples are widely used owing to their
low cost, wide temperature ranges, and short response times. Amano and Utsugi, who
reported variations in the melt temperature, used a sheath-type thermocouple sensor in
their experiments [4,5]. The sheath-type thermocouple is enclosed in a metallic protection
tube, which protects the sensor from drift due to oxidation and low durability. However,
the high thermal capacity of the sensor module, including the metallic tube, increases the
response time. To enhance the response capabilities, thermocouples without the protection
tube are often used. Sombatsompop et al. measured the radial temperature distribution in
the nozzle with a thermocouple mesh [15]. Debey et al. designed film-type thermocouple
sensors attached to thin plates to precisely measure the melt temperature behaviors in the
mold [16].

Another method of obtaining fast measurement responses involves the use of infrared
temperature sensors. Dontula et al. measured the melt temperature through an infrared
sensor installed in the nozzle [17]; they reported that the melt temperature had a definite
difference from the barrel temperature setting, and that this discrepancy was about 44 ◦C
under specific conditions. Therefore, bare-wire thermocouples or infrared sensors provide
high accuracies based on fast response times. However, bare-wire thermocouples are
inadequate for the injection molding process in terms of durability and may hinder the
melt flow to create shear heating and dead flow zones as invasive sensors. Infrared
sensors also cause inconvenience when installed in the nozzle owing to their large size
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and difficulty in obtaining precise measurements due to differences in the opacity and
emissivity of materials.

Ultrasonic temperature sensors are advantageous as noninvasive sensors. Praher et al.
measured the radial distribution of the melt temperature in the barrel by installing many
ultrasonic sensors on the barrel wall [18]. This method has the advantage of preventing
some problems caused by invasive measurements. However, it incurs a relatively high
cost, requires a special design to avoid the high-temperature environment of the injection
molding process, and requires the complete pressure-volume-temperature (PvT) properties
of the materials [19]. Additionally, it is difficult to apply this method to nonhomogeneous
materials, such as foamed materials and fiber-/particle-reinforced composites. Therefore,
each measurement method has advantages and disadvantages, so it is desirable to choose
an appropriate method by considering the measurement purpose and the criteria.

As stated before, it is difficult to measure the melt temperature directly owing to many
restrictions and requirements, which has motivated research to model and predict the
melt temperature. Kamal and Kenig developed a theoretical model using the continuity,
momentum, and energy equations for the major factors in the filling, packing, and cooling
stages of the injection molding process [20]; their research was exploited to develop software
to quantitatively analyze the injection molding process. However, there is a practical limit
to building a governing equation for the melt temperature, because it is influenced by many
factors. In this respect, machine learning models with artificial neural networks (ANNs)
can be used as alternatives to the theoretical models. Zhao and Gao applied an ANN to
predict the melt temperature profile [21]; they attempted to predict feature points, such as
the maximum and minimum temperatures in the melt temperature profile, by considering
that the profiles had regular shapes. Even if the predicted result followed the experimental
data, a quantitative performance test of the model was not performed. Additionally, the
model, built with only the process parameters, did not reflect the influences of the materials,
environment, and injection machines.

ANNs have been applied to various aspects of the injection molding technology as
well as melt temperature prediction. Lee et al. combined an ANN and a random search to
develop a system for optimizing the process conditions of injection molding [22]. Tercan
et al. attempted to minimize the discrepancy between the CAE analysis and experiments
through a transfer learning model [23]. Gim et al. predicted the part weights using
a machine learning model with in-mold pressure profiles, which was difficult for the
operators to analyze [24]. Recently, new technological advances in machine learning and
development of computing performance have rapidly increased to enable the building and
application of machine learning models to predict many aspects of the injection molding
technology, which is difficult with the theoretical models.

