Green Extraction of Carrageenans from Mastocarpus stellatus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Extraction Procedures
2.2.1. Pressurized Hot Water Extraction Process
2.2.2. Isolation of Carrageenan
2.3. Characterization of the Raw Material
2.3.1. Proximal Characterization of the Seaweed
2.3.2. Metals Determination
2.3.3. Sulfate Determination
2.4. Physicochemical Characterization of the Hydrothermal Carrageenan-Free Liquid Phases
2.4.1. pH
2.4.2. Soluble Sulfate Content
2.4.3. Soluble Protein Content
2.4.4. Phenolic Content
2.4.5. Antiradical Properties-TEAC Value
2.4.6. Oligosaccharides Composition
2.4.7. Profile of Molar Mass Distribution
2.5. Carrageenans Characterization
2.5.1. Fourier-Transform Infrared (FT-IR) Spectra
2.5.2. Proton Nuclear Marnetic Resonance (NMR)
2.5.3. Rheological Testing
2.6. Cell Viability of the Free-Carrageenan Liquid Phases and the Carrageenans
2.7. Statistical Analysis
3. Results and Discussion
3.1. Raw Material
3.2. Physicochemical Characterization of Carrageenan-Free Liquid Phases after Hydrothermal Extraction Process
3.2.1. Soluble Sulfate Content
3.2.2. Soluble Protein Content
3.2.3. Phenolic Content
3.2.4. Antiradical Properties-TEAC Value
3.2.5. Oligosaccharides Composition
3.2.6. Profile of Molar Mass Distribution
3.3. Features of Extracted Carrageenans
3.3.1. Structural Features
3.3.2. Rheological Features
3.4. Biological Activity: Antiproliferative Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aziz, E.; Batool, R.; Khan, M.U.; Rauf, A.; Akhtar, W.; Heydari, M.; Rehman, S.; Shahzad, T.; Malik, A.; Mosavat, S.H.; et al. An overview on red algae bioactive compounds and their pharmaceutical applications. J. Complement. Integr. Med. 2020, 17, 20190203. [Google Scholar] [CrossRef] [PubMed]
- Francezon, N.; Tremblay, A.; Mouget, J.L.; Pasetto, P.; Beaulieu, L. Algae as a Source of Natural Flavors in Innovative Foods. J. Agric. Food Chem. 2021, 69, 11753–11772. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, B.; Chauhan, O.P.; Mishra, A. Edible Seaweeds: A Potential Novel Source of Bioactive Metabolites and Nutraceuticals With Human Health Benefits. Front. Mar. Sci. 2021, 8, 740054. [Google Scholar] [CrossRef]
- Cikoš, A.M.; Jerković, I.; Molnar, M.; Šubarić, D.; Jokić, S. New trends for macroalgal natural products applications. Nat. Prod. Res. 2021, 35, 1180–1191. [Google Scholar] [CrossRef]
- Qiu, S.M.; Aweya, J.J.; Liu, X.; Liu, Y.; Tang, S.; Zhang, W.; Cheong, K.L. Bioactive polysaccharides from red seaweed as potent food supplements: A systematic review of their extraction, purification, and biological activities. Carbohydr. Polym. 2022, 275, 118696. [Google Scholar] [CrossRef] [PubMed]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. An overview to the health benefits of seaweeds consumption. Mar. Drugs 2021, 19, 341. [Google Scholar] [CrossRef] [PubMed]
- Tasende, M.G.; Manríquez-Hernández, J.A. Carrageenan properties and applications: A review. In Carrageenans: Sources and Extraction Methods, Molecular Structure, Bioactive Properties and Health Effects; Pereira, L., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2016; pp. 17–49. ISBN 9781634855341. [Google Scholar]
- Afonso, C.; Correia, A.P.; Freitas, M.V.; Baptista, T.; Neves, M.; Mouga, T. Seasonal changes in the nutritional composition of Agarophyton vermiculophyllum (Rhodophyta, gracilariales) from the center of Portugal. Foods 2021, 10, 1145. [Google Scholar] [CrossRef]
