Nanomaterials for the Treatment of Heavy Metal Contaminated Water
Abstract
:1. Introduction
2. Heavy Metal Toxicity
Heavy Metal Ions | Sources | Toxicity | WHO Max Limit (mg/L) | References |
---|---|---|---|---|
Cr (VI), | Metallurgy, mining, leather industries, Ferroalloys, etc. | Carcinogenic, stomach disease, puking, and Migraine, | 0.05 | [27,29,46,47] |
Pb2+ | Batteries, pesticides, fertilizers, metal plating and smelting of ores | Cancer, mental disorders, allergies, autism, dyslexia and kidney failure | 0.1 | [32,46,48,49] |
Cd2+ | Metal coating batteries, coal burning and pigments | Kidney diseases, Renal problems and carcinogen | 0.01 | [16,46,48,49,50,51] |
As | Pesticides, ceramics, animal supplements, metallurgy, electrical production, geochemical and coals. | Skin disease, Liver diseases, breathing problems and vascular complications | 0.05 | [10,30,33,36,46] |
Hg1+ | Metallurgy, catalyst, mercury lamps, paper and pulp industry, pharmaceuticals, and agricultural industry, etc. | The nervous system, blood circulatory disorder and kidney failure | 0.00003 | [29,30,46,52,53] |
Cu2+ | Pharmaceutical and chemical industries, water pipelines and alloys | Liver diseases, and brain | 0.25 | [2,46,48] |
Ni2+ | Ceramics, glass batteries and catalyst | Lung diseases, a carcinogen and causes skin diseases | 0.2 | [2,46,48] |
Zn2+ | Zinc alloys, PVC stabilizers, stabilizer, rubber and paint industry | Toxic to aqueous species, to human causes anxiety and lethargy | 0.8 | [38,42,46,54] |
3. Layered Double Hydroxides
7. Metal Oxides Nanoparticles
4. Magnetite Nanoparticles
5. Nanopolymers Composites (NPC)
6. Nanomembranes/Fibers
8. Metal-Organic Frameworks
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baby, R.; Saifullah, B.; Hussein, M.Z. Palm Kernel Shell as an effective adsorbent for the treatment of heavy metal contaminated water. Sci. Rep. 2019, 9, 18955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baby, R.; Saifullah, B.; Hussein, M.Z. Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. Nanoscale Res. Lett. 2019, 14, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzarini, A.; Piovano, A.; Pellegrini, R.; Agostini, G.; Rudić, S.; Lamberti, C.; Groppo, E. Graphitization of Activated Carbons: A Molecular-level Investigation by INS, DRIFT, XRD and Raman Techniques. Phys. Procedia 2016, 85, 20–26. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, H.; Wang, Y.; Peng, C.; Dai, J. Chinese industrial water pollution and the prevention trends: An assessment based on environmental complaint reporting system (ECRS). Alex. Eng. J. 2021, 60, 5803–5812. [Google Scholar] [CrossRef]
- Dai, L.; Lu, Q.; Zhou, H.; Shen, F.; Liu, Z.; Zhu, W.; Huang, H. Tuning oxygenated functional groups on biochar for water pollution control: A critical review. J. Hazard. Mater. 2021, 420, 126547. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, R.B.; Saifullah, B.; Rehman, F.U. Greener Method for the Removal of Toxic Metal Ions from the Wastewater by Application of Agricultural Waste as an Adsorbent. Water 2018, 10, 1316. [Google Scholar] [CrossRef] [Green Version]
- Bansal, N. Industrial Development and Challenges of Water Pollution in Coastal Areas: The Case of Surat, India. IOP Conf. Ser. Earth Environ. Sci. 2018, 120, 012001. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Zhou, N.; Zhang, T.; Zeng, H. Does the “10-Point Water Plan” reduce the intensity of industrial water pollution? Quasi-experimental evidence from China. J. Environ. Manag. 2021, 295, 113048. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Chen, L.; Lian, L.; Li, Y.; Zhao, L.; Zhou, S.; Mao, X.; Huang, T.; Gao, H.; et al. WRF-Chem simulations of ozone pollution and control strategy in petrochemical industrialized and heavily polluted Lanzhou City, Northwestern China. Sci. Total Environ. 2020, 737, 139835. [Google Scholar] [CrossRef]
- Cooper, A.M.; Felix, D.; Alcantara, F.; Zaslavsky, I.; Work, A.; Watson, P.L.; Pezzoli, K.; Yu, Q.; Zhu, D.; Scavo, A.J.; et al. Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: A case study of an urban community garden. Plant Direct 2020, 4, e00198. [Google Scholar] [CrossRef] [Green Version]