In this work, to ensure precise measurement of the melt temperature, a bare-wire
thermocouple sensor with high accuracy and fast response time was developed. The
sensor structure can withstand high temperatures and pressures during injection molding.
Although the sensor was sensitive enough, it was not suitable for the actual environment
of the injection molding process owing to limited durability and difficulty in operation.
Therefore, three machine learning models were constructed based on the measured melt
temperatures to predict the melt temperature profiles in the barrel during injection molding
without the use of melt temperature sensors. The first model accepted the process setting
parameters as the input features and was built for comparisons with previously reported
models. With respect to the energy flow during the plasticizing process, major features
such the energy consumption of the screw-driving motor and heat generation of the barrel
heaters were selected as the input features to the second model. The process data under
various conditions were acquired in the experiments. The third model included features
related to the energy that the material gained, such as the specific heat and weight of the
molded part. Compared to conventional models with only the process setting parameters,
we attempted to reflect the formation process of the melt temperature more specifically
through our machine learning model.
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2. Method

For successful machine learning, the training dataset should be chosen such that it
has an intimate relationship with the prediction problem [25]. In previous research on
predicting the melt temperature during plasticizing, the process setting parameters such as
the screw rotational speed, heater band temperatures, and the back pressure were used as
training data [21]. The plasticizing process is also influenced by the state of the injection
molding machine, environmental conditions, and material properties as well as process
setting parameters. If the materials or the injection molding machines are changed, the
machine learning model trained with only the process setting parameters should be trained
with a new dataset, which is inefficient in terms of cost and time. To develop a machine
learning model for the practical purpose of manufacturing, it is desirable to consider the
cost and time of the training dataset.

Figure 1 shows the energy flow from the moment when a material is loaded into the
hopper to the completion of plasticizing. The material is heated by shear heating owing
to screw rotation and heat transfer from the barrel heaters. The heating and plasticizing
processes depend upon the specifications of the injection molding machine such as the
screw and heaters; material properties such as thermal conductivity and specific heat; and
other factors such as the friction coefficient between the pellets and barrel surface as well
as the size and shape of the pellets.
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Figure 1. Energy input and loss in the injection molding machine.

Figure 2 shows the schematic of the methodology proposed in this study. To reflect the
specific plasticizing process, the energies transferred by the injection molding machine to
the material and environment were monitored. Through such monitoring, a training dataset
consisting of features closely related with the forming process of the melt temperature
profile was built. Additionally, reflecting the material properties and interactions with
the injection molding machine could allow the machine learning model to achieve high
accuracy with a limited dataset. Because the size of the training dataset is proportional
to cost and time, higher productivity may be achieved by building a training dataset
consisting of features closely related to the target process. The machine learning models
trained with data acquired from the injection molding machine were developed to predict
the melt temperature profile without a melt temperature sensor in the nozzle. It is desirable
to exploit existing machine learning models when the injection molding machine and
materials are changed. For this purpose, a transfer learning model was built to achieve
high accuracy with a limited size of the new training dataset.



Polymers 2022, 14, 5548 5 of 17Polymers 2022, 14, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 2. Schematic illustration of the proposed methodology. 

3. Experiments 
3.1. Materials and Instruments 

Figure 3 shows the measurement system configuration used in this work. A 150-ton 
electric injection molding machine (LGE 150C by LS Mtron, Anyang, Republic of Korea) 
was used in the experiments. The nozzle adapter, including the melt temperature sensor, 
was installed between the nozzle and barrel. The signal from the thermocouple was con-
ditioned and acquired using the thermocouple module (NI 9214 by National Instruments, 
Austin, TX, USA) at a sampling rate of 10 Hz. The speed seemed to be inadequate, but the 
filtering and noise reduction processes were completed at this speed, so it was deemed to 
be sufficient for the experiment. The power of each heater was measured with a current 
sensor (FS4C by Fine-trans, Incheon, Republic of Korea). The signals of the plasticizing 
motor power, screw position, and back pressure were supplied by the injection molding 
machine and acquired with a data acquisition device at 500 Hz sampling rate. The mold 
used in the experiment was designed to have a simple geometry so as to quickly transfer 
heat to the cooling channels. The mold design ensured quick solidification of the material 
and uniform cycle time. The materials used in the experiment were acrylonitrile butadiene 
styrene (ABS, HF380 by LG Chem., Seoul, Republic of Korea) and high density polyeth-
ylene (HDPE, JH910 by SK Chem., Seongnam, Republic of Korea). 

Figure 2. Schematic illustration of the proposed methodology.