- Kartik, A.; Akhil, D.; Lakshmi, D.; Panchamoorthy Gopinath, K.; Arun, J.; Sivaramakrishnan, R.; Pugazhendhi, A. A critical review on production of biopolymers from algae biomass and their applications. Bioresour. Technol. 2021, 329, 124868. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Y.; Wang, L.; Yin, W.; Liang, J. Antioxidant activity and subcritical water extraction of anthocyanin from raspberry process optimization by response surface methodology. Food Biosci. 2021, 44, 101394. [Google Scholar] [CrossRef]
- Nkurunziza, D.; Sivagnanam, S.P.; Park, J.S.; Cho, Y.J.; Chun, B.S. Effect of wall materials on the spray drying encapsulation of brown seaweed bioactive compounds obtained by subcritical water extraction. Algal Res. 2021, 58, 102381. [Google Scholar] [CrossRef]
- Xu, S.; Fang, D.; Tian, X.; Xu, Y.; Zhu, X.; Wang, Y.; Lei, B.; Hu, P.; Ma, L. Subcritical water extraction of bioactive compounds from waste cotton (Gossypium hirsutum L.) flowers. Ind. Crops Prod. 2021, 164, 113369. [Google Scholar] [CrossRef]
- Félix, R.; Carmona, A.M.; Félix, C.; Novais, S.C.; Lemos, M.F.L. Industry-friendly hydroethanolic extraction protocols for Grateloupia turuturu UV-shielding and antioxidant compounds. Appl. Sci. 2020, 10, 5304. [Google Scholar] [CrossRef]
- Yun, E.J.; Yu, S.; Kim, Y.A.; Liu, J.J.; Kang, N.J.; Jin, Y.S.; Kim, K.H. In Vitro prebiotic and anti-colon cancer activities of agar-derived sugars from red seaweeds. Mar. Drugs 2021, 19, 213. [Google Scholar] [CrossRef] [PubMed]
- da Costa, E.; Melo, T.; Reis, M.; Domingues, P.; Calado, R.; Abreu, M.H.; Domingues, M.R. Polar lipids composition, antioxidant and anti-inflammatory activities of the atlantic red seaweed Grateloupia turuturu. Mar. Drugs 2021, 19, 414. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Viñas, M.; Souto, S.; Flórez-Fernández, N.; Torres, M.D.; Bandín, I.; Domínguez, H. Antiviral Activity of Carrageenans and Processing Implications. Mar. Drugs 2021, 19, 437. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, X.; Ge, L.; Zi, Y.; Qi, M.; Li, Y.; Li, D.; Mu, C. Green synthesis of κ-carrageenan@Ag submicron-particles with high aqueous stability, robust antibacterial activity and low cytotoxicity. Mater. Sci. Eng. C 2020, 106, 110185. [Google Scholar] [CrossRef] [PubMed]
- Mofeed, J.; Deyab, M.; Mohamed, A.; Moustafa, M.; Negm, S.; El-Bilawy, E. Antimicrobial activities of three seaweeds extract against some human viral and bacterial pathogens. Biocell 2022, 46, 247–261. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, X.; Gao, Y.; Yin, J.; Bai, M.; Wang, F. Green synthesis of gold nanoparticles using carrageenan oligosaccharide and their in vitro antitumor activity. Mar. Drugs 2018, 16, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, D.; Nayak, S.K.; Maji, S.; Kim, D.; Banerjee, I.; Pal, K. Carrageenan: A Wonder Polymer from Marine Algae for Potential Drug Delivery Applications. Curr. Pharm. Des. 2019, 25, 1172–1186. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.; Chenlo, F.; Torres, M.D.; Silva, C.; Prieto, D.M.; Sousa, A.M.M.; Hilliou, L.; Gonçalves, M.P. Drying Kinetics of Biofilms Obtained from Chestnut Starch and Carrageenan with and without Glycerol. Dry. Technol. 2011, 29, 1058–1065. [Google Scholar] [CrossRef]
- Moreira, R.; Chenlo, F.; Torres, M.D.; Rama, B. Influence of the chestnuts drying temperature on the rheological properties of their doughs. Food Bioprod. Process. 2013, 91, 7–13. [Google Scholar] [CrossRef]
- Sangroniz, L.; Fernández, M.; Partal, P.; Santamaria, A. Rheology of polymer processing in Spain (1995–2020). Polymers 2021, 13, 2314. [Google Scholar] [CrossRef] [PubMed]