- El-Dib, F.I.; Mohamed, D.E.; El-Shamy, O.A.A.; Mishrif, M.R. Study the adsorption properties of magnetite nanoparticles in the presence of different synthesized surfactants for heavy metal ions removal. Egypt. J. Pet. 2020, 29, 1–7. [Google Scholar] [CrossRef]
- Cui, X.; Wang, X.; Liu, B. The characteristics of heavy metal pollution in surface dust in Tangshan, a heavily industrialized city in North China, and an assessment of associated health risks. J. Geochem. Explor. 2020, 210, 106432. [Google Scholar] [CrossRef]
- Parviainen, A.; Casares-Porcel, M.; Marchesi, C.; Garrido, C.J. Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain). Environ. Pollut. 2019, 253, 918–929. [Google Scholar] [CrossRef] [PubMed]
- Hoang, H.-G.; Chiang, C.-F.; Lin, C.; Wu, C.-Y.; Lee, C.-W.; Cheruiyot, N.K.; Tran, H.-T.; Bui, X.-T. Human health risk simulation and assessment of heavy metal contamination in a river affected by industrial activities. Environ. Pollut. 2021, 285, 117414. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Zeng, G.M.; Tang, L.; Zhang, Y.; Liu, Y.Y.; Lei, X.X.; Wu, M.S.; Li, Z.; Liu, C. Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour. Technol. 2011, 102, 10733–10736. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, M.S.; Bakar, M.A.; Rashed-Un-Nabi, M.; Senapathi, V.; Chung, S.Y.; Islam, M.S. Monitoring and assessment of heavy metal contamination in surface water and sediment of the Old Brahmaputra River, Bangladesh. Appl. Water Sci. 2019, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Zaytseva, O.; Neumann, G. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 2016, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.; Jin, M. Nanoscalar Structures of Spray-Dried Zein Microcapsules and in Vitro Release Kinetics of the Encapsulated Lysozyme as Affected by Formulations. J. Agric. Food Chem. 2009, 57, 3886–3894. [Google Scholar] [CrossRef]
- Niu, H.; Yang, Y.; Zhao, W.; Lv, H.; Zhang, H.; Cai, Y. Single-crystalline Fe7S8/Fe3O4 coated zero-valent iron synthesized with vacuum chemical vapor deposition technique: Enhanced reductive, oxidative and photocatalytic activity for water purification. J. Hazard. Mater. 2021, 401, 123442. [Google Scholar] [CrossRef]
- Badmus, S.O.; Oyehan, T.A.; Saleh, T.A. Enhanced efficiency of polyamide membranes by incorporating cyclodextrin-graphene oxide for Water Purification. J. Mol. Liq. 2021, 340, 116991. [Google Scholar] [CrossRef]
- Hegazy, A.K.; Abdel-Ghani, N.T.; El-Chaghaby, G.A. Adsorption of phenol onto activated carbon from Rhazya stricta: Determination of the optimal experimental parameters using factorial design. Appl. Water Sci. 2014, 4, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Leaper, S.; Abdel-Karim, A.; Gorgojo, P. The use of carbon nanomaterials in membrane distillation membranes: A review. Front. Chem. Sci. Eng. 2021, 15, 755–774. [Google Scholar] [CrossRef]
- Behdarvand, F.; Valamohammadi, E.; Tofighy, M.A.; Mohammadi, T. Polyvinyl alcohol/polyethersulfone thin-film nanocomposite membranes with carbon nanomaterials incorporated in substrate for water treatment. J. Environ. Chem. Eng. 2021, 9, 104650. [Google Scholar] [CrossRef]
- Mahdavian, A.R.; Mirrahimi, M.A. Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem. Eng. J. 2010, 159, 264–271. [Google Scholar] [CrossRef]
- Yuan, P.; Fan, M.; Yang, D.; He, H.; Liu, D.; Yuan, A.; Zhu, J.; Chen, T. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J. Hazard. Mater. 2009, 166, 821–829. [Google Scholar] [CrossRef]
- S, D.S.; Vishwakarma, V. Recovery and recycle of wastewater contaminated with heavy metals using adsorbents incorporated from waste resources and nanomaterials—A review. Chemosphere 2021, 273, 129677. [Google Scholar] [CrossRef]
- Baruthio, F. Toxic effects of chromium and its compounds. Biol. Trace Elem. Res. 1992, 32, 145–153. [Google Scholar] [CrossRef]
- WHO. National Systems to Support Drinking-Water, Sanitation and Hygiene: Global Status Report; Brown, Y.C., Ed.; WHO: Geneva, Switzerland, 2019.