3. Experiments
3.1. Materials and Instruments

Figure 3 shows the measurement system configuration used in this work. A 150-ton
electric injection molding machine (LGE 150C by LS Mtron, Anyang, Republic of Korea) was
used in the experiments. The nozzle adapter, including the melt temperature sensor, was
installed between the nozzle and barrel. The signal from the thermocouple was conditioned
and acquired using the thermocouple module (NI 9214 by National Instruments, Austin, TX,
USA) at a sampling rate of 10 Hz. The speed seemed to be inadequate, but the filtering and
noise reduction processes were completed at this speed, so it was deemed to be sufficient
for the experiment. The power of each heater was measured with a current sensor (FS4C
by Fine-trans, Incheon, Republic of Korea). The signals of the plasticizing motor power,
screw position, and back pressure were supplied by the injection molding machine and
acquired with a data acquisition device at 500 Hz sampling rate. The mold used in the
experiment was designed to have a simple geometry so as to quickly transfer heat to the
cooling channels. The mold design ensured quick solidification of the material and uniform
cycle time. The materials used in the experiment were acrylonitrile butadiene styrene (ABS,
HF380 by LG Chem., Seoul, Republic of Korea) and high density polyethylene (HDPE,
JH910 by SK Chem., Seongnam, Republic of Korea).

Polymers 2022, 14, x FOR PEER REVIEW 6 of 19 
 

 

 

Figure 3. Measurement system. 

3.2. Temperature Sensor 
The melt temperature sensor in the experiments should satisfy some requirements, 

such as durability and a sufficiently fast response time. The sheath-type thermocouple 
sensors were not adequate for this experiment because of their lengthy response times 
owing to the high heat capacity of the protection tube, even though they are widely used 
to measure the melt temperature in the nozzle. The bare-wire thermocouples used in the 
experiments may be destroyed by the high shear stress of the melt; therefore, a bare-wire 
k-type thermocouple of 0.5 mm diameter butt-welded in the middle (CHAL-020-BW by 
Omega Engineering, Biel/Bienne, Switzerland) was installed in the nozzle adapter, as 
shown in Figure 4a. Such a thin temperature sensor is advantageous not only in response 
time but also in measurement accuracy, because the heat transfer with the barrel wall is 
reduced [26]. As a result of performance tests, the time constant of the bare-wire thermo-
couples was 1/10 of the sheath thermocouples with a diameter of 3 mm. When fluid passed 
through at a constant temperature, it took 3.85 s to reach 63.2% of the steady state value 
with the sheath-type thermocouple, whereas the bare-wire thermocouple took 0.38 s. 

  
(a) (b) 

Figure 4. Melt temperature sensor: (a) temperature sensor mounted on the injection molding ma-
chine; (b) internal detailed structure. 

Figure 3. Measurement system.



Polymers 2022, 14, 5548 6 of 17

3.2. Temperature Sensor

The melt temperature sensor in the experiments should satisfy some requirements,
such as durability and a sufficiently fast response time. The sheath-type thermocouple
sensors were not adequate for this experiment because of their lengthy response times
owing to the high heat capacity of the protection tube, even though they are widely
used to measure the melt temperature in the nozzle. The bare-wire thermocouples used
in the experiments may be destroyed by the high shear stress of the melt; therefore, a
bare-wire k-type thermocouple of 0.5 mm diameter butt-welded in the middle (CHAL-
020-BW by Omega Engineering, Biel/Bienne, Switzerland) was installed in the nozzle
adapter, as shown in Figure 4a. Such a thin temperature sensor is advantageous not only in
response time but also in measurement accuracy, because the heat transfer with the barrel
wall is reduced [26]. As a result of performance tests, the time constant of the bare-wire
thermocouples was 1/10 of the sheath thermocouples with a diameter of 3 mm. When fluid
passed through at a constant temperature, it took 3.85 s to reach 63.2% of the steady state
value with the sheath-type thermocouple, whereas the bare-wire thermocouple took 0.38 s.
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The structure of the melt temperature sensor module is shown in Figure 4b. To prevent
leakage through the installation hole of the sensor during injection molding at a high
temperature and pressure, a ferrule made of polyether ether ketone (PEEK) was fabricated
and installed; PEEK has a glass transition temperature of 140 ◦C and a melting temperature
of 343 ◦C. The ferrule was designed to firmly grip the thermocouple wire by the pressure in
the nozzle adapter for effective sealing. The thermocouple wire was insulated electrically
and thermally by the ferrule and ceramic tube. The long guiding tube of the thermocouple
wire with a tight clearance prevents possible accidental leakage by maintaining a low
temperature. The tube was exposed to the atmosphere so that the melt in the gap of the
tube would solidify quickly. The sensor developed in this work was durable without
leakage after more than 30,000 cycles, including filling and packing at 60 MPa.

