Airbrushed Polysulfone (PSF)/Hydroxyapatite (HA) Nanocomposites: Effect of the Presence of Nanoparticles on Mechanical Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results
3.1. Morphology
3.2. Structural Characterization
3.3. Thermal Characterization
3.4. Mechanical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef] [PubMed]
- Koons, G.L.; Diba, M.; Mikos, A.G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020, 5, 584–603. [Google Scholar] [CrossRef]
- Orciani, M.; Fini, M.; Di Primio, R.; Mattioli-Belmonte, M. Biofabrication and bone tissue regeneration: Cell source, approaches, and challenges. Front. Bioeng. Biotechnol. 2017, 5, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shegarfi, H.; Reikeras, O. Review Article: Bone Transplantation and Immune Response. J. Orthop. Surg. 2009, 17, 206–211. [Google Scholar] [CrossRef]
- Hardingham, T.; Tew, S.; Murdoch, A. Tissue engineering: Chondrocytes and cartilage. Arthritis Res. 2002, 4 (Suppl. S3), S63. [Google Scholar] [CrossRef]
- Salvatore, A.; Vai, S.; Caporali, S.; Caramelli, D.; Lari, M.; Carretti, E. Evaluation of Diammonium hydrogen phosphate and Ca(OH)2 nanoparticles for consolidation of ancient bones. J. Cult. Herit. 2020, 41, 1–12. [Google Scholar] [CrossRef]
- Reiche, I.; Chadefaux, C.; Vignaud, C.; Menu, M. Ancient bone materials: Complex nanocomposites biomaterials. Actual. Chim. 2007, 312–313, 86–92. [Google Scholar]
- Bystrova, A.V.; Dekhtyar, Y.D.; Popov, A.I.; Coutinho, J.; Bystrov, V.S. Modified hydroxyapatite structure and properties: Modeling and synchrotron data analysis of modified hydroxyapatite structure. Ferroelectrics 2015, 475, 135–147. [Google Scholar] [CrossRef]
- Hübner, W.; Blume, A.; Pushnjakova, R.; Dekhtyar, Y.; Hein, H.J. The influence of X-ray radiation on the mineral/organic matrix interaction of bone tissue: An FT-IR microscopic investigation. Int. J. Artif. Organs 2005, 28, 66–73. [Google Scholar] [CrossRef]
- Cheng, W.; Chang, J. Fabrication and characterization of polysulfone-dicalcium silicate composite films. J. Biomater. Appl. 2006, 20, 361–376. [Google Scholar] [CrossRef]
- Sikkema, R.; Keohan, B.; Zhitomirsky, I. Alginic acid polymer-hydroxyapatite composites for bone tissue engineering. Polymers 2021, 13, 3070. [Google Scholar] [CrossRef] [PubMed]
- Pietrzykowska, E.; Romelczyk-Baishya, B.; Chodara, A.; Koltsov, I.; Smogór, H.; Mizeracki, J.; Pakieła, Z.; Łojkowski, W. Microstructure and mechanical properties of inverse nanocomposite made from polylactide and hydroxyapatite nanoparticles. Materials 2022, 15, 184. [Google Scholar] [CrossRef] [PubMed]
- Bang, L.T.; Ramesh, S.; Purbolaksono, J.; Long, B.D.; Chandran, H.; Ramesh, S.; Othman, R. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone. Biomed. Mater. 2015, 10, 045011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barralet, J.E.; Tremayne, M.; Lilley, K.J.; Gbureck, U. Modification of calcium phosphate cement with α-hydroxy acids and their salts. Chem. Mater. 2005, 17, 1313–1319. [Google Scholar] [CrossRef]