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar]
- Alina, M.; Azrina, A.A.; Yunus, A.S.M.; Zakiuddin, S.M.; Effendi, H.M.I.; Rizal, R.M. Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the Straits of Malacca. Int. Food. Res. J. 2012, 19, 5. [Google Scholar]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef]
- Wei, J.; Duan, M.; Li, Y.; Nwankwegu, A.S.; Ji, Y.; Zhang, J. Concentration and pollution assessment of heavy metals within surface sediments of the Raohe Basin, China. Sci. Rep. 2019, 9, 13100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. Arsenic in Drinking Water; National Academy Press: Washington, DC, USA, 2001.
- Tchounwou, P.B.; Centeno, C.J.; Patlolla, A.K. Arsenic toxicity, mutagenesis and carcinogenesis—A health risk assessment and management approach. Mol. Cell. Biochem. 2004, 255, 9. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Patlolla, A.K.; Centeno, J.A. Carcinogenic and systemic health effects associated with arsenic exposure—A critical review. Toxicol. Pathol. 2003, 31, 14. [Google Scholar] [CrossRef]
- Lu, H.; Liu, S.; Zhang, H.; Qiu, Y.; Zhao, J.; Zhu, Z. Decontamination of Arsenic in Actual Water Samples by Calcium Containing Layered Double Hydroxides from a Convenient Synthesis Method. Water 2018, 10, 1150. [Google Scholar] [CrossRef] [Green Version]
- Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.-A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar]
- Schutte, R.N.T.; Richart, T.; Thijs, L.; Vanderschueren, D.; Kuznetsova, T. Bone resorption and environmental exposure to cadmium in women: A population study. Environ. Health Perspect. 2008, 116, 7. [Google Scholar] [CrossRef] [Green Version]
- Waalkes, M.W.Z.; Rodriguez, E. Cadmium. In Clinical Environmental Health and Toxic Exposures, 2nd ed.; Sullivan, J.B., Jr., Krieger, G.R., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; Volume x. [Google Scholar]
- Elinder, C.G. Zinc. In Handbook on the Toxicology of Metals; Friberg, L., Northberg, G.F., Vouk, V.B., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1986; p. 16. [Google Scholar]
- Nabipour, H.; Jafari, S.H.; Naderikalali, E.; Mozafari, M. Mefenamic Acid-Layered Zinc Hydroxide Nanohybrids: A New Platform to Elaborate Drug Delivery Systems. J. Inorg. Organomet. Polym. Mater. 2018. [Google Scholar] [CrossRef]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Chen, Z.; Zhou, X.; Wang, J. Engineered biochar with anisotropic layered double hydroxide nanosheets to simultaneously and efficiently capture Pb2+ and CrO42− from electroplating wastewater. Bioresour. Technol. 2020, 306, 123118. [Google Scholar] [CrossRef]
- Rahman, M.T.; Kameda, T.; Miura, T.; Kumagai, S.; Yoshioka, T. Facile method for treating Zn, Cd, and Pb in mining wastewater by the formation of Mg-Al layered double hydroxide. Int. J. Environ. Sci. Technol. 2020, 17, 3023–3032. [Google Scholar] [CrossRef]
- Liu, X.; Xu, X.; Dong, X.; Park, J. Competitive Adsorption of Heavy Metal Ions from Aqueous Solutions onto Activated Carbon and Agricultural Waste Materials. Pol. J. Environ. Stud. 2020, 29, 749–761. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum Quality; WHO: Geneva, Switzerland, 2017; p. 631.
- Velma, V.V.S.; Tchounwou, P.B. Ecotoxicology of hexavalent chromium in freshwater fish: A critical review. Rev. Environ. Health 2009, 4, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.; Xie, J.; Mirshahghassemi, S.; Lead, J. Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles. RSC Adv. 2020, 10, 3266–3276. [Google Scholar] [CrossRef] [Green Version]
- Gebeyehu, H.R.; Bayissa, L.D. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE 2020, 15, e0227883. [Google Scholar] [CrossRef] [Green Version]
- Al-Senani, G.M.; Al-Fawzan, F.F. Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs. Egypt. J. Aquat. Res. 2018, 44, 187–194. [Google Scholar] [CrossRef]
- Haremza, J.M.; Hahn, M.A.; Krauss, T.D. Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett. 2002, 2, 1253. [Google Scholar] [CrossRef]
- Holmes, P.H.K.; Levy, L.S. Is low-level mercury exposure of concern to human health. Sci. Total Environ. 2009, 408, 12. [Google Scholar] [CrossRef]
- Tchounwou, P.B.A.W.; Ninashvilli, N.; Sutton, D. Environmental exposures to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 2003, 18, 26. [Google Scholar] [CrossRef] [PubMed]
- Muyssen, B.T.; De Schamphelaere, K.A.; Janssen, C.R. Mechanisms of chronic waterborne Zn toxicity in Daphnia magna. Aquat. Toxicol. 2006, 77, 9. [Google Scholar] [CrossRef] [PubMed]
- Saifullah, B.; Hussein, M.Z.B. Inorganic nanolayers: Structure, preparation, and biomedical applications. Int. J. Nanomed. 2015, 10, 5609–5633. [Google Scholar]
- Mallakpour, S.; Behranvand, V. 19—Layered double hydroxide polymer nanocomposites for water purification. In Layered Double Hydroxide Polymer Nanocomposites; Thomas, S., Daniel, S., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 781–803. [Google Scholar]
- Zhang, H.; Xia, B.; Wang, P.; Wang, Y.; Li, Z.; Wang, Y.; Lei, F.; Li, X.; Du, S. From waste to waste treatment: Mesoporous magnetic NiFe2O4/ZnCuCr-layered double hydroxide composite for wastewater treatment. J. Alloy. Compd. 2020, 819, 153053. [Google Scholar] [CrossRef]
- Hassouna, M.; Amin, R.R.; Ahmed-Anwar, A.A.; Mahmoud, R.K. Efficient Removal of Oxytetracycline and Some Heavy Metals from Aqueous Solutions by Mg-Al Layered Double Hydroxide Nanomaterial. Egypt. J. Chem. 2019, 62, 177–195. [Google Scholar] [CrossRef]
- Kim, S.-y.; Bixler, N.E.; Ahn, K.-I.; Hwang, S.-W. An approach to incorporate multiple forms of iodine in radiological consequence analysis. J. Environ. Radioact. 2020, 213, 106139. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Chen, Y.; Wang, Y.; Liu, C.; Qin, J. Synthesis of metal–organic framework nanocrystals immobilized with 3D flowerlike Cu-Bi-layered double hydroxides for iodine efficient removal. J. Mater. Res. 2020, 35, 299–311. [Google Scholar] [CrossRef]
- Mudzielwana, R.G.M.W.; Ndungu, P. Uptake of As(V) from Groundwater Using Fe-Mn Oxides Modified Kaolin Clay: Physicochemical Characterization and Adsorption Data Modeling. Water 2019, 11, 1245. [Google Scholar] [CrossRef] [Green Version]
- Sunandan, B.; Samir, K.P.; Joydeep, D. Nanostructured Zinc Oxide for Water Treatment. Nanosci. Nanotechnol.-Asia 2012, 2, 90–102. [Google Scholar]
- Mustapha, S.; Ndamitso, M.M.; Abdulkaree., A.S.; Tijani, J.O.; Shuaib, D.T.; Ajala, A.O.; Mohammed, A.K. Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: A review. Appl. Water Sci. 2019, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Daniel, S.C.G.K.; Malathi, S.; Balasubramanian, S.; Sivakumar, M.; Sironmani, T.A. Multifunctional Silver, Copper and Zero Valent Iron Metallic Nanoparticles for Wastewater Treatment. In Application of Nanotechnology in Water Research; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Yasumori, A.; Yanagida, S.; Sawada, J. Preparation of a titania/X-zeolite/porous glass composite photocatalyst using hydrothermal and drop coating processes. Molecules 2015, 20, 2349–2363. [Google Scholar] [CrossRef] [Green Version]
- Powell, C.D.; Atkinson, A.J.; Ma, Y.; Marcos-Hernandez, M.; Villagran, D.; Westerhoff, P.; Wong, M.S. Magnetic nanoparticle recovery device (MagNERD) enables application of iron oxide nanoparticles for water treatment. J. Nanoparticle Res. 2020, 22, 48. [Google Scholar] [CrossRef]
- Yan, J.; Yang, H.; da Silva, J.C.; Rojas, O.J. Loading of Iron (II, III) Oxide Nanoparticles in Cryogels Based on Microfibrillar Cellulose for Heavy Metal Ion Separation. Adv. Polym. Technol. 2020, 2020, 9261378. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Lee, B.; Yi, J. Preparation of Functionalized Mesostructured Silica Containing Magnetite (MSM) for the Removal of Copper Ions in Aqueous Solutions and Its Magnetic Separation. Sep. Sci. Technol. 2003, 38, 2533–2548. [Google Scholar] [CrossRef]
- Wei, L.; Yang, G.; Wang, R.; Ma, W. Selective adsorption and separation of chromium (VI) on the magnetic iron-nickel oxide from waste nickel liquid. J. Hazard. Mater. 2009, 164, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lo, I.M.C.; Chen, G.H. Performance and mechanism of chromate (VI) adsorption by delta-FeOOH-coated maghemite (gamma-Fe2O3) nanoparticles. Sep. Purif. Technol. 2007, 58, 76–82. [Google Scholar] [CrossRef]
- Pradeep, T. Noble metal nanoparticles for water purification: A critical review. Thin Solid Film. 2009, 517, 6441–6478. [Google Scholar] [CrossRef]
- Huang, S.H.; Chen, D.H. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 2009, 163, 174–179. [Google Scholar] [CrossRef]
- Saleh, T.A.; Parthasarathy, P.; Irfan, M. Advanced functional polymer nanocomposites and their use in water ultra-purification. Trends Environ. Anal. Chem. 2019, 24, e00067. [Google Scholar] [CrossRef]
- Mishurov, D.; Voronkin, A.; Nedilko, O.; Zykina, I. The influence of different factors on exploitation properties of nonlinear optical polymeric materials based on an epoxy matrix doped with flavonoids. Polym. Test. 2020, 87, 106535. [Google Scholar] [CrossRef]
- Shi, X.; Ding, Z.; Wang, C.; Song, S.; Zhou, X. Effect of different cellulose polymers on the crystal growth of celecoxib polymorphs. J. Cryst. Growth 2020, 539, 125638. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Moustafa, Y.M.; Hamdy, A.; Killa, H.M.; Ghanem, R.T.M.; Morsi, R.E. Preparation and characterization of sulfonated polystyrene/magnetite nanocomposites for organic dye adsorption. Egypt. J. Pet. 2018, 27, 403–413. [Google Scholar] [CrossRef]
- Zhu, N.; Ji, H.; Yu, P.; Niu, J.; Farooq, M.U.; Akram, M.W.; Udego, I.O.; Li, H.; Niu, X. Surface Modification of Magnetic Iron Oxide Nanoparticles. Nanomaterials 2018, 8, 810. [Google Scholar] [CrossRef] [Green Version]
- Rafiei, H.R.; Shirvani, M.; Ogunseitan, O.A. Removal of lead from aqueous solutions by a poly (acrylic acid)/bentonite nanocomposite. Appl. Water Sci. 2016, 6, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Nthunya, L.N.; Masheane, M.L.; Malinga, S.P.; Nxumalo, E.N.; Mhlanga, S.D. Environmentally benign chitosan-based nanofibres for potential use in water treatment. Cogent Chem. 2017, 3, 1357865. [Google Scholar] [CrossRef]
- Li, Z.; Reimer, C.; Picard, M.; Mohanty, A.K.; Misra, M. Characterization of Chicken Feather Biocarbon for Use in Sustainable Biocomposites. Front. Mater. 2020, 7, 3. [Google Scholar] [CrossRef]
- Saucedo-Rivalcoba, V.; Martínez-Hernández, A.L.; Martínez-Barrera, G.; Velasco-Santos, C.; Rivera-Armenta, J.L.; Castaño, V.M. Removal of Hexavalent Chromium from Water by Polyurethane—Keratin Hybrid Membranes. Water Air Soil Pollut. 2011, 218, 557–571. [Google Scholar] [CrossRef]
- Sharma, G.; Pathania, D.; Naushad, M. Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium(IV) selenotungstophosphate for the separation of toxic metal ions. Ionics 2015, 21, 1045–1055. [Google Scholar] [CrossRef]
- Namasivayam, S.K.R.; Kumar, S.N.; Kamil, T.M.; Ravi, T. Biopolymer-Mediated Coating Influence on Wastewater Treatment Efficacy of Silver Nanoparticles Synthesized from Fungal Consortium. Natl. Acad. Sci. Lett. 2020, 43, 557–561. [Google Scholar] [CrossRef]
- Chitpong, N.; Husson, S.M. High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep. Purif. Technol. 2017, 179, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Wang, J.; Stoller, M.; Wang, T.; Bao, Y.; Hao, H. An Overview of Nanomaterials for Water and Wastewater Treatment. Adv. Mater. Sci. Eng. 2016, 2016, 4964828. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Hernández, R.; Padilla, I.; López-Andrés, S.; López-Delgado, A. Al-Waste-Based Zeolite Adsorbent Used for the Removal of Ammonium from Aqueous Solutions. Int. J. Chem. Eng. 2018, 2018, 1256197. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaeefar, A.; Keshtkar, A.R.; Talebi, M.; Abolghasemi, H. Polyvinyl Alcohol/Alginate/Zeolite Nanohybrid for Removal of Metals. Chem. Eng. Technol. 2020, 43, 343–354. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, A.-S.; Zou, B.; Zhang, H.-X.; Yan, K.-L.; Lin, Y. Advances of metal—Organic frameworks for gas sensing. Polyhedron 2018, 154, 83–97. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal—Organic frameworks. Mater. Today 2018, 21, 108–121. [Google Scholar] [CrossRef]
- Jang, S.S.S.; Lim, J.H.; Kim, H.S.; Phan, B.T.; Ha, K.-T.; Park, S.; Park, K.H. Application of Various Metal-Organic Frameworks (MOFs) as Catalysts for Air and Water Pollution Environmental Remediation. Catalysts 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Godelitsas, A.; Astilleros, J.M.; Hallam, K.; Harissopoulos, S.; Putnis, A. Interaction of Calcium Carbonates with Lead in Aqueous Solutions. Environ. Sci. Technol. 2003, 37, 3351–3360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Li, L.; Yang, L.; Su, C.; Wang, K.; Yuan, S.; Zhou, J. Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies. J. Hazard. Mater. 2012, 209–210, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Tella, A.C.; Owalude, S.O.; Olatunji, S.J.; Adimula, V.O.; Elaigwu, S.E.; Alimi, L.O.; Ajibade, P.A.; Oluwafemi, O.S. Synthesis of zinc-carboxylate metal-organic frameworks for the removal of emerging drug contaminant (amodiaquine) from aqueous solution. J. Environ. Sci. 2018, 64, 264–275. [Google Scholar] [CrossRef]
- Chakma, S.; Dinesh, G.K.; Chakraborty, S.; Moholkar, V.S. Investigation in Sono-photocatalysis Process Using Doped Catalyst and Ferrite Nanoparticles for Wastewater Treatment. In Nanophotocatalysis and Environmental Applications: Detoxification and Disinfection, Inamuddin; Asiri, A.M., Lichtfouse, E., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 171–194. [Google Scholar]
- Chowdhury, P.; Elkamel, A.; Ray, A.K. CHAPTER 2 Photocatalytic Processes for the Removal of Toxic Metal Ions, In Heavy Metals in Water: Presence, Removal and Safety; The Royal Society of Chemistry: London, UK, 2015; pp. 25–43. [Google Scholar]
- Jan, Y.-H.; Lin, L.-Y.; Karthik, M.; Bai, H. Titanium dioxide/zeolite catalytic adsorbent for the removal of NO and acetone vapors. J. Air Waste Manag. Assoc. 2009, 59, 1186–1193. [Google Scholar] [CrossRef]
- Garg, A.; Singhania, T.; Singh, A.; Sharma, S.; Rani, S.; Neogy, A.; Yadav, S.R.; Sangal, V.K.; Garg, N. Photocatalytic Degradation of Bisphenol—A using N, Co Codoped TiO2 Catalyst under Solar Light. Sci. Rep. 2019, 9, 765. [Google Scholar] [CrossRef]
- Aziz, H.A.; Amr, A.; Salem, S. Advanced Oxidation Processes (AOPs) in Water and Wastewater Treatment; IGA Global Publisher: Hershey, PA, USA, 2019. [Google Scholar]
- Alswieleh, A.M.; Albahar, H.Y.; Alfawaz, A.M.; Alsilme, A.S.; Beagan, A.M.; Alsalme, A.M.; Almeataq, M.S.; Alshahrani, A.; Alotaibi, K.M. Evaluation of the Adsorption Efficiency of Glycine-, Iminodiacetic Acid—And Amino Propyl-Functionalized Silica Nanoparticles for the Removal of Potentially Toxic Elements from Contaminated Water Solution. J. Nanomater. 2021, 2021, 6664252. [Google Scholar] [CrossRef]
- Selvarajan, V.; Obuobi, S.; Ee, P.L.R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 2020, 8, 602. [Google Scholar] [CrossRef]
- Hosseinahli, N.; Hasanov, M.; Abbasi, M. Heavy metals’ removal from aqueous environments using silica sulfuric acid. J. Water Reuse Desalination 2021, 11, 508–519. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, J.; Mao, S.; Wei, X. Preparation of Sulfhydryl Functionalized Mesoporous Silica Particles and Application in Adsorption of Cd2+. Adv. Mater. Phys. Chem. 2021, 11, 10. [Google Scholar] [CrossRef]
- Manyangadze, M.; Chikuruwo, N.M.H.; Narsaiah, T.B.; Chakra, C.S.; Charis, G.; Danha, G.; Mamvura, T.A. Adsorption of lead ions from wastewater using nano silica spheres synthesized on calcium carbonate templates. Heliyon 2020, 6, e05309. [Google Scholar] [CrossRef] [PubMed]
- Kotsyuda, S.S.; Tomina, V.V.; Zub, Y.L.; Furtat, I.M.; Lebed. A.P.; Vaclavikova, M.; Melnyk, I.V. Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications. Appl. Surf. Sci. 2017, 420, 782–791. [Google Scholar] [CrossRef]
Adsorbent | Metal Ions | Adsorption Capacity (mg/g)/Removal (%) | Best Fitted Isotherm Model | Best Fitted Kinetic order | Reference |
---|---|---|---|---|---|
Biochar (Mg/A-LDH-BC) | Pb2+ CrO42− | 591.2 330.8 mg/g | Langmuir | Pseudo-Second-Order | [33] |
Mg/Fe-LDO | As5+ Cr (VI), | 178.6 mg g−1 148.7 mg g−1 | Langmuir | Pseudo Second Order | [34] |
Ca/Fe-C-LDHs-Cl- Ca/Fe-C-LDHs-NO3- | As5+ | 150.5 mg g−1, 148.0 mg g−1 | Freundlich | Pseudo Second Order | [26] |
Mg/Al-LDHs-oxytetracycline | Cu2+, Ni2+, Co2+, Zn2+ and Fe2+ | 99% of 60 mg/L | Langmuir | Pseudo Second Order | [43] |
ZIF-67-Cu/Bi-LDHs | I− | 139.98 mg g−1. | Freundlich | Pseudo Second Order | [45] |
PVP–Fe3O4-NPs | Cd2+, Cr (VI), Ni2+ and Pb2+ | 99% of 1 mg/L | -- | Pseudo Second Order | [38] |
MNPs-RD | As5+ | 94% of 500 mg/L | -- | -- | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baby, R.; Hussein, M.Z.; Abdullah, A.H.; Zainal, Z. Nanomaterials for the Treatment of Heavy Metal Contaminated Water. Polymers 2022, 14, 583. https://doi.org/10.3390/polym14030583
Baby R, Hussein MZ, Abdullah AH, Zainal Z. Nanomaterials for the Treatment of Heavy Metal Contaminated Water. Polymers. 2022; 14(3):583. https://doi.org/10.3390/polym14030583
Chicago/Turabian StyleBaby, Rabia, Mohd Zobir Hussein, Abdul Halim Abdullah, and Zulkarnain Zainal. 2022. "Nanomaterials for the Treatment of Heavy Metal Contaminated Water" Polymers 14, no. 3: 583. https://doi.org/10.3390/polym14030583
APA StyleBaby, R., Hussein, M. Z., Abdullah, A. H., & Zainal, Z. (2022). Nanomaterials for the Treatment of Heavy Metal Contaminated Water. Polymers, 14(3), 583. https://doi.org/10.3390/polym14030583