3.3. Energy Monitoring

The energy transferred to the material in the barrel comprises the mechanical energy
by screw rotation and thermal energy by the barrel heaters, as shown in Equation (1).

EMaterial
∼= (Escrew−Emachine)+(Eheater −Eheat_loss) (1)

• Ematerial : internal energy change after the material is fed to the hopper before the melt
is injected through the nozzle

• Escrew: energy transferred to the material by screw rotation
• Emachine: energy loss without being transmitted to the material, such as that from friction
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• Eheater: energy supplied to the heaters in a cycle
• Eheat_loss: heat energy loss by convection to the atmosphere and conduction to the

machine

EMaterial was calculated from the material temperature difference between the hop-
per and the nozzle as well as the specific heat data measured by a differential scanning
calorimeter (DSC). Escrew was calculated from the measured electrical energy supplied
to the screw motor during plasticizing. Emachine was the total energy loss in the injection
molding machine caused by friction, motor efficiency, etc.; the energy loss was estimated
by measuring the energy supplied to the screw motor when the screw rotated without a
material in the barrel. Eheater was acquired by measuring the electrical energy supplied to
the barrel and nozzle heaters. It was difficult to measure Eheat_loss; because it was relatively
easy to measure the previous four energies, Eheat_loss could be calculated indirectly. The
atmospheric temperature closely related with Eheat_loss was measured and supplied to the
training dataset to estimate the approximate heat loss. Figure 5 shows the measurement
location of the atmospheric temperature, which is the top surface of the barrel guard.
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3.4. Experimental Conditions

The experimental conditions for the HDPE and ABS are listed in Tables 1 and 2,
respectively. The process variables that influence the plasticizing process as well as resident
time and state of the melt in the barrel were selected. Experiments were performed by
the orthogonal array of design of experiment (DOE). The flat condition in the heater
profile indicates that all heaters of the barrel are set to the same temperature, whereas
the decrease condition indicates that the heater temperatures decrease linearly toward
the hopper and that the temperature of the hopper side heater is set to a value 40 ◦C
lower than that of the nozzle heater. For the forced cooling condition, cold air was blown
over the barrel heaters using an air conditioner, as shown in Figure 6, to change the
convective heat transfer condition. The dwell time condition had the purpose of analyzing
the effects of the staying time of the melt in the chamber before the start of injection after
the completion of plasticizing. In the ABS experiment, the experiment was reduced to
having two levels, instead of the three used in the HDPE experiment. This was intended to
verify the prediction accuracy by transfer learning in the ABS experiment through a smaller
dataset than the machine learning model trained with the dataset of the HDPE experiment.

The melt temperature was measured by advancing the screw at a speed of 10 mm/s
to ensure that the melt flowed by the sensor in the nozzle adapter. It was important to
maintain a uniform cycle time under a certain process condition, because the purpose of
the experiment was to measure the heating history of the material from the moment of
hopper loading to injection through the nozzle. Hence, the mold was designed to allow for
rapid solidification of the material so as to not interrupt the cycle time. All experiments
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were conducted in the automatic cycle mode. The injection molding process requires a
stabilization time of a certain cycle until the system reaches a steady state when the process
conditions change [9]. For each experimental condition, the measured data from the first
15 trials after changing the experimental conditions were not collected, and the data of the
subsequent 35 trials were collected and included in the training dataset. This allows for
data to be collected after the process is as stabilized as possible. These 35 pieces of collected
data were averaged and added to the dataset. Thus, the training dataset consisted of a total
of 216 HDPE data points (33 × 23) and 64 ABS data points (26).

Table 1. Experimental conditions using HDPE.

Factor
Level

1 2 3

Screw rotation speed (RPM) 50 175 300
Backpressure (bar) 20 100 400

Heater temperature (◦C) 200 240 -
Heater profile Flat Decrease -
Forced cooling 0 1 -
Dwell time (s) 0 20 60

Table 2. Experimental conditions using ABS.

Factor
Level

1 2

Screw rotation speed (RPM) 50 300
Backpressure (bar) 20 400

Heater temperature (◦C) 200 240
Heater profile Flat Decrease
Forced cooling 0 1
Dwell time (s) 0 60

All factors were reduced to level 2.
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3.5. Machine Learning Model

The ANN was supplied the process setting values, measured data, and material
properties in the input layer to obtain the melt temperature as the output layer, as shown
in Figure 7. Owing to the large differences among the input data values, all data were
normalized to enhance stability and accuracy. About 75% of the total dataset was chosen
arbitrarily for training, and the rest was set as the validation dataset. The structure of
the multilayer ANN is shown in Table 3; it was optimized using Optuna 3.0.4 (Preferred
Networks, Tokyo, Japan), which is a hyperparameter optimization framework [27]. To
evaluate the prediction performance of the machine learning model proposed in this work,
three models trained with different datasets were evaluated. Model 1 was trained with a
dataset comprising the process setting parameters only. Model 2 was trained with a dataset
comprising the process parameters measured by the monitoring system as well as the data
of Model 1. Model 3 was trained with a dataset containing all the data of Model 2 and
additionally with the material properties. The input features for each model are listed in
Table 4. All neural network configuration and training was performed using Tensorflow
2.9.1. (Google Brain, Mountain View, CA, USA)
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Table 3. Machine learning model architecture.

Parameter Value

Number of hidden layers 4
Number of input layer neurons 16

Number of hidden layer neurons 150
Number of output layer neurons 100
Hidden layer activation function ReLU

Optimizer Adamax
Loss function RMSE

Training iterations (epochs) 1000

Table 4. Input features of each model.

Model Input Features

Model 1
(conventional; process setting

parameters only)

Screw rotation speed, back pressure, feed stroke,
barrel heater temperatures, dwell time

Model 2
(model 1 + monitoring data)

Energy consumption of each heater,
energy consumption of plasticizing motor (screw

rotation), cycle time, ambient temperature
Model 3

(model 2 + material data) Specific heat of material, product weights
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3.6. Transfer Learning Model

One of the important points to consider when applying the proposed methodology
to actual manufacturing is minimizing the acquisition cost of the dataset and prediction
performance. If a large amount of data is required each time the model is trained for
a new material, it is difficult to use as a manufacturing tool because of the high cost.
Hence, a transfer learning model was developed here to reduce the training cost. The
transfer learning model can be used with a smaller dataset than the model trained with
the initial dataset and is a powerful tool for actual manufacturing applications [28,29]. The
architecture of the transfer learning model used for the ABS material is shown in Table 5.
This transfer learning model was based on the model trained with the dataset of the HDPE
material. Based on earlier results on the advantages of transferring the information in the
upper layer (toward the input layer side) in the prior object to the transfer model for the
posterior object [30], the weights of the upper three layers were frozen, and another layer
was newly added at the back when training the transfer learning model. Therefore, only the
lower two layers were trained with the ABS dataset. To evaluate the efficiency, the transfer
learning model and another model trained from scratch were compared. The prediction
performances of both methods were compared for proportional amounts of data required
to train the machine learning model without transfer learning from 90% to 10%.

Table 5. Transfer learning model architecture.

Parameter Value

Number of non-trainable (frozen) layers 3 (input layer side)
Number of trainable layers 2 (1 existing layer, 1 additional layer)

Amount of data used for training (%) 10, 20, 30, 40, 50, 60, 70, 80, 90
This is used for the ABS transfer learning model from the HDPE model trained with the architecture in Table 3.

4. Results and Discussion
4.1. Melt Temperature Prediction

In the melt temperature prediction process by the machine learning model in this
work, the prediction accuracy was evaluated in terms of the loss, root mean-squared error
(RMSE), and coefficient of determination (R2). The definitions of loss and R2 are shown in
Equation (2):

RMSE =

√√√√
∑

(
ypred − yre f

)2

N
, R2 = 1 − ∑(yi − ŷi)

2

∑(yi − ȳ)2 (2)

In the equation, ypred, yref, and N represent the temperature predicted by the model,
the actual temperature, and the number of evaluation points, respectively. R2 indicates the
proportion of the variance of the dependent variable that is predicted using the independent
variable. yi, ȳ, and ŷi are the true value, the mean of the true values, and the predicted
value, respectively. The RMSE and R2 after training completion for the three models are
listed in Table 6. Models 2 and 3 show loss values of 0.1744 and 0.0718 compared with
0.2477 for Model 1, which are 29.6% and 71.0% lower than that of Model 1, respectively.

Table 6. Loss and R2 values after training completion of each model.

Model RMSE R2

Model 1
(conventional; process setting parameters only) 0.2468 0.926

Model 2
(model 1 + monitoring data) 0.1704 0.950

Model 3
(full data; model 2 + material data) 0.0647 0.971
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The loss values are plotted along the epochs of the machine learning model for the
training and validation datasets in Figure 8, and the corresponding R2 values are shown
in Figure 9. As training proceeds, the loss continuously decreases in all cases. Models 2
and 3 proposed in this work both showed lower losses and higher R2 values than Model 1,
which considered only the process setting parameters. Model 3 showed a similar or lower
performance than Model 2 for training, as seen in Figures 8a and 9a. However, Model 3
clearly showed a higher performance than Model 2 during validation, as seen in Figures 8b
and 9b. One of the reasons for these phenomena could be the ill-conditioned training
and validation samples. To assess this possibility, 30 datasets of training and validation
were created by randomly shuffling the dataset before processing. The 30 results were
statistically processed to obtain the results in Figures 8 and 9. Therefore, the possibility
of ill-conditioned samples is ruled out. It is thus concluded that Model 3 represents the
characteristics of the plasticizing process better than Model 2.
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Model 2 shows a better performance than Model 1. However, Model 2 is limited by
insufficient information for predicting the energy transferred to the material, i.e., EMaterial
in Equation (1). As stated before, the magnitude of the heat loss, Eheat_loss, could not
be measured exactly and was estimated from the other terms in Equation (1) that were
measured with relatively higher accuracy. During training, the insufficient information
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regarding the material characteristics would result in a lower prediction performance than
Model 2 than Model 3, which includes these material characteristics.

Figure 10 shows plots of the prediction accuracies of arbitrarily chosen validation data
for the three models after training completion. Figure 11 shows the actual and predicted
melt temperature profiles by the three machine learning models under randomly chosen
conditions. The horizontal axes represent 100 temperature points, which are the relative
distances from the nozzle. Model 3 is seen to predict the actual melt temperatures with
high accuracies in most cases, whereas Model 1 shows large deviations from the actual
values in some cases.
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4.2. Improving Prediction Efficiency through Transfer Learning

Figure 12 shows the R2 results of the transfer learning model and the normal model
trained from scratch. The architecture of both models is based on Model 3. The model
trained from scratch showed a low prediction performance until sufficient data was sup-
plied, but the transfer learning model showed a relatively high performance even with a
small amount of data. In particular, the transfer learning model showed a small standard
deviation over the entire dataset. The model trained from scratch produced an R2 of 0.6
with six data points, i.e., about 10% of the total dataset, which was not enough for prediction
performance. However, the transfer learning model resulted in an R2 of 0.87 for the same
number of data points. Both models showed similar levels of performance with at least
60% of the datasets. Nevertheless, the standard deviations of the transfer learning model
were less than one tenth those of the model trained from scratch.

These results show that the transfer learning model allows the benefit of a reduction in
dataset production cost and an enhancement of the prediction performance by improving
the dataset efficiency and prediction reliability. In the context of this research, the time to
acquire a single dataset was about an hour, including condition stabilizing and repeated
experiments. However, depending on the process conditions or materials, the time required
would be more than an hour, which increases data production time and enlarges the
necessary dataset amount. Hence, it is appropriate to adopt the transfer learning process
for industrial applications in which the cost and time are important.



Polymers 2022, 14, 5548 13 of 17Polymers 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 11. Temperature data for 23 randomly selected values and temperature prediction graphs of 
the three models. The horizontal axis represents the temperature points. Physically, this refers to 
the relative distance from the nozzle in the barrel chamber. (Plot title: material/screw RPM, back 
pressure in bar, heater temperature in °C (heater profile D: decrease, F: flat), forced cooling (Y/N), 
dwell time in s). 

Figure 11. Temperature data for 23 randomly selected values and temperature prediction graphs of
the three models. The horizontal axis represents the temperature points. Physically, this refers to
the relative distance from the nozzle in the barrel chamber. (Plot title: material/screw RPM, back
pressure in bar, heater temperature in ◦C (heater profile D: decrease, F: flat), forced cooling (Y/N),
dwell time in s).
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However, in the case in which the input window of learning changes significantly,
it is unclear whether it will guarantee a high level of transfer learning efficiency as in
this study. This uncertainty can be equally considered even when not only the material
but also the specifications or operation environment of the injection molding machine
change significantly. It is estimated that the methodology proposed in this study does
not significantly reduce the effectiveness of transfer learning, because it includes machine–
material interactions such, as screw energy consumption and heater energy consumption, as
well as process variables. This will be verified through further research. Further, according
to previous researchers, the effectiveness of transfer learning does not completely disappear
even if the material is changed [31]. Although there are differences in the properties of
the two materials used in this study, the ranges of process settings parameters are not
significantly different. Since the two materials have a similar process range, the weights of
the three layers on the input layer side were frozen based on this similarity, and the two
layers on the output side, including one newly added layer, were trained. If the process
ranges of the input data to be used for pre-training and transfer learning are significantly
different, it is assumed that the method of gradually using the weights of the frozen
input layer for learning is effective. Additional research will be conducted to verify this
assumption as a future work.

4.3. Contributions of Features to Temperature Prediction

Although Model 3 inductively proved to be the best method among the three models
in the machine learning study, SHAP analysis was conducted to additionally verify the
model performance [32]. The SHAP analysis based on the Shapley values of game theory is
an interpretation method for how the machine learning model works and the contributions
of each of the input features. Figure 13 shows the SHAP values of the predictions of the
initial, maximum, and max–min difference temperatures in the melt temperature profile.
The no. 1 heater is the barrel heater on the hopper side, and the no. 5 heater is on the nozzle
side. In both cases, the features proposed in addition to the process setting parameters,
such as the environmental temperature, the energy supplied to the heaters, and the specific
heat as a material property, show high SHAP values. This means that the features have
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high correlations with the melt temperature formation process and significantly contribute
to the predictions of the machine learning model.
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5. Conclusions

For stable injection molding, the melt temperature in the barrel is an important cri-
terion, and various plasticizing conditions affect this temperature. It has been reported
that the melt temperature is not the same as the band heater temperature, and that the
melt temperature in the barrel fluctuates on the basis of the plasticizing condition. There
are limitations to developing fast-response temperature sensors applicable to the injection
molding environment. Hence, it is necessary to find better and easier methods of predicting
melt temperatures if measurements in the barrel are difficult in practice. Consequently, this
work proposed a method for melt temperature prediction by a machine learning model.

To supply the labeled melt temperature data during supervised learning, a high-
performance temperature sensor was developed to measure the melt temperatures. This
sensor was designed to achieve a high response speed and accuracy, with adequate durabil-
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ity for the high-temperature and high-pressure conditions of injection molding. However,
it is difficult to apply a sensitive sensor in actual mass production because of disadvan-
tages, such as an increase in process cost, unexpected defects, and installation difficulties.
Therefore, the melt temperature sensor developed herein was used for measurements in
the dataset production stage for machine learning. The measured melt temperatures under
various plasticizing conditions were supplied to the developed machine learning models.

To build a machine learning model for predicting melt temperatures, key features in
the plasticizing process were selected from the energy flow transferred to the material by
the injection molding machine, such as energy consumption of the plasticizing motor and
barrel heaters. In addition, energy-related physical properties such as the specific heat
of a material and part weights were included in the dataset. Thus, a more specific melt
formation process was reflected in the learning compared with previous machine learning
models that used only general process setting parameters.

For comparison, a model accepting only process setting parameters and a model
including process data measured based on energy flow were constructed. The model
proposed in this work showed the highest prediction performance. This was a logical result,
because this novel model reflected the most aspects that affected the plasticizing process,
and the other models lacked sufficient information.

In industrial applications, it is necessary to reduce the time and cost of dataset produc-
tion. It would not be appropriate to train the machine learning model with a large amount
of new datasets whenever the injection molding machines or materials are changed. For
new cases, it is beneficial to exploit previously trained machine learning models; thus, a
transfer learning model was built for this purpose in the present work. In comparison
tests between the model trained from scratch and the transfer learning model, the transfer
learning model provided a higher prediction performance with a small dataset. Thus, the
transfer learning model is expected to conserve the time and cost of dataset production for
machine learning in industrial applications in which these two factors are critical.

The features used in the machine learning models in this work were verified by SHAP
analysis. The results showed that the energy-based features proposed in this study had a
sufficient contribution. In future works, the proposed method may be expanded further
to predict process data, such as cavity pressure and nozzle pressure, in addition to the
melt temperature.
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