Micromechanical Modeling for Tensile Properties of Wood Plastic Composites: Use of Pruned Waste from Pecan Orchards as Sustainable Material for Reinforcement of Thermoplastic Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Fabrication
2.3. Mechanical Testing
2.4. Analysis of Variance
3. Results and Discussion
3.1. Tensile Properties
3.1.1. Tensile Strength
3.1.2. Elastic Modulus
3.2. Micromechanical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Data of the Study from Excel Format
Pecan Waste Stress Data | ||
---|---|---|
Mesh | Weight(%) | Tensile (MPa) |
10 | 10 | 21.278 |
10 | 10 | 21.499 |
10 | 10 | 22.735 |
10 | 10 | 20.523 |
10 | 10 | 23.982 |
10 | 10 | 24.616 |
10 | 30 | 32.119 |
10 | 30 | 27.018 |
10 | 30 | 29.187 |
10 | 30 | 25.849 |
10 | 30 | 25.986 |
10 | 30 | 26.761 |
10 | 40 | 26.097 |
10 | 40 | 28.236 |
10 | 40 | 27.889 |
10 | 40 | 31.306 |
10 | 40 | 31.196 |
10 | 40 | 28.624 |
10 | 50 | 33.003 |
10 | 50 | 33.940 |
10 | 50 | 33.527 |
10 | 50 | 34.417 |
10 | 50 | 33.259 |
10 | 50 | 33.380 |
10 | 60 | 22.703 |
10 | 60 | 27.681 |
10 | 60 | 34.677 |
10 | 60 | 27.512 |
10 | 60 | 35.691 |
10 | 60 | 33.429 |
20 | 10 | 23.687 |
20 | 10 | 21.485 |
20 | 10 | 23.083 |
20 | 10 | 24.590 |
20 | 10 | 23.142 |
20 | 10 | 24.292 |
20 | 30 | 26.173 |
20 | 30 | 25.883 |
20 | 30 | 27.679 |
20 | 30 | 26.054 |
20 | 30 | 24.199 |
20 | 30 | 26.076 |
20 | 40 | 29.720 |
20 | 40 | 30.501 |
20 | 40 | 29.349 |
20 | 40 | 30.977 |
20 | 40 | 30.103 |
20 | 40 | 30.696 |
20 | 50 | 31.618 |
20 | 50 | 37.457 |
20 | 50 | 31.536 |
20 | 50 | 35.139 |
20 | 50 | 36.394 |
20 | 50 | 33.753 |
20 | 60 | 37.505 |
20 | 60 | 34.012 |
20 | 60 | 40.334 |
20 | 60 | 40.303 |
20 | 60 | 40.657 |
20 | 60 | 37.903 |
40 | 10 | 22.865 |
40 | 10 | 24.936 |
40 | 10 | 25.435 |
40 | 10 | 24.640 |
40 | 10 | 24.236 |
40 | 10 | 24.908 |
40 | 30 | 32.880 |
40 | 30 | 31.346 |
40 | 30 | 32.696 |
40 | 30 | 33.782 |
40 | 30 | 30.238 |
40 | 30 | 33.369 |
40 | 40 | 36.338 |
40 | 40 | 34.491 |
40 | 40 | 36.383 |
40 | 40 | 37.522 |
40 | 40 | 34.345 |
40 | 40 | 33.819 |
40 | 50 | 40.644 |
40 | 50 | 40.156 |
40 | 50 | 36.398 |
40 | 50 | 40.570 |
40 | 50 | 33.350 |
40 | 50 | 38.242 |
40 | 60 | 34.302 |
40 | 60 | 38.961 |
40 | 60 | 34.907 |
40 | 60 | 38.401 |
40 | 60 | 40.588 |
40 | 60 | 33.118 |
60 | 10 | 23.665 |
60 | 10 | 24.488 |
60 | 10 | 24.174 |
60 | 10 | 23.863 |
60 | 10 | 24.411 |
60 | 10 | 25.130 |
60 | 30 | 31.768 |
60 | 30 | 27.668 |
60 | 30 | 28.188 |
60 | 30 | 27.362 |
60 | 30 | 29.310 |
60 | 30 | 23.615 |
60 | 40 | 39.040 |
60 | 40 | 36.378 |
60 | 40 | 38.624 |
60 | 40 | 37.550 |
60 | 40 | 35.671 |
60 | 40 | 37.830 |
60 | 50 | 37.126 |
60 | 50 | 38.760 |
60 | 50 | 36.135 |
60 | 50 | 38.641 |
60 | 50 | 34.714 |
60 | 50 | 36.205 |
60 | 60 | 35.448 |
60 | 60 | 35.381 |
60 | 60 | 39.456 |
60 | 60 | 34.553 |
60 | 60 | 40.417 |
60 | 60 | 33.938 |
References
- Saha, P.; Chowdhury, S.; Roy, D.; Adhikari, B.; Kim, J.K.; Thomas, S. A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites. Polym. Bull. 2016, 73, 587–620. [Google Scholar] [CrossRef]
- Ashori, A.; Nourbakhsh, A. Reinforced polypropylene composites: Effects of chemical compositions and particle size. Bioresour. Technol. 2010, 101, 2515–2519. [Google Scholar] [CrossRef] [PubMed]