- Nielsen-Marsh, C.M.; Hedges, R.E.M. Patterns of diagenesis in bone I: The effects of site environments. J. Archaeol. Sci. 2000, 27, 1139–1150. [Google Scholar] [CrossRef]
- Lim, B.K.; Sun, F.; Ryu, S.C.; Koh, K.; Han, D.W.; Lee, J. Hydroxyapatite coating on damaged tooth surfaces by immersion. Biomed. Mater. 2009, 4, 025017. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, R.K.; Mohammad, S.; Pradhan, R.; Pal, U.S. A Comparative Evaluation of Decalcified Freeze Dried Bone Allograft, Hydroxyapatite and Their Combination in Osseous Defects of the Jaws. J. Maxillofac. Oral Surg. 2010, 9, 236–240. [Google Scholar] [CrossRef] [Green Version]
- Anita Lett, J.; Sagadevan, S.; Fatimah, I.; Hoque, M.E.; Lokanathan, Y.; Léonard, E.; Alshahateet, S.F.; Schirhagl, R.; Oh, W.C. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. Eur. Polym. J. 2021, 148, 110360. [Google Scholar] [CrossRef]
- Tsebriienko, T.; Popov, A.I. Effect of poly(Titanium oxide) on the viscoelastic and thermophysical properties of interpenetrating polymer networks. Crystals 2021, 11, 794. [Google Scholar] [CrossRef]
- Muntha, S.T.; Ajmal, M.; Naeem, H.; Kausar, A.; Zia, M.A.; Siddiq, M. Synthesis, Properties, and Applications of Polysulfone/Polyimide Nanocomposite Membrane Reinforced with Silica Nanoparticles. Polym. Compos. 2019, 40, 1897–1910. [Google Scholar] [CrossRef]
- DeMeuse, M.T. Polysulfones as a reinforcement in high temperature polymer blends. In High Temperature Polymer Blends; Woodhead Publishing Limited: Cambridge, UK, 2014; pp. 165–173. ISBN 9781845697853. [Google Scholar]
- Nechifor, G.; Totu, E.E.; Nechifor, A.C.; Isildak, I.; Oprea, O.; Cristache, C.M. Non-resorbable nanocomposite membranes for guided bone regeneration based on polysulfone-quartz fiber grafted with nano-TiO2. Nanomaterials 2019, 9, 985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, A.J.; Alagar, M. Development of bioactive polysulfone nanocomposites for bone tissue replacement. In Proceedings of the 18th International Conference on Composite Materials (ICCM-18), Jeju, Korea, 21–26 August 2011. [Google Scholar]
- Kubota, M.; Yokoi, T.; Ogawa, T.; Saito, S.; Furuya, M.; Yokota, K.; Kanetaka, H.; Jeyadevan, B.; Kawashita, M. In-vitro heat-generating and apatite-forming abilities of PMMA bone cement containing TiO2 and Fe3O4. Ceram. Int. 2021, 47, 12292–12299. [Google Scholar] [CrossRef]
- Johnson, J.S. Consolidation of archaeological bone: A conservation perspective. J. F. Archaeol. 1994, 21, 221–233. [Google Scholar] [CrossRef]
- Kres, L.A.; Lovell, N.C. A comparison of consolidants for archaeological bone. J. F. Archaeol. 1995, 22, 508–515. [Google Scholar] [CrossRef]
- Bisulca, C.; Elkin, L.K.; Davidson, A. Consolidation of fragile fossil bone from Ukhaa Tolgod, Mongolia (Late Cretaceous) with Conservare OH100. J. Am. Inst. Conserv. 2009, 48, 37–50. [Google Scholar] [CrossRef]
- Olmos, D.; Prolongo, S.G.; González-Benito, J. Thermo-mechanical properties of polysulfone based nanocomposites with well dispersed silica nanoparticles. Compos. Part B Eng. 2014, 61, 307–314. [Google Scholar] [CrossRef]
- Teno, J.; González-Gaitano, G.; González-Benito, J. Nanofibrous polysulfone/TiO2 nanocomposites: Surface properties and their relation with E. coli adhesion. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 1575–1584. [Google Scholar] [CrossRef]
- Teno, J.; Corral, A.; Gorrasi, G.; Sorrentino, A.; Benito, J.G. Fibrous nanocomposites based on EVA40 filled with Cu nanoparticles and their potential antibacterial action. Mater. Today Commun. 2019, 20, 100581. [Google Scholar] [CrossRef]
- González Benito, J.; Teno Díaz, J.; Torres, D.; Díaz, M. Solution Blow Spinning and Obtaining Submicrometric Fibers of Different Polymers. Int. J. Nanoparticles Nanotechnol. 2017, 3, 10. [Google Scholar] [CrossRef]
- Ruiz, V.M.; Sirera, R.; Martínez, J.M.; González-Benito, J. Solution blow spun graded dielectrics based on poly(vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. Eur. Polym. J. 2020, 122, 109397. [Google Scholar] [CrossRef]
- Morales-Nieto, V.; Navarro, C.H.; Moreno, K.J.; Arizmendi-Morquecho, A.; Chávez-Valdez, A.; García-Miranda, S.; Louvier-Hernández, J.F. Poly(methyl methacrylate)/carbonated hydroxyapatite composite applied as coating on ultra high molecular weight polyethylene. Prog. Org. Coat. 2013, 76, 204–208. [Google Scholar] [CrossRef]
- Mbambisa, G.; Molapo, K.M.; Sunday, C.E.; Arendse, C.; Baker, P.; Iwuoha, E. Synthesis and characterisation of a polysulfone-polyvinyl alcohol hydrogelic material. Int. J. Electrochem. Sci. 2016, 11, 9734–9744. [Google Scholar] [CrossRef]
- Aquino, R.R.; Tolentino, M.S.; Arcamo, N.K.G.; Gara, J.P.N.; Basilia, B.A. Synthesis and Characterization of Polysulfone (PSU)/Philippine Halloysite (PH-HAL) Nanostructured Membrane via Electrospinning. MATEC Web Conf. 2018, 213, 03001. [Google Scholar] [CrossRef] [Green Version]
- Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Daraei, P.; Badieh, M.M.S.; Falsafi, M.; Vatanpour, V. Fabrication and modification of polysulfone nanofiltration membrane using organic acids: Morphology, characterization and performance in removal of xenobiotics. Sep. Purif. Technol. 2012, 96, 214–228. [Google Scholar] [CrossRef]
- Mehta, R.; Brahmbhatt, H.; Mukherjee, M.; Bhattacharya, A. Tuning separation behavior of tailor-made thin film poly(piperazine-amide) composite membranes for pesticides and salts from water. Desalination 2017, 404, 280–290. [Google Scholar] [CrossRef]
- Mys, N.; Van De Sande, R.; Verberckmoes, A.; Cardon, L. Processing of polysulfone to free flowing powder by mechanical milling and spray drying techniques for use in selective laser sintering. Polymers 2016, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Iorio, M.; Teno, J.; Nicolás, M.; García-González, R.; Peláez, V.H.; González-Gaitano, G.; González-Benito, J. Conformational changes on PMMA induced by the presence of TiO2 nanoparticles and the processing by Solution Blow Spinning. Colloid Polym. Sci. 2018, 296, 461–469. [Google Scholar] [CrossRef]
- Abdul Mannan, H.; Mukhtar, H.; Shima Shaharun, M.; Roslee Othman, M.; Murugesan, T. Polysulfone/poly(ether sulfone) blended membranes for CO2 separation. J. Appl. Polym. Sci. 2016, 133, 1–9. [Google Scholar] [CrossRef]
- Petreus, O.; Lisa, G.; Avram, E.; Rosu, D. Thermal Degradation and Pyrolysis Study of Phosphorus—Containing Polysulfones. J. Appl. Polym. Sci. 2011, 120, 3233–3241. [Google Scholar] [CrossRef]
- Yang, M.H. On the thermal degradation of poly(styrene sulfone)s. III. Thermal degradation of poly(acrylamide sulfone)s. Polym. Degrad. Stab. 2000, 68, 451–458. [Google Scholar] [CrossRef]
- Ash, B.J.; Rogers, D.F.; Wiegand, C.J.; Schadler, L.S.; Siegel, R.W.; Benicewicz, B.C.; Apple, T. Mechanical Properties of Al2O3 /Polymethylmethacrylate Nanocomposites. Polym. Compos. 2002, 23, 1014–1025. [Google Scholar] [CrossRef]
- Ash, B.J.; Siegel, R.W.; Schadler, L.S. Mechanical Behavior of Alumina/Poly(methyl methacrylate) Nanocomposites. Macromolecules 2004, 37, 1358–1369. [Google Scholar] [CrossRef]
- Stemstein, S.S. Polymeric Materials: Relationships Between Structure and Mechanical Behavior. In American Society for Metals; Metals Park: Novelty, OH, USA, 1975. [Google Scholar]
- Ionita, M.; Vasile, E.; Crica, L.E.; Voicu, S.I.; Pandele, A.M.; Dinescu, S.; Predoiu, L.; Galateanu, B.; Hermenean, A.; Costache, M. Synthesis, characterization and in vitro studies of polysulfone/graphene oxide composite membranes. Compos. Part B Eng. 2015, 72, 108–115. [Google Scholar] [CrossRef]
- Wang, M.; Yue, C.Y.; Chua, B. Production and evaluation of hydroxyapatite reinforced polysulfone for tissue replacement. J. Mater. Sci. Mater. Med. 2001, 12, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.; Wilson, C.; Mecholsky, J. Processing and mechanical properties of hydroxyapatite-polysulfone laminated composites. J. Eur. Ceram. Soc. 2014, 34, 1387–1396. [Google Scholar] [CrossRef]
- González-Benito, J.; Castillo, E.; Caldito, J.F. Coefficient of thermal expansion of TiO2 filled EVA based nanocomposites. A new insight about the influence of filler particle size in composites. Eur. Polym. J. 2013, 49, 1747–1752. [Google Scholar] [CrossRef]
- Mäder, E.; Gao, S. Prospect of nanoscale interphase evaluation to predict composite properties. J. Adhes. Sci. Technol. 2001, 15, 1015–1037. [Google Scholar] [CrossRef]
- Bedi, H.S.; Tiwari, M.; Agnihotri, P.K. Quantitative determination of size and properties of interphase in carbon nanotube based multiscale composites. Carbon 2018, 132, 181–190. [Google Scholar] [CrossRef]
- Brundavanam, R.K.; Eddy, G.; Poinern, J.; Fawcett, D. Modelling the Crystal Structure of a 30 nm Sized Particle based Hydroxyapatite Powder Synthesised under the Influence of Ultrasound Irradiation from X-ray powder Diffraction Data. Am. J. M Aterials Sci. 2013, 3, 84–90. [Google Scholar] [CrossRef]
- Chandrasekar, A.; Sagadevan, S.; Dakshnamoorthy, A. Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int. J. Phys. Sci. 2013, 8, 1639–1645. [Google Scholar] [CrossRef]
Wavelength (cm−1) | Band Assignments |
---|---|
3500 | OH stretching vibrations |
1490–1585 | C=C Aromatic stretching vibrations |
1322, 1292 | S=O asymmetric and symmetric stretching vibrations |
1244 | C-O-C asymmetric stretching vibration |
1151 | –C–SO2–C– symmetric stretching O=S=O stretching vibration |
1103, 1020 | Aromatic C–H in-plane bending |
1071, 1055 | PO43− asymmetric vibrations |
1st Heating Scan | 2nd Heating Scan | ||||||
---|---|---|---|---|---|---|---|
Sample | Mass (mg) | NPs (%,wt) | Tg,1 (°C) | ΔCp (mW·gPSF−1) | Tg,2 (°C) | ΔCp (mW·gPSF−1) | ΔHrelax (J gPSF−1) |
PSF | 3.964 | 0 | 175.7 | 54 | 186.1 | 57 | 0.28 |
PSF + 1%HA | 4.110 | 1 | 180.7 | 18 | 185.6 | 51 | 0.32 |
PSF + 2%HA | 4.071 | 2 | 180.4 | 16 | 185.9 | 49 | 0.28 |
PSF + 5%HA | 3.910 | 5 | 180.4 | 22 | 186.6 | 51 | 0.31 |
PSF + 10%HA | 3.937 | 10 | 180.1 | 15 | 186.4 | 50 | 0.27 |
Initial Mass | Final Mass | DTGA | |||||
---|---|---|---|---|---|---|---|
Sample | Mass (mg) | Mass (mg) | Mass (%) | Mass (mg) | Mass (%) | Slope after Pyrolysis (%·°C−1) | Tpeak (°C) |
PSF | 0 | 0.6145 | 100 | 0.0596 | 9.70 | −0.04184 | 540 |
PSF + 1%HA | 0.0567 | 0.8145 | 100 | 0.1163 | 14.28 | −0.04336 | 532 |
PSF + 2%HA | 0.1128 | 0.8385 | 100 | 0.1724 | 20.56 | −0.03234 | 541 |
PSF + 5%HA | 0.1989 | 0.9956 | 100 | 0.2585 | 25.96 | −0.03093 | 534 |
PSF + 10%HA | 0.4937 | 1.7565 | 100 | 0.5533 | 31.50 | −0.02297 | 536 |
Sample | σ (MPa) | Eexp (MPa) | Eupper (MPa) | Elow (MPa) | Strain to Failure (%) | Stress to Failure (MPa) | Area (106 J/m3) | K |
---|---|---|---|---|---|---|---|---|
PSF | 8.9 ± 3 | 520 ± 206 | 520 | 520 | 1.03 ± 0.56 | 8.0 ± 3.4 | 0.11 ± 0.05 | 0 |
PSF + 1%HA | 8.6 ± 2 | 785 ± 179 | 723 | 522 | 0.74 ± 0.26 | 8.0 ± 2.4 | 0.08 ±0.05 | 1.3 |
PSF + 2%HA | 5.8 ± 2 | 695 ± 182 | 929 | 524 | 0.52 ± 0.12 | 5.6 ± 1.2 | 0.03 ± 0.02 | 0.43 |
PSF + 5%HA | 19.1 ± 3 | 936 ± 106 | 1562 | 531 | 4.47 ± 1.13 | 17.9± 2.4 | 0.55 ± 0.2 | 0.41 |
PSF + 10%HA | 21.3 ± 4 | 1160 ± 269 | 2671 | 542 | 5.41 ± 3.79 | 19.5 ± 6.3 | 0.76 ± 0.7 | 0.30 |
NPs (%,wt) | Estimated Thickness of the Interphase, Ri (nm) |
---|---|
0 | 0 |
1 | 275 |
2 | 208 |
5 | 137 |
10 | 95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradienayat, M.; Olmos, D.; González-Benito, J. Airbrushed Polysulfone (PSF)/Hydroxyapatite (HA) Nanocomposites: Effect of the Presence of Nanoparticles on Mechanical Behavior. Polymers 2022, 14, 753. https://doi.org/10.3390/polym14040753
Moradienayat M, Olmos D, González-Benito J. Airbrushed Polysulfone (PSF)/Hydroxyapatite (HA) Nanocomposites: Effect of the Presence of Nanoparticles on Mechanical Behavior. Polymers. 2022; 14(4):753. https://doi.org/10.3390/polym14040753
Chicago/Turabian StyleMoradienayat, Monireh, Dania Olmos, and Javier González-Benito. 2022. "Airbrushed Polysulfone (PSF)/Hydroxyapatite (HA) Nanocomposites: Effect of the Presence of Nanoparticles on Mechanical Behavior" Polymers 14, no. 4: 753. https://doi.org/10.3390/polym14040753
APA StyleMoradienayat, M., Olmos, D., & González-Benito, J. (2022). Airbrushed Polysulfone (PSF)/Hydroxyapatite (HA) Nanocomposites: Effect of the Presence of Nanoparticles on Mechanical Behavior. Polymers, 14(4), 753. https://doi.org/10.3390/polym14040753