- González-López, N.; Moure, A.; Domínguez, H. Hydrothermal fractionation of Sargassum muticum biomass. J. Appl. Phycol. 2012, 24, 1569–1578. [Google Scholar] [CrossRef]
- Lourenço, S.O.; Barbarino, E.; De-Paula, J.C.; da S. Pereira, L.O.; Marquez, U.M.L. Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol. Res. 2002, 50, 233–241. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Jiménez-Escrig, A.; Rupérez, P. Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res. Int. 2010, 43, 2289–2294. [Google Scholar] [CrossRef]
- Dodgson, K.S. Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochem. J. 1961, 78, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Koivikko, R.; Loponen, J.; Honkanen, T.; Jormalainen, V. Contents of solubre, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol. 2005, 31, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- González-Ballesteros, N.; Torres, M.D.; Flórez-Fernández, N.; Diego-González, L.; Simón-Vázquez, R.; Rodríguez-Argüelles, M.C.; Domínguez, H. Eco-friendly extraction of Mastocarpus stellatus carrageenan for the synthesis of gold nanoparticles with improved biological activity. Int. J. Biol. Macromol. 2021, 183, 1436–1449. [Google Scholar] [CrossRef]
- Torres, M.D.; Chenlo, F.; Moreira, R. Rheology of k/i-hybrid carrageenan from Mastocarpus stellatus: Critical parameters for the gel formation. Int. J. Biol. Macromol. 2016, 86, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ordóñez, E.; Alonso, E.; Rupérez, P. A simple ion chromatography method for inorganic anion analysis in edible seaweeds. Talanta 2010, 82, 1313–1317. [Google Scholar] [CrossRef] [PubMed]
- Rioux, L.; Turgeon, S.L. Seaweed carbohydrates. In Seaweed Sustainability: Food and Non-Food Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 141–192. ISBN 9780124186972. [Google Scholar]
- Barral-Martínez, M.; Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. Tailoring hybrid carrageenans from Mastocarpus stellatus red seaweed using microwave hydrodiffusion and gravity. Carbohydr. Polym. 2020, 248, 116830. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Pascual, N.; Gómez-Guillén, M.C.; Montero, M.P. Integral Mastocarpus stellatus use for antioxidant edible film development. Food Hydrocoll. 2014, 40, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Balboa, M.E.; Rivas, S.; Moure, A.; Domínguez, H.; Parajó, J.C. Simultaneous extraction and depolymerization of fucoidan from Sargassum muticum in aqueous media. Mar. Drugs 2013, 11, 4612–4627. [Google Scholar] [CrossRef] [Green Version]
- Flórez-Fernández, N.; Torres, M.D.; González-Muñoz, M.J.; Domínguez, H. Recovery of bioactive and gelling extracts from edible brown seaweed Laminaria ochroleuca by non-isothermal autohydrolysis. Food Chem. 2019, 277, 353–361. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Jiménez-Escrig, A.; Rupérez, P. Bioactivity of sulfated polysaccharides from the edible red seaweed Mastocarpus stellatus. Bioact. Carbohydr. Diet. Fibre 2014, 3, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Alemán, A.; Blanco-Pascual, N.; Montero, M.P.; Gómez-Guillén, M.C. Simple and efficient hydrolysis procedure for full utilization of the seaweed Mastocarpus stellatus to produce antioxidant films. Food Hydrocoll. 2016, 56, 277–284. [Google Scholar] [CrossRef]
- Azevedo, G.; Torres, M.D.; Sousa-Pinto, I.; Hilliou, L. Effect of pre-extraction alkali treatment on the chemical structure and gelling properties of extracted hybrid carrageenan from Chondrus crispus and Ahnfeltiopsis devoniensis. Food Hydrocoll. 2015, 50, 150–158. [Google Scholar] [CrossRef]