- Abba, H.A.; Nur, I.Z.; Salit, S.M. Review of Agro Waste Plastic Composites Production. J. Miner. Mater. Charact. Eng. 2013, 1, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Väisänen, T.; Haapala, A.; Lappalainen, R.; Tomppo, L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Manag. 2016, 54, 62–73. [Google Scholar] [CrossRef]
- Oksman, K.; Skrifvars, M.; Selin, J.F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 2003, 63, 1317–1324. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Ferrández-García, C.E.; Ferrández-García, A.; Ferrández-Villena, M.; Hidalgo-Cordero, J.F.; García-Ortuño, T.; Ferrández-García, M.T. Physical and mechanical properties of particleboard made from palm tree prunings. Forests 2018, 9, 755. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Estrada, R.H.; Guillén-Mallette, J.; Cupul-Manzano, C.V.; Balam-Hernández, J.I. Potential use of waste from tree pruning and recovered plastic to obtain a building material: Case study of Merida, Mexico. Waste Manag. Res. 2020, 38, 1222–1230. [Google Scholar] [CrossRef]
- Moreno, D.D.P.; Saron, C. Low-density polyethylene waste/recycled wood composites. Compos. Struct. 2017, 176, 1152–1157. [Google Scholar] [CrossRef]
- Valles-Rosales, D.J.; Rodríguez-Picón, L.A.; Méndez-González, L.C.; del Valle-Carrasco, A.; Alodan, H. Analysis of the mechanical properties of wood-plastic composites based on agriculture chili pepper waste. Maderas Cienc. Y Tecnol. 2016, 18, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Oliver-Ortega, H.; Chamorro-Trenado, M.À.; Soler, J.; Mutjé, P.; Vilaseca, F.; Espinach, F.X. Macro and micromechanical preliminary assessment of the tensile strength of particulate rapeseed sawdust reinforced polypropylene copolymer biocomposites for its use as building material. Constr. Build. Mater. 2018, 168, 422–430. [Google Scholar] [CrossRef]
- Sutivisedsak, N.; Cheng, H.N.; Burks, C.S.; Johnson, J.A.; Siegel, J.P.; Civerolo, E.L.; Biswas, A. Use of Nutshells as Fillers in Polymer Composites. J. Polym. Environ. 2012, 20, 305–314. [Google Scholar] [CrossRef]
- Jorda-Reolid, M.; Gomez-Caturla, J.; Ivorra-Martinez, J.; Stefani, P.M.; Rojas-Lema, S.; Quiles-Carrillo, L. Upgrading argan shell wastes in wood plastic composites with biobased polyethylene matrix and different compatibilizers. Polymers 2021, 13, 922. [Google Scholar] [CrossRef] [PubMed]
- Maldas, D.; Nizio, J.; Kokta, B.V. Performance of surface modified nutshell flour in hdpe compositest. Int. J. Polym. Mater. Polym. Biomater. 1992, 17, 1–16. [Google Scholar] [CrossRef]
- Adhikary, K.B.; Pang, S.; Staiger, M.P. Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. Part B Eng. 2008, 39, 807–815. [Google Scholar] [CrossRef]
- Gallagher, L.W.; McDonald, A.G. The effect of micron sized wood fibers in wood plastic composites. Maderas Cienc. Y Tecnol. 2013, 15, 357–374. [Google Scholar] [CrossRef] [Green Version]
- Chemaxon. Chemicalize. Available online: https://chemaxon.com (accessed on 29 December 2021).
- Available online: https://molview.org/?cid=8252 (accessed on 29 December 2021).
- Rowell, R.; Pettersen, R.; Tshabalala, M. Handbook of Wood Chemistry and Wood Composites: Cell Wall Chemistry; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2012. [Google Scholar]
- Gołofit, T.; Zielenkiewicz, T.; Gawron, J.; Cieślak, K.; Tomaszewski, W.; Chmielarek, M.; Maksimowski, P.; Pawłowski, W. Examination of chemical composition of wood-plastic composites by differential scanning calorimetry and infrared spectroscopy. Polim. Polym. 2019, 64, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Mandal, M.; Maji, T.K. Comparative study on the properties of wood polymer composites based on different modified soybean oils. J. Wood Chem. Technol. 2017, 37, 124–135. [Google Scholar] [CrossRef]
- Lu, J.Z.; Duan, X.; Wu, Q.; Lian, K. Chelating efficiency and thermal, mechanical and decay resistance performances of chitosan copper complex in wood-polymer composites. Bioresour. Technol. 2008, 99, 5906–5914. [Google Scholar] [CrossRef]
- Elloumi, I.; Koubaa, A.; Kharrat, W.; Bradai, C.; Elloumi, A. Dielectric properties of wood-polymer composites: Effects of frequency, fiber nature, proportion, and chemical composition. J. Compos. Sci. 2021, 5, 141. [Google Scholar] [CrossRef]
- Facca, A.G.; Kortschot, M.T.; Yan, N. Predicting the tensile strength of natural fibre reinforced thermoplastics. Compos. Sci. Technol. 2007, 67, 2454–2466. [Google Scholar] [CrossRef]
- Kalaprasad, G.; Joseph, K.; Thomas, S.; Pavithran, C. Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. J. Mater. Sci. 1997, 32, 4261–4267. [Google Scholar] [CrossRef]
- Munde, Y.S.; Ingle, R.B. Theoretical Modeling and Experimental Verification of Mechanical Properties of Natural Fiber Reinforced Thermoplastics. Procedia Technol. 2015, 19, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Palsule, S.; Ogunsile, B.O.; Singh, P.; Singh, A.A. Natural hardwood fiber reinforced chemically functionlized polyethylene composites with in-situ fiber/matrix interfacial adhesion. Appl. Polym. Compos. 2013, 1, 57. [Google Scholar]
- Subramaniam, S.; Anbalagan, K.; Jeyaraj, S.; Murugan, S. Stochastic numerical simulation for the evaluation of mechanical properties of filled polymer composites. Medziagotyra 2017, 23, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Essabir, H.; Achaby, M.E.I.; Hilali, E.M.; Bouhfid, R.; Qaiss, A.E. Morphological, Structural, Thermal and Tensile Properties of High Density Polyethylene Composites Reinforced with Treated Argan Nut Shell Particles. J. Bionic Eng. 2015, 12, 129–141. [Google Scholar] [CrossRef]
- Raj, R.G.; Kokta, B.V.; Nizio, J.D. Studies on mechanical properties of polyethylene–organic fiber composites. I. Nut shell flour. J. Appl. Polym. Sci. 1992, 45, 91–101. [Google Scholar] [CrossRef]
- Miles, P.D.; Smith, W.B. Specific Gravity and Other Properties of Wood and Bark for 156 Tree Species Found in North America; Note. NRS-38; US Deparment of Agriculture: Newtown, PA, USA, 2009; Volume 38.
- Stark, N.M.; Berger, M.J. Effect of particle size on properties of wood-flour reinforced polypropylene composites. In Proceedings of the Fourth International Conference on Woodfiber-Plastic Composites, Madison, WI, USA, 12–14 May 1997. [Google Scholar]
- Mijiyawa, F.; Koffi, D.; Kokta, B.V.; Erchiqui, F. Formulation and tensile characterization of wood-plastic composites: Polypropylene reinforced by birch and aspen fibers for gear applications. J. Thermoplast. Compos. Mater. 2015, 28, 1675–1692. [Google Scholar] [CrossRef]
- Stark, N.M.; Rowlands, R.E. Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites. Wood Fiber Sci. 2003, 35, 173–174. [Google Scholar]
- Hill, R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 1963, 11, 357–372. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Rösler, J.; Harders, H.; Bäker, M. Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
Composite Code | Mesh | Hdpe | Pecan Wood | Polybond 3009 |
---|---|---|---|---|
HDPE | 0 | 100 | 0 | 0 |
HDPE90P10 | 10 | 86.5 | 10 | 3.5 |
HDPE70P30 | 10 | 66.5 | 30 | 3.5 |
HDPE60P40 | 10 | 56.5 | 40 | 3.5 |
HDPE50P50 | 10 | 46.5 | 50 | 3.5 |
HDPE40P60 | 10 | 36.5 | 60 | 3.5 |
HDPE90P10 | 20 | 86.5 | 10 | 3.5 |
HDPE70P30 | 20 | 66.5 | 30 | 3.5 |
HDPE60P40 | 20 | 56.5 | 40 | 3.5 |
HDPE50P50 | 20 | 46.5 | 50 | 3.5 |
HDPE40P60 | 20 | 36.5 | 60 | 3.5 |
HDPE90P10 | 40 | 86.5 | 10 | 3.5 |
HDPE70P30 | 40 | 66.5 | 30 | 3.5 |
HDPE60P40 | 40 | 56.5 | 40 | 3.5 |
HDPE50P50 | 40 | 46.5 | 50 | 3.5 |
HDPE40P60 | 40 | 36.5 | 60 | 3.5 |
HDPE90P10 | 60 | 86.5 | 10 | 3.5 |
HDPE70P30 | 60 | 66.5 | 30 | 3.5 |
HDPE60P40 | 60 | 56.5 | 40 | 3.5 |
HDPE50P50 | 60 | 46.5 | 50 | 3.5 |
HDPE40P60 | 60 | 36.5 | 60 | 3.5 |
Source of Variation | Degrees of Freedom | Seq Sum of Squares | Contribution | Adjusted Sums of Squares | Adjusted Mean Squares | Test Statistic F-Value for the Model | Significance Level p-Value |
---|---|---|---|---|---|---|---|
Mesh size | 3 | 433.3 | 11.39% | 433.3 | 144.448 | 30.28 | 5.18 × 10−16 |
Weight fraction | 4 | 2557.6 | 67.20% | 2557.6 | 639.395 | 134.04 | 1.1 × 10−18 |
Mesh size * Weight | 12 | 338.0 | 8.88% | 338.0 | 28.166 | 5.90 | 1.15 × 10−7 |
Error | 100 | 477.0 | 12.53% | 477.0 | 4.770 | ||
Total | 119 | 3805.9 | 100.00% |
Pecan Weight Ratio | Volume Fraction | Tensile (MPa) | Std Deviation | Tensile% Increase |
---|---|---|---|---|
0 | 0 | 24.50 | 0 | 0 |
0.1 | 0.134 | 24.503 | 0.893 | 0.010 |
0.3 | 0.374 | 32.380 | 1.337 | 32.160 |
0.4 | 0.482 | 35.480 | 1.466 | 44.820 |
0.5 | 0.582 | 38.220 | 2.950 | 56.000 |
0.6 | 0.676 | 36.710 | 2.990 | 49.840 |
Weight | Volume Fraction | Tensile (MPa) | Tensile% Increase |
---|---|---|---|
0 | 0 | 24.500 | 0 |
0.1 | 0.134 | 24.505 | 0.0 |
0.3 | 0.374 | 28.590 | 16.7 |
0.4 | 0.482 | 33.050 | 34.9 |
0.5 | 0.582 | 35.670 | 45.5 |
0.6 | 0.676 | 35.440 | 44.5 |
Source of Variation | SS | DF | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
Mesh Size | 0.11899 | 3 | 0.039665 | 0.537574 | 0.665421 | 3.490295 |
Weight Ratio | 5.91306 | 4 | 1.478267 | 20.03492 | 3.03 × 10−5 | 3.259167 |
Error | 0.88541 | 12 | 0.073785 | |||
Total | 6.91747 | 19 |
Weight | Volume Fraction | Elastic Modulus (E) (GPa) | Standard Deviation | E% Increase |
---|---|---|---|---|
0 | 0 | 0.75 | 0 | 0 |
0.1 | 0.1343 | 0.946 | 0.096 | 26.2 |
0.3 | 0.3745 | 1.475 | 0.321 | 96.7 |
0.4 | 0.4822 | 2.054 | 0.183 | 173.8 |
0.5 | 0.5828 | 2.362 | 0.284 | 214.9 |
0.6 | 0.6769 | 2.318 | 0.152 | 209.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Mendoza, J.M.; Valles-Rosales, D.J.; Park, Y.H.; Sabo, R.C. Micromechanical Modeling for Tensile Properties of Wood Plastic Composites: Use of Pruned Waste from Pecan Orchards as Sustainable Material for Reinforcement of Thermoplastic Composite. Polymers 2022, 14, 504. https://doi.org/10.3390/polym14030504
Díaz-Mendoza JM, Valles-Rosales DJ, Park YH, Sabo RC. Micromechanical Modeling for Tensile Properties of Wood Plastic Composites: Use of Pruned Waste from Pecan Orchards as Sustainable Material for Reinforcement of Thermoplastic Composite. Polymers. 2022; 14(3):504. https://doi.org/10.3390/polym14030504
Chicago/Turabian StyleDíaz-Mendoza, Juan Miguel, Delia J. Valles-Rosales, Young H. Park, and Ronald C. Sabo. 2022. "Micromechanical Modeling for Tensile Properties of Wood Plastic Composites: Use of Pruned Waste from Pecan Orchards as Sustainable Material for Reinforcement of Thermoplastic Composite" Polymers 14, no. 3: 504. https://doi.org/10.3390/polym14030504
APA StyleDíaz-Mendoza, J. M., Valles-Rosales, D. J., Park, Y. H., & Sabo, R. C. (2022). Micromechanical Modeling for Tensile Properties of Wood Plastic Composites: Use of Pruned Waste from Pecan Orchards as Sustainable Material for Reinforcement of Thermoplastic Composite. Polymers, 14(3), 504. https://doi.org/10.3390/polym14030504