Study on Bamboo Longitudinal Flattening Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Manufacturing Process of Crack-Free Flattened Bamboo Board
2.3. Observation of Microstructure of Bamboo
2.4. Wet Chemistry Method
2.5. Measurement of Cellulose Crystallinity Degree
2.6. FTIR
2.7. EMC, Shrinkage, MOE, and MOR of Bamboo Samples after Softening–Flattening Process
2.8. Nanoindentation Method
2.9. Statistical Analysis
3. Results and Discussion
3.1. SEM Analysis
3.2. Effect of Saturated Steam Heat Treatment on the Relative Cellulose Crystallinity, Chemical Composition, and Chemical Functional Groups of Bamboo Samples
3.3. Equilibrium Moisture Content (EMC) and Shrinkage of Bamboo after Saturated Steam Heat Treatment and Flattening Process
3.4. Macro/Micro-Mechanical Properties of Untreated, Softened Treated, and Flattened Bamboo Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yuan, T.; Liu, X.; Dong, Y.; Wang, X.; Li, Y. Determination of the Effects of Superheated Steam on Microstructure and Micromechanical Properties of Bamboo Cell Walls Using Quasi-Static Nanoindentation. Forests 2021, 12, 1742. [Google Scholar] [CrossRef]
- Yuan, T.; Wang, X.; Lou, Z.; Zhang, T.; Han, X.; Wang, Z.; Hao, X.; Li, Y. Comparison of the Fabrication Process and Macro and Micro Properties of Two Types of Crack-Free, Flatten Bamboo Board. Constr. Build. Mater. 2022, 317, 125949. [Google Scholar] [CrossRef]
- Yuan, T.; Xiao, X.; Wu, Y.; Wang, X.; Liu, X.; Li, Y. Multi-Scale Analysis of Changes in Crack-Free Flattened Moso Bamboo After Saturated Steam Treatment and Flattening Process. Sci. Adv. Mater. 2021, 13, 1259–1267. [Google Scholar] [CrossRef]
- Tong, J.; Wang, X.; Kuai, B.; Gao, J.; Zhang, Y.; Huang, Z.; Cai, L. Development of Transparent Composites Using Wheat Straw Fibers for Light-Transmitting Building Applications. Ind. Crops Prod. 2021, 170, 113685. [Google Scholar] [CrossRef]
- Liang, R.; Zhu, Y.-H.; Wen, L.; Zhao, W.-W.; Kuai, B.-B.; Zhang, Y.-L.; Cai, L.-P. Exploration of Effect of Delignification on the Mesopore Structure in Poplar Cell Wall by Nitrogen Absorption Method. Cellulose 2020, 27, 1921–1932. [Google Scholar] [CrossRef]
- Liu, Z.; Wen, L.; Wang, X.; Zhang, Y.; Cai, L. Leachability of ACQ-D after Three Different Preservative Treatments. Wood Res. 2020, 65, 591–604. [Google Scholar] [CrossRef]
- Kuai, B.; Wang, X.; Lv, C.; Xu, K.; Zhang, Y.; Zhan, T. Orthotropic Tension Behavior of Two Typical Chinese Plantation Woods at Wide Relative Humidity Range. Forests 2019, 10, 516. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, X.; He, Q.; Zhang, Y.; Zhan, T. Time-Temperature-Stress Equivalence in Compressive Creep Response of Chinese Fir at High-Temperature Range. Constr. Build. Mater. 2020, 235, 117809. [Google Scholar] [CrossRef]
- Jiang, Z.-H.; Sun, Z.-J.; Liu, H.-R.; Zhang, X.-B.; Zhang, R.; Fei, B.-H. An Overview on Bamboo Culm Flattening. Constr. Build. Mater. 2018, 171, 65–74. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, W.; Yang, P.; Li, X.; Zhang, T.; Chen, W.; Wang, S.; Zhou, X. Comparative Investigation into the Interfacial Adhesion of Plywood Prepared by Air Spray Atomization and Roller Coating. Eur. J. Wood Prod. 2021, 79, 887–896. [Google Scholar] [CrossRef]
- Zhan, T.; Lyu, J.; Eder, M. In Situ Observation of Shrinking and Swelling of Normal and Compression Chinese Fir Wood at the Tissue, Cell and Cell Wall Level. Wood Sci. Technol. 2021, 55, 1359–1377. [Google Scholar] [CrossRef]
- Lu, Y.; Yue, Y.; Ding, Q.; Mei, C.; Xu, X.; Wu, Q.; Xiao, H.; Han, J. Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. ACS Appl. Mater. Interfaces 2021, 13, 50281–50297. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Li, J.; Wang, X.; Wang, S. In Situ Measurement of Heat-Treated Wood Cell Wall at Elevated Temperature by Nanoindentation. Ind. Crops. Prod. 2016, 87, 142–149. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, Z.; Zhan, X.; Li, Y.; Li, M.; Shen, L.; Cheng, D.; Li, Y.; Xu, B. Multi-Scale Characterization of the Thermal—Mechanically Isolated Bamboo Fiber Bundles and Its Potential Application on Engineered Composites. Constr. Build. Mater. 2020, 262, 120866. [Google Scholar] [CrossRef]
- Parkkeeree, T.; Matan, N.; Kyokong, B. Mechanisms of Bamboo Flattening in Hot Linseed Oil. Eur. J. Wood Prod. 2015, 73, 209–217. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Chrusciel, L.; Na, B.; Lu, X. Study on a Bamboo Stressed Flattening Process. Eur. J. Wood Prod. 2013, 71, 291–296. [Google Scholar] [CrossRef]
- Yuan, T.; Han, X.; Wu, Y.; Hu, S.; Wang, X.; Li, Y. A New Approach for Fabricating Crack-Free, Flattened Bamboo Board and the Study of Its Macro-/Micro-Properties. Eur. J. Wood Prod. 2021, 79, 1531–1540. [Google Scholar] [CrossRef]
- Wang, K.; Dong, Y.; Ling, Z.; Liu, X.; Shi, S.Q.; Li, J. Transparent Wood Developed by Introducing Epoxy Vitrimers into a Delignified Wood Template. Compos. Sci. Technol. 2021, 207, 108690. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, D.; Huang, X.; Song, L.; Gu, W.; Liang, X.; Li, Y.; Xu, B. Effect of High-Temperature Saturated Steam Treatment on the Physical, Chemical, and Mechanical Properties of Moso Bamboo. J. Wood Sci. 2020, 66, 9. [Google Scholar] [CrossRef]
- Yuan, Z.; Wu, X.; Wang, X.; Zhang, X.; Yuan, T.; Liu, X.; Li, Y. Effects of One-Step Hot Oil Treatment on the Physical, Mechanical, and Surface Properties of Bamboo Scrimber. Molecules 2020, 25, 4488. [Google Scholar] [CrossRef]
- Hao, X.; Wang, Q.; Wang, Y.; Han, X.; Yuan, C.; Cao, Y.; Lou, Z.; Li, Y. The Effect of Oil Heat Treatment on Biological, Mechanical and Physical Properties of Bamboo. J. Wood Sci. 2021, 67, 26. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Tong, J.; Kuai, B.; Wang, Z.; Zhang, Y.; Li, G.; Huang, Z.; Cai, L. Large Size Translucent Wood Fiber Reinforced PMMA Porous Composites with Excellent Thermal, Acoustic and Energy Absorption Properties. Compos. Commun. 2022, 30, 101059. [Google Scholar] [CrossRef]
- Wang, X.; Shan, S.; Shi, S.Q.; Zhang, Y.; Cai, L.; Smith, L.M. Optically Transparent Bamboo with High Strength and Low Thermal Conductivity. ACS Appl. Mater. Interfaces 2021, 13, 1662–1669. [Google Scholar] [CrossRef]
- Gan, W.; Chen, C.; Giroux, M.; Zhong, G.; Goyal, M.M.; Wang, Y.; Ping, W.; Song, J.; Xu, S.; He, S.; et al. Conductive Wood for High-Performance Structural Electromagnetic Interference Shielding. Chem. Mater. 2020, 32, 5280–5289. [Google Scholar] [CrossRef]
- Wang, X.; Xia, Q.; Jing, S.; Li, C.; Chen, Q.; Chen, B.; Pang, Z.; Jiang, B.; Gan, W.; Chen, G.; et al. Strong, Hydrostable, and Degradable Straws Based on Cellulose-Lignin Reinforced Composites. Small 2021, 17, 2008011. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. Structure–Property–Function Relationships of Natural and Engineered Wood. Nat. Rev. Mater. 2020, 5, 642–666. [Google Scholar] [CrossRef]
- He, Q.; Zhan, T.; Zhang, H.; Ju, Z.; Hong, L.; Xiaoning, L. Prediction of Stiffness and Strength Distributions in Laminated-Wood Treated by High Voltage Electrostatic Field (HVEF). Mater. Today Commun. 2020, 24, 101186. [Google Scholar] [CrossRef]
- Ju, Z.; Zhan, T.; Zhang, H.; He, Q.; Yuan, M.; Lu, X. Preparation of Functional Bamboo by Combining Nano-Copper with Hemicellulose and Lignin under High Voltage Electric Field (HVEF). Carbohydr. Polym. 2020, 250, 116936. [Google Scholar] [CrossRef]
- Ju, Z.; Zhan, T.; Zhang, H.; He, Q.; Hong, L.; Yuan, M.; Cui, J.; Cheng, L.; Lu, X. Strong, Durable, and Aging-Resistant Bamboo Composites Fabricated by Silver In Situ Impregnation. ACS Sustain. Chem. Eng. 2020, 8, 16647–16658. [Google Scholar] [CrossRef]
- Ge, S.; Ma, N.L.; Jiang, S.; Ok, Y.S.; Lam, S.S.; Li, C.; Shi, S.Q.; Nie, X.; Qiu, Y.; Li, D.; et al. Processed Bamboo as a Novel Formaldehyde-Free High-Performance Furniture Biocomposite. ACS Appl. Mater. Interfaces 2020, 12, 30824–30832. [Google Scholar] [CrossRef]
- Chen, H.; Wu, J.; Shi, J.; Zhang, W.; Wang, H. Effect of Alkali Treatment on Microstructure and Thermal Stability of Parenchyma Cell Compared with Bamboo Fiber. Ind. Crops Prod. 2021, 164, 113380. [Google Scholar] [CrossRef]
- Chen, Q.; Wei, P.; Tang, T.; Fang, C.; Fei, B. Quantitative Visualization of Weak Layers in Bamboo at the Cellular and Subcellular Levels. ACS Appl. Bio Mater. 2020, 3, 7087–7094. [Google Scholar] [CrossRef] [PubMed]
- Altgen, M.; Hofmann, T.; Militz, H. Wood Moisture Content during the Thermal Modification Process Affects the Improvement in Hygroscopicity of Scots Pine Sapwood. Wood Sci. Technol. 2016, 50, 1181–1195. [Google Scholar] [CrossRef]
- Wu, K.-T. The Effect of High-Temperature Drying on the Antisplitting Properties of Makino Bamboo Culm (Phyllostachys Makinoi Hay.). Wood Sci. Technol. 1992, 26, 271–277. [Google Scholar] [CrossRef]
- Tomak, E.D.; Topaloglu, E.; Ay, N.; Yildiz, U.C. Effect of Accelerated Aging on Some Physical and Mechanical Properties of Bamboo. Wood Sci. Technol. 2012, 46, 905–918. [Google Scholar] [CrossRef]
- Li, J.; Sun, Q.; Jin, C.; Li, J. Comprehensive Studies of the Hydrothermal Growth of ZnO Nanocrystals on the Surface of Bamboo. Ceram. Int. 2015, 41, 921–929. [Google Scholar] [CrossRef]
- Su, M.; Zhang, R.; Li, J.; Jin, X.; Zhang, X.; Qin, D. Tailoring Growth of MOF199 on Hierarchical Surface of Bamboo and Its Antibacterial Property. Cellulose 2021, 28, 11713–11727. [Google Scholar] [CrossRef]
- Li, J.; Su, M.; Wang, A.; Wu, Z.; Chen, Y.; Qin, D.; Jiang, Z. In Situ Formation of Ag Nanoparticles in Mesoporous TiO2 Films Decorated on Bamboo via Self-Sacrificing Reduction to Synthesize Nanocomposites with Efficient Antifungal Activity. Int. J. Mol. Sci. 2019, 20, 5497. [Google Scholar] [CrossRef] [Green Version]
- Yuan, T.; Huang, Y.; Zhang, T.; Wang, X.; Li, Y. Change in Micro-Morphology and Micro-Mechanical Properties of Thermally Modified Moso Bamboo. Polymers 2022, 14, 646. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, Q.; Fei, B. Investigation of the Water Vapor Sorption Behavior of Bamboo Fibers with Different Sizes. Eur. J. Wood Prod. 2021. [Google Scholar] [CrossRef]
- Yu, H.; Zheng, H.; Zhan, M.; Zhang, W.; Wang, J.; Pan, X.; Zhuang, X. Surface Characterization and Biodegradability of Sodium Hydroxide-Treated Moso Bamboo Substrates. Eur. J. Wood Prod. 2020, 79, 443–451. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Yu, Y.L.; Yu, W.J. Effect of Thermal Treatment on the Physical and Mechanical Properties of Phyllostachys Pubescen Bamboo. Eur. J. Wood Prod. 2013, 71, 61–67. [Google Scholar] [CrossRef]
- Zhao, J.; Meng, Z.; Jin, Z.; Chen, D.; Wu, Y.; Zhang, W. Bending Properties of Bamboo Scrimber with Holes in Different Sizes and Positions. Constr. Build. Mater. 2019, 200, 209–217. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, Y.; Musso, F. Assessment of Bamboo Application in Building Envelope by Comparison with Reference Timber. Constr. Build. Mater. 2017, 156, 844–860. [Google Scholar] [CrossRef]
- Tian, L.; Kou, Y.; Hao, J. Axial Compressive Behaviour of Sprayed Composite Mortar–Original Bamboo Composite Columns. Constr. Build. Mater. 2019, 215, 726–736. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, Y.; Li, X.; Yu, W. Effects of Shape, Location and Quantity of the Joint on Bending Properties of Laminated Bamboo Lumber. Constr. Build. Mater. 2020, 230, 117023. [Google Scholar] [CrossRef]
- Yuan, T.; Huang, Y.; Wang, X.; Liu, H.; Zhang, A.; Wang, Q.; Zhao, Y.; Han, H.; Weng, F.; Li, Y. Characterization of the Influence of Heat Compression on Bamboo Cell Walls by Nanoindentation. J. Nanoelectron. Optoelectron. 2021, 8. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, T.; Xiao, X.; Han, X.; Wang, Z.; Hao, X.; Liu, X.; Wang, X.; Liu, X.; Li, Y. Quantitative Evaluation of the Influence of Densification Process on Bamboo Cell Walls. J. Nanoelectron. Optoelectron. 2022, 16, 1296–1302. [Google Scholar] [CrossRef]
Temperature | Time | Number of Specimens | Success Rate for Flattening/% |
---|---|---|---|
140 | 4 | 10 | 0 |
140 | 6 | 10 | 0 |
140 | 8 | 10 | 0 |
150 | 4 | 10 | 10 |
150 | 6 | 10 | 0 |
150 | 8 | 10 | 0 |
160 | 4 | 10 | 50 |
160 | 6 | 10 | 60 |
160 | 8 | 10 | 60 |
170 | 4 | 10 | 60 |
170 | 6 | 10 | 70 |
170 | 8 | 10 | 70 |
180 | 4 | 10 | 90 |
180 | 6 | 10 | 100 |
180 | 8 | 10 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, T.; Zhang, T.; Huang, Y.; Wu, Y.; Wang, X.; Li, Y. Study on Bamboo Longitudinal Flattening Technology. Polymers 2