- Silva, C.; Torres, M.D.; Moreira, R.; Chenlo, F. Enhancement effect on apparent viscosity of aqueous tragacanth gum dispersions promoted by sugars. Int. J. Food Sci. Technol. 2017, 52, 2677–2683. [Google Scholar] [CrossRef]
- Alves, C.; Pinteus, S.; Rodrigues, A.; Horta, A.; Pedrosa, R. Algae from Portuguese Coast Presented High Cytotoxicity and Antiproliferative Effects on an In Vitro Model of Human Colorectal Cancer. Pharmacogn. Res. 2018, 10, 24–30. [Google Scholar] [CrossRef]
- Prasedya, E.S.; Miyake, M.; Kobayashi, D.; Hazama, A. Carrageenan delays cell cycle progression in human cancer cells in Vitro demonstrated by FUCCI imaging. BMC Complement. Altern. Med. 2016, 16, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zainal Ariffin, S.H.; Yeen, W.W.; Zainol Abidin, I.Z.; Megat Abdul Wahab, R.; Zainal Ariffin, Z.; Senafi, S. Cytotoxicity effect of degraded and undegraded kappa and iota carrageenan in human intestine and liver cell lines. BMC Complement. Altern. Med. 2014, 14, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
T (°C) | pH (-) | Dry Content (%) | TEAC Value (%) | Phenolic Content (%) | Sulfate Content (%) | Protein Content (%) | Oligosaccharide Content (%) |
---|---|---|---|---|---|---|---|
70 | 7.35 ± 0.04 | 0.32 ± 0.02 f | 3.21 ± 0.15 b | 0.25 ± 0.01 a | 23.92 ± 0.37 g | 0.95 ± 0.13 a | 27.05 ± 0.17 |
80 | 7.49 ± 0.02 | 0.36 ± 0.01 f | 3.33 ± 0.12 b | 0.24 ± 0.01 a | 44.29 ± 0.26 c | 0.98 ± 0.12 a | 34.87 ± 0.12 |
90 | 7.50 ± 0.01 | 0.34 ± 0.01 f | 3.76 ± 0.13 a | 0.24 ± 0.01 a | 45.67 ± 0.35 b | 1.15 ± 0.12 a | 43.00 ± 0.15 |
100 | 6.85 ± 0.04 | 0.67 ± 0.01 e | 2.37 ± 0.36 c | 0.16 ± 0.01 b | 39.09 ± 0.35 e | 1.27 ± 0.08 a | 47.30 ± 0.07 |
130 | 7.04 ± 0.01 | 1.76 ± 0.05 d | 1.26 ± 0.10 e | 0.04 ± 0.01 d | 36.48 ± 0.53 f | 0.79 ± 0.10 b | 57.88 ± 0.18 |
150 | 6.98 ± 0.02 | 2.32 ± 0.01 c | 1.87 ± 0.04 d | 0.05 ± 0.01 d | 41.31 ± 0.21 d | 0.71 ± 0.04 b | 60.41 ± 0.09 |
170 | 6.73 ± 0.01 | 2.64 ± 0.03 a | 1.53 ± 0.13 e | 0.08 ± 0.01 c,d | 47.80 ± 0.82 a | 0.75 ± 0.03 b | 61.59 ± 0.15 |
190 | 6.17 ± 0.01 | 2.55 ± 0.01 b | 3.64 ± 0.17 a | 0.13 ± 0.01 c | 11.44 ± 0.59 h | 0.84 ± 0.03 b | 44.33 ± 0.23 |
A2780 | A549 | |||
---|---|---|---|---|
Sample | Emax (% Inhibition) | IC50 (mg/mL) | Emax (% Inhibition) | IC50 (mg/mL) |
E70 | 39 | - | 26 | - |
E80 | 55 | 0.40 ± 0.01 | 51 | 0.50 ± 0.01 |
E90 | 60 | 0.34 ± 0.01 | 58 | 0.45 ± 0.00 |
E100 | 63 | 0.33 ± 0.00 | 59 | 0.41 ± 0.01 |
E130 | 65 | 0.31 ± 0.01 | 59 | 0.41 ± 0.01 |
E150 | 33 | - | 28 | - |
E170 | 19 | - | 12 | - |
E190 | 13 | - | 8 | - |
C70 | 48 | - | 35 | - |
C80 | 52 | 0.43 ± 0.01 | 50 | 0.53 ± 0.01 |
C90 | 59 | 0.40 ± 0.00 | 56 | 0.50 ± 0.00 |
C100 | 58 | 0.41 ± 0.01 | 54 | 0.50 ± 0.01 |
C130 | 50 | 0.44 ± 0.01 | 48 | - |
C150 | 23 | - | 16 | - |
C170 | 12 | - | 9 | - |
C190 | 4 | - | 2 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flórez-Fernández, N.; Falqué, E.; Domínguez, H.; Torres, M.D. Green Extraction of Carrageenans from Mastocarpus stellatus. Polymers 2022, 14, 554. https://doi.org/10.3390/polym14030554
Flórez-Fernández N, Falqué E, Domínguez H, Torres MD. Green Extraction of Carrageenans from Mastocarpus stellatus. Polymers. 2022; 14(3):554. https://doi.org/10.3390/polym14030554
Chicago/Turabian StyleFlórez-Fernández, Noelia, Elena Falqué, Herminia Domínguez, and María Dolores Torres. 2022. "Green Extraction of Carrageenans from Mastocarpus stellatus" Polymers 14, no. 3: 554. https://doi.org/10.3390/polym14030554
APA StyleFlórez-Fernández, N., Falqué, E., Domínguez, H., & Torres, M. D. (2022). Green Extraction of Carrageenans from Mastocarpus stellatus. Polymers, 14(3), 554. https://doi.org/10.3390/polym14030554