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Abstract: A recently reported combined polymerization process of glycidyl methacrylate, mediated
by homometallic and heterobimetallic aluminium complexes, naturally produces nano-sized macro-
molecular assemblies. In this work, the morphological features and the rheological properties of these
novel nanoassemblies are studied. The hydrodynamic sizes of the nanoparticles in the solution range
from 10 to 40 nm (in numbers), but on a flat surface they adopt a characteristic thin disk shape. The
dynamic moduli have been determined in a broad range of temperatures, and the time—temperature
superposition applied to obtain master curves of the whole viscoelastic response from the glassy to
the terminal regions. The fragility values obtained from the temperature dependence are of m ~40,
typical of van de Waals liquids, suggesting a very effective packing of the macromolecular assemblies.
The rheological master curves feature a characteristic viscoelastic relaxation with the absence of elastic
intermediate plateau, indicating that the systems behaved as un-entangled polymers. The analysis of
the linear viscoelastic fingerprint reveals a Zimm-like dynamics at intermediate frequencies typical
of unentangled systems. This behaviour resembles that observed in highly functionalized stars,
dendrimers, soft colloids and microgels.

Keywords: poly(glycidyl methacrylate); macromolecular nanoassembly; fragility; linear viscoelasticity

1. Introduction

Glycidyl methacrylate (GMA), is a monomer that deserves a great deal of industrial
interest as it presents two functional groups. Monomers such as GMA, with two reactive
groups, are very valuable as precursors of functionalized polymers when only one group
is polymerized. Functional polymers are now a focus of research interest mainly due
to their versatility. They can be used, for example, for the construction of blocks and
new architectures and molecular topologies, including stars, dendrimers and networks or
lattices. This versatility is a great advantage in the search for uses related to added value
applications in recyclability of plastics (compatibilizers and tie layers), drug release systems,
materials with shape memory effects, biocompatible agents, biomedicine, etc. [1,2]. We have
recently developed a novel method to obtain new polymeric macromolecular assemblies
by means of covalent crosslinking of a network of combs obtained from the ring opening
polymerization of GMA [3,4]. The obtained nanoassemblies are soft nanoparticles of
crosslinked poly(glycidyl methacrylate), cPGMA. These macromolecular structures provide
a rechargeable substrate for an antimicrobial coating that shows resistance to bacterial
colonization [5], and it can be used in an extensive range of biomedical applications,
similarly to other acrylate based thermoresponsive polymers [6]. The approach is similar to
that reported previously for stimuli sensitive polyglycidol, poly(N-isopropylacrylamide),
poly(N-vinylcaprolactam), and poly (vinyl alcohol) microgels [7–10].
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The rheological properties of soft nanoparticles were studied in the past in the pioneer-
ing works of Antonietti et al. [11,12]. They observe viscous flow for such microgels with
diameters of up to 20 nm. The typical Zimm scaling of hydrodynamically coupled systems,
G* ~ ω2/3, is also observed, but as these spherical particles can neither reptate nor perform
Zimm movements, the mobility was explained as due to cooperative movements of coupled
chains. Moreover, it was also envisaged that the mobility was effectively modulated not
only by the size but also by the cross-linking density of the nanoparticles [13]. Besides the
soft nanoparticles and microgels, a variety of macromolecular architectures, characterized
by the lack of entanglements in the melt, has shown a similar rheological behaviour in
the linear region. Examples are dendrimers [14–17], bottlebrushes [18–21], high function-
alized stars [12–25] and dendronized polymers [26–28]. All these materials share certain
rheological features as Rouse or Zimm-like dynamics, low values of the viscosity and high
elastic character. Interestingly, the main feature shared in all the cases is the absence of
entanglements. In all these cases, the construction of the macromolecular ensembles gives
rise to certain topological and structural characteristics that facilitate the macromolecular
crowding at the periphery and prevents the formation of entanglements. This leads to the
absence of reptation mechanisms for relaxation and gives rise to the appearance of Rouse
or Zimm-like dynamics, even in samples with very high molecular weights. Of course,
the topological aspects of the specific macromolecular assembly modulate the physical
properties and final applications as photonic crystals, drug delivery, supersoft elastomers,
surfactants and rheological modifiers or lubricants.

In this work, we studied novel polymeric macromolecular assemblies of soft nanoparti-
cles prepared by a new approach for covalent crosslinking of the network of combs obtained
from the ring opening polymerization of GMA. The assemblies were characterized by dy-
namic light scattering, transmission electron and atomic force microscopies and rheology.
The soft nanoassemblies have shown an intermediate fragility, far from that observed for
amorphous polymers but close to that typical of strong liquids. The analysis of the linear
viscoelastic fingerprint reveals specific Zimm-like dynamics at intermediate frequencies
typical of unentangled systems. This behaviour resembles that observed in dendrimers,
highly functionalized stars, soft colloids and microgels.

2. Materials and Methods
2.1. Materials

GMA, toluene, methanol and chloroform were obtained from Sigma-Aldrich (St. Louis,
MO, USA). All manipulations were carried out under an inert atmosphere of Argon using
standard Schlenk and glovebox techniques. All solvents were dried prior to use following
standard methods. GMA was purified by vacuum distillation with CaH2 and stored under
Argon. All reagents were commercially obtained and used without further purification.
[AlXMe{2,6-(CHPh2)2-4-tBu-C6H2O}]n (X = Me, Cl), and [M{2,6-(CHPh2)2-4-tBu-C6H2O}]n
(M = Li, Na, K) were prepared according to reported methods [3,4].

2.2. Synthesis

The nanoassemblies cPGMA1-3 were prepared through the same strategy that con-
sisted of the combined polymerization of GMA with two different aluminium complexes
as catalyst. In the first step, GMA is reacted with a 1 mol% of an aluminium homometal-
lic catalyst [AlMeXOAr] (X = Me, Cl) (OAr: {2,6-(CHPh2)2-4-tBu-C6H2O}), followed by
the addition of 1 mol% of an heterometallic aluminium and alkaline metal aluminate
[MAlMe3OAr] (M = Li, K) (Scheme 1).

In a typical procedure, the GMA monomer was purified by vacuum distillation using
CaH2. Once purified, it was stored at −20 ◦C in the absence of light under Argon. The
polymerizations were performed inside the glovebox. In a 50 mL Teflon valvulated flask,
the homometallic aluminium catalyst was placed (0.015 g—27.86 µmol—of [AlMe2OAr]
for cPGMA1 and cPGMA3, 0.016 g—27.86 µmol—of [AlMeClOAr] for cPGMA2), and then
0.38 mL—2.786 mmol—of GMA added. After 30 min stirring at RT, the corresponding
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amount of the heterometallic complex was added to the flask (0.016 g—27.86 µmol—of
[LiAlMe3OAr] for cPGMA1 and cPGMA2, 0.017 g— 27.86 µmol) of [KalMe3OAr] for
cPGMA3) and then was heated at 100 ◦C for 7 h. The polymerization was quenched
by the addition of 15 mL of methanol. After 2 h stirring, the polymer was filtered and
then dried under vacuum at 70 ◦C overnight. NMR spectra were recorded at 400.13 (1H),
155.50 (7Li) and 100.62 (13C) MHz on a Bruker AV400. IR spectra have been obtained in a
Perkin-Elmer FT-IR Spectrometer Frontier, recording the area between 4000 and 400 cm−1.
The crosslinked poly(glycidyl methacrylate) obtained was confirmed by NMR and IR as
described previously by us [4]. The difference in the synthesis for the studied cPGMA relies
on the combination of the catalysts used as shown in Table 1.
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Table 1. Catalysts used for the synthesis of the studied cPGMA

[AlMeXOAr] [MAlMeOAr]

cPGMA1 X = Me M = Li

cPGMA2 X = Cl M = Li

cPGMA3 X = Me M = K

2.3. Dynamic Light Scattering: Hydrodynamic Properties

Hydrodynamic size of the samples was obtained by means of Dynamic Light Scattering
(DLS) using the Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK) at T = 293 K
in a 12 µL quartz batch cuvette (ZEN2112). The results of the scattered intensity time
correlation function, [g2(t)−1], were obtained for filtrated solutions of the cPGMA samples
in chloroform at variable concentration (c < 10 mg·mL−1), every 10 s, with 15 acquisitions
for each run. The sample solutions were illuminated by a λ0 = 633 nm laser, and the intensity
of scattered light was measured by an avalanche photodiode at an angle of θ = 173◦. The
normalized time correlation function of the electric field g1(τ) can be obtained from the
Siegert equation [29]:

g2(τ) = B + β[g1(t)]
2 , (1)

where τ is the lag time, B is the baseline and β (≤1) is a coherence factor that accounts
for deviations from the ideal correlation and the experimental geometry. The cumulant
analysis has been applied by a non-linear fitting procedure using the program SEDFIT
(from https://spsrch.cit.nih.gov/software/ accessed on 19 January 2022) [30,31]. The
corresponding cumulant for the field autocorrelation function is:

g1(τ) = e−Γt
[

1 +
µ2τ2

2

]
, (2)

https://spsrch.cit.nih.gov/software/
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where Γ = Dz·q2 is the average decay rate with Dz being the z-average diffusion coefficient
and q = (4πn/λ0) sin(θ/2) corresponding to the magnitude of the scattering vector, n the
refractive index of the solution, taken as that of the solvent (1.448 for chloroform), λ0 the
wavelength of the laser, and θ the scattering angle. In Equation (2), µ2 is the variance of the
distribution, and the polydispersity index is defined as Q = µ2Γ−2. Once the decay rate Γ is
obtained, it is used to obtain Dz and the size by taking advantage of the Stokes-Einstein
relationship that relates Γ and, alternatively, the diffusion coefficient to the hydrodynamic
radius, rh, as:

rh =
kBT

6πηDz
(3)

In Equation (3), kB is the Boltzmann’s constant, T is the absolute temperature, and η
is the solvent viscosity, η = 0.056 cP. The apparent molecular weight of the samples was
obtained from their rh values relative to linear polystyrene standards.

2.4. Atomic Force and Transmission Electron Microscopies: Morphological Aspects

Atomic Force Microscopy (AFM) topography images were obtained in a µTA™ 2990
Micro-Thermal Analyser (TA Instruments, Inc., New Castle, DE, USA) in contact mode.
The samples were prepared by deposition of a drop of the dilute CHCl3 solution onto glass
wafers and the solvent was left to evaporate for 24 h. A V-shaped silicon nitride probe
with a cantilever length of 200 µm and a spring constant of 0.032 N·m−1 was used. The
size of the images was 5 µm2. A JEM-2100 (JEOL Ltd., Tokyo, Japan) transmission electron
microscope (TEM) operated at 200 kV and a nominal magnification of 20,000 was used for
bright field image studies. Digital images were recorded using an Orius Gatan CCD camera.
The samples dispersed in chloroform solution were deposited onto 200 mesh carbon-coated
copper grids and left in the air to dry for their examination.

2.5. Rheological Analysis: The Linear Viscoelastic Fingerprint

Small amplitude strain sweeps and frequency sweeps were carried out in order to
locate the linear viscoelastic region and to determine the basic linear viscoelastic properties
of the samples. The experiments were performed with a Bohlin CVO stress—controlled
rheometer in a range of temperatures using a parallel plates geometry (15 mm diameter).
The samples were allowed to equilibrate for at least 5 min at each temperature. First,
the linear viscoelastic region has been located by measuring the dynamic moduli, G′ and
G′′, as a function of strain amplitude at a frequency of 1 Hz. Then, frequency sweeps in
the strain—controlled mode at the strains selected (below 0.1), to ensure that the sample
response remained in the linear region and then the structure was not destroyed during the
experiment. The dynamic properties storage and loss moduli, G′ and G′′, were determined
by sweeping across the frequency range from 0.02 to 20 Hz. The measurements were
performed within the temperature range 293 to 363 K, and finally the time-temperature
superposition principle was applied.

3. Results and Discussion
3.1. Characterization of The Samples
3.1.1. Hydrodynamic Size and Molecular Weight

DLS results are presented as the light intensity autocorrelation function, [g2(t)−1].
Figure 1A shows the values obtained for this function for the samples at T = 293 K and
c = 2.1 mg·mL−1. A clear difference in [g2(t)−1] is observed in the samples under study.
The results shown in this figure indicate a considerable difference in size among the samples
studied, being cPGMA1 sample the smallest one and cPGMA3 the biggest. The cumulant
analysis given by Equation (2) is suitable for obtaining the mean sizes. The analysis has
been performed by serial dilution from 10 to 1 mg·mL−1, as it is observed in Figure 1B.
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Figure 1. (A) Light intensity autocorrelation function, [g2(t)-1], of the samples under study at
T = 293 K and c = 2.1 mg·mL−1versus time: (�, black) cPGMA1, (◦, red) cPGMA2, and (∆, blue)
cPGMA3. The lines represent the cumulant fits given by Equation (2) of the experimental results.
(B) Intensity averaged radius of gyration, rz, as a function of concentration. Symbols as in Figure 1A.

In Table 2, the extrapolated value to c = 0 mg·mL−1 is shown for each sample. The
apparent molecular weight of the samples was determined by direct comparison of the
experimental value of rz with those obtained for PS standards. The results obtained are also
listed in Table 2. The size distribution as numbers was also estimated in order to compare
the results with those directly obtained by AFM and TEM analysis (see below). The values
of the average values of rn are also listed in Table 2. As usual in polydisperse systems,
the number average hydrodynamic size is substantially lower than that obtained from the
intensity average [32].

Table 2. Physical properties of the samples under study: translational diffusion coefficient, Dt, z-
average hydrodynamic size, rz, polydispersity, D, number average hydrodynamic size, rn, apparent
molecular weight, Mw,app, Newtonian viscosity, η0, and relaxation time, τ0, and glass transition
temperature, Tg.

Sample Dt
(µm2/s)

rz
(nm) a Q rn

(nm)
Mw,app

(kg/mol) b
η0

(kPa·s) c
τ0

(s) c
Tg

(K) d

cPGMA1 17.1 23.1 0.40 11.2 800 4488.4 2335 285.5
cPGMA2 8.80 41.1 0.50 20.2 3000 1010.4 23.0 n.d.
cPGMA3 3.60 77.1 0.39 41.4 8000 489.9 0.61 285.0

a Hydrodynamic radius obtained at infinite dilution (c = 0); b Molecular weight referred to monodisperse PS
standards of the same intensity averaged hydrodynamic size in CHCl3 at T = 293 K; c Rheological results obtained
at Tr = 303 K; d From references [4,5]; n.d. means not determined.

3.1.2. Morphological Features of the Samples

The results obtained by AFM and TEM for the cPEGMA1 sample are shown in Figure 2.
The images reveal confident uniformity of the assemblies adsorbed onto the glass surfaces
and the carbon coated grids. It is noteworthy that the relatively narrow height distribution
obtained in AFM indicates that mostly individual cPGMA assemblies are present, and no
agglomeration occurs in the conditions used for the preparation of the samples.
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Figure 3 compares the size of the particles obtained for cPGMA1 and cPGMA3 samples.
The values of the size and molecular weight obtained for the systems under study indicate
an intramolecular reaction that gives rise to relatively dense macromolecular assemblies.
The scheme shown in Figure 4 illustrates the process of formation of the nano-sized particles
from the linear precursors via covalent bonding [8,10]. The average radius (28.5 nm)
obtained from the analysis of Figure 2A,B for cPGMA1 is much larger than the average
height (6.5 nm) on the glass wafer surface [4]. These results point to the macromolecular
assemblies spread during the adhesion process onto the glass wafer prior to the experiments,
which is clearly indicative of their flexibility (see scheme in Figure 4).
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Figure 4. Schematic representation of the macromolecular assembly process, which is similar to those
referred in [8,10].

The assemblies seem to adopt a pancake-like shape, a morphology already reported
in dendrimers [33,34], flexible nanoparticles and nanogels [35–38]. Additional evaluation
of the synthesized nanoassemblies by TEM in Figures 2C and 3 confirms the morphology
observed by AFM. The size observed is clearly higher than those obtained from the DLS
experiments in numbers (rn). The result agrees with that recently reported by AFM in a
condensed film for cPGMA3, with an average radius of around 80–100 nm and heights
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of 23 nm [5]. The experimental observations point to a controlled crosslinking process
of GMA combs precursors into specific 3D assemblies. The range of sizes measured by
DLS and TEM is relatively broad, and depends on the reaction conditions. This variability
demonstrates the versatility of the approach to prepare systems of different sizes.

As described previously by us [3], in the ROP of GMA with homometallic derivatives
[AlMeXOAr], different molecular weights were obtained depending on X. For X = Me,
higher Mw (33.8 KDa) were obtained than for X = Cl (20 KDa). However, as shown in
Table 3, the size of the final crosslinked polymer (cPGMA) is mostly affected by the alkaline
metal present in the heterometallic catalyst employed for the crosslinking process. As such,
when using the potassium aluminate [KAlMe3OAr] polymers with much higher size and
molecular weight are formed than when using the lithium one. Interestingly, when using
the same heterometallic aluminate, [LiAlMe3OAr], higher molecular weights are obtained
for the shorter polymer precursor, which could be attributed to an easier access to the
acrylate groups where the crosslinking reaction takes place.

Table 3. Comparison of the catalysts used and the molecular weight of the cPGMA obtained.

cPGMA1 cPGMA2 cPGMA3

[AlMeXOAr] X = Me X = Cl X = Me

Mw (KDa) [3] 33.8 20.0 33.8

[MAlMe3OAr] M = Li M = Li M = K

Mw,app cPGMA (KDa) 800 3000 8000

3.2. Temperature Dependence of the Rheological Response: Fragility

Dynamic shear moduli, G ′(ω) and G ”(ω), master curves can be constructed by
shifting the dynamic data obtained at each temperature to a reference, TR, based on the
time−temperature superposition (TTS) principle. The results obtained for the cPGMA
samples studied have been shifted to TR = 303 K. The horizontal shift factors, aT, have been
plotted in Figure 5A, and the results can be fitted to the Williams−Landel−Ferry (WLF)
equation:

log aT =
−C1(T − TR)

C2 + (T − TR)
(4)

All the samples conform to the same dependence, with the values c1 = 9.7 C and
c2 = 96.2, given by the solid line in Figure 5A. This behaviour implies similar values
of Tg for the samples (see Table 2). The measured values of Tg were around 285 K for
cPGMA1 and cPGMA3 samples. The reader is referred to our previous works in these
samples for information about differential scanning calorimetry (DSC) characterization [4,5].
Glass-forming liquids, including polymers, exhibit strong non-Arrhenius temperature
dependence of the temperature shift factors (relaxation time and viscosity) as observed in
these materials. The variation with temperature of these properties can be quantified by
the so-called fragility index, m [39–41], which can be defined at Tg as:

m =
∂logaT

∂
[

Tg
T

]
∣∣∣∣∣∣
T=Tg

(5)

The Angell’s plot in Figure 5B is very convenient to compare the results obtained in the
cPGMA samples with those typical of amorphous polymers as polystyrene (PS), in terms of
their fragility. The dynamic fragility for cPGMA samples was calculated from Equation (5).
The results are clearly located in the intermediate region in between hard/fragile materials
(characterized by high values of m ~ 150–200) and soft/strong materials with an Arrhenius
behaviour (theoretical lower limit of m = 16) [42]. The value for the fragility obtained in
cPGMA samples is m ~ 41, which is very close to that obtained in flexible polymers such



Polymers 2022, 14, 455 8 of 14

as PIB, PE and PTHF [43,44]. Such low values of m, but still higher than those obtained
here for cPGMA, have been reported in different types of dendronized polymers [26–28]
and microgels [45], for which values of fragility between m = 53 and m = 75 have been
measured. The Angell plot in Figure 5B clearly indicates that the cPGMA nano-sized objects
present an intermediate behaviour between hard/fragile glasses and soft/strong colloids.
What this means is that the cPGMA nanoparticles are able to accommodate their shape or
conformation, reaching a more densely packed (stronger) than fragile polymers near Tg.
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Figure 5. (A) Temperature dependence of horizontal shift factors, aT, for the samples studied. (�,
black) cPGMA1, (•, red) cPGMA2, and (N, blue) cPGMA3. The solid line is the WLF fit (Equation (4))
to experimental data. (B) Angell’s plot for the systems under study in comparison to the literature
results: (�) cPGMAs, (◦) amorphous PS.

Under the light of the recent model presented by van der Scheer et al. [45], the cPGMA
nanoparticles, as soft compressible systems, might regulate their shape and volume in
order to reach an osmotic equilibrium, with the elastic energy acting as effective fragility
order parameter. On the contrary, high-fragility systems, as for example amorphous
polystyrene (PS) have rigid polymeric chain and/or side groups. This rigidity makes
efficient packing quite challenging, leading to a higher fragility. The softness of the cPGMA
assemblies studied here anticipates characteristic rheological long-time dynamics. In
the next section, we have explored the rheological response of the condensed films of
the flexible nanoassemblies described in the preceding lines. The investigation of the
impact of the hard/fragile character modulation on the structure and flow behaviour of
condensed dispersions such as those studied here is of great interest. It is noteworthy that
the structural features dictate basic physical properties, and determine their connections
with applications, for example in pharmacy or biotechnology [45].

3.3. Linear Viscoelastic Response of the cPGMA Samples

Figure 6 shows the master curves of the storage, G′, the loss, G′′, moduli of samples
cPGMA 1, cPGMA2 and cPGMA3 at TR = 303 K. The superposition is excellent in all cases.
The samples look very similar to the expected behaviour observed in unentangled polymers.
In fact, the linear viscoelastic fingerprint resembles that predicted by the Rouse and Zimm
models for unentangled systems [46,47], but being closer to the last one. Rouse dynamics
predicts a power law of G* ~ω1/2. This model assumes that hydrodynamic interactions
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are screened by the segments of overlapping polymeric chains. This mechanism means
that the internal segments are shielded, and do not contribute to the viscous drag. On
the contrary, the Zimm scaling, G* ~ ω2/3, accounts for the hydrodynamic interactions,
due to the cooperative motions of internal polymer segments within the system. Then,
by analogy with the Zimm model, the results shown in Figure 6 suggest the presence of
unshielded internal polymer segments that contribute to viscous drag, with respect to the
observed in the pure Rouse model. However, it is problematic to assign these hydrodynamic
interactions as in the original Zimm model. It is more likely that the behaviour observed
will emerge from a specific distribution of the cPGMA segments at small length scales. A
distinct spacing of inter and intramolecular bonds created during the double polymerization
process gives rise to a modulation of the interaction of the internal segments with the
surrounding nanoassemblies [18]. Then, in addition to the differences observed in their
size, a variable density of crosslinking in the cPGMA samples may be anticipated from
these results. It should also be noted that the Zimm-like regime extends over decades
within the frequency range. This behaviour is a typical response already reported in
3D macromolecules as highly branched dendrimers [13–16], bottlebrushes [17–20], highly
functionalized stars [21–24].
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Figure 6. Dynamic master curves of G′ (squares) and G′′ (circles) at a reference temperature
TR = 303 K. Lines showing the slopes 1/2 (Rouse) and 2/3 (Zimm) are indicated.

It is quite interesting the fact that the terminal zone, especially in the cPGMA1 sample,
takes place at very low frequency which indicates a characteristic long relaxation time. This
behaviour cannot be explained in the framework of classical polymer dynamics, and it can
only be ascribed to a structural relaxation due to the soft colloidal nature of the cPGMA
samples [24,25,48]. In this case the relaxation proceeds via a very slow centre-of-mass
motions due to the caging of the neighbours. At these low frequencies, the samples are able
to relax and the slopes of G′ and G′′ reach values close to 2 and 1, respectively.

The specific construction of the macromolecular assemblies promotes the total ab-
sence of entanglements. This phenomenon can be clearly observed in Figure 7A. A direct
comparison between the cPGMA1 sample and a polystyrene (PS) sample with identical
hydrodynamic radius, rh, is presented. The temperature has been selected at the same
distance as the respective glass transition temperature values for each of the polymers.
The relaxation at high frequencies proceeds in a similar way in the samples. However,
at a given frequency the PS sample displays a noticeable entanglement plateau, which is
a characteristic of a well-entangled polymer melts. This plateau persists on decreasing
frequency for 3–4 decades before ultimately incoming the terminal flow at very low fre-
quencies. The cPGMA1 sample shows a power law behaviour that persists over the whole
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frequency range up to the terminal relaxation. It is important to note that the PS sample
has been selected in such a way that the hydrodynamic size is identical to that measured
for cPGMA1 sample.
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Figure 7. (A) Storage and loss moduli master curves of cPGMA3 (lines) and linear PS sample at TR =
Tg + 18 K (391 K). Both samples have the same hydrodynamic size. (B) Complex viscosity obtained
for the samples under study (�, black) cPGMA1, (◦, red) cPGMA2 and (4, blue) cPGMA3 and the
(+, green) linear PS sample at TR = Tg + 18 K (303 K).

The effect of the absence of entanglements in the samples is also noticeable in Figure 7B,
in which the angular frequency dependence of the modulus of the complex viscosity, |η*|,
is plotted for the samples in comparison to that obtained for the linear entangled PS refer-
ence. The effect of entanglement in PS is clear, and the viscosity at low frequencies reaches
a value 3 orders of magnitude higher than those measured in the samples under study at
the same distance from Tg. It should be noted that samples exhibit a characteristic regime
with slope −1/3 at high frequencies, which matches with the typical scaling predicted by
the Zimm model in the complex viscosity curve. We have examined the dependence of
the complex viscosity from the angular frequency by fitting the experimental curves to the
Carreau model, given by the following expression [49]:

|η∗(ω)| = η0[
1 + (ωτ0)

2
] 1−n

2
(6)

From the fit of Equation (6) to the experimental results in Figure 7B the values of the
Newtonian viscosity, η0, and relaxation time, τ0, have been extracted. Both parameters,
listed in Table 2, decrease when moving from cPGMA1 to cPGMA3. A recent study
performed by Luo and co-workers has proposed that the relaxation time (or viscosity) in
this type of 3D macromolecular systems depends on both the nanoparticle size and the
cross-linking density [50]. The relaxation time increases due to both features at the 30th and
10th power, respectively. Moreover, these authors propose that the soft nanoparticles larger
than a certain critical value are not able to relax within the experimental time window
available. Our results suggest that the cPGMA samples are well below the critical value,
as they effectively relax. Interestingly, the relaxation time measured decreases as the size
increases. Considering the recent picture described by Luo and co-workers, the decrease
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in η0 and τ0 may be explained by assuming also a decreased cross-linking density when
moving from cPGMA1 to cPGMA3 samples (please note that the molecular weight values
in Table 2 are only apparent).

The van Gurp–Palmen plot is quite useful in rheology, not only for the assessment
of the time-temperature superposition, but also to investigate the effect of molecular
architecture in polymer dynamics [51]. It has been demonstrated that such a representation
is quite sensitive to the molecular parameters (molecular weight distribution) and the
topology (branching content and molecular shape) of the polymeric chains [52,53]. In
fact, a polymer melt with many distinct relaxation modes will produce a multimodal
van Gurp–Palmen plot with different separated local minima due to time/size sequential
relaxation mechanisms. Figure 8 presents the linear viscoelastic fingerprint for the samples
studied here in comparison to that of the PS reference plotted as the van Gurp–Palmen
plot of the phase angle, δ, versus the complex modulus, |G*|. The curves obtained at the
different temperatures between 20 ◦C and 90 ◦C collapse, for each material, in a single one.
This indicates that the cPGMA samples are thermorheologically simple, at least within
the temperature range explored. Sample cPGMA3 shows the typical behaviour of an
unentangled system, as a unique transition from the glassy dynamics at high values of
|G*| to the viscous flow (δ = 90 ◦) at low values of |G*| is clearly identified. Samples
cPGMA2 and cPGMA1 show a characteristic bimodal response, with an inflexion in the
intermediate regime just within the zone in which the Zimm-like behaviour is observed
for G′ and G”. This specific shape of the van Gurp–Palmen plot has already been observed
in systems such as bottlebrushes, wedged and dendronized polymers [18,20,26,27]. The
inflexion point marks the onset of the terminal relaxation of the whole system, and it
may be attributed to internal relaxation (sliding) of the macromolecular nanoassembly,
resulting from the cooperative motions. The van Gurp–Palmen fingerprint of the cPGMA
samples is clearly different from the observed in an entangled polymer, for which a sharp
minimum in δ function is observed at a characteristic value of |G*| due to the existence
of entanglements.
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4. Conclusions

The rheological properties soft cPGMA nanoassemblies have been determined in a
broad range of temperatures, and the time—temperature superposition has been applied
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to obtain master curves of the whole viscoelastic response from the glassy to the terminal
regions. The temperature dependence of the rheological properties follows the free volume
WLF theory, but the fragility values obtained are quite lower than the observed in typical
amorphous fragile materials. The value obtained is typical of van de Waal fluids, sug-
gesting an effective packing of the macromolecular assemblies. The analysis of the linear
viscoelastic fingerprint reveals specific Zimm-like dynamics at intermediate frequencies, as
it has been observed in unentangled polymers, special topologies (stars, dendrimers, and
bottlebrushes), soft colloids and microgels. All samples show terminal relaxation at low
frequencies, suggesting a modulation between the nanoparticle size and the cross-linking
density. This is an interesting result as it points towards the possibility of tuning the flow
dynamics of the nanoassemblies by means of the polymerization process controlling the
size and internal segment density of the nanoparticles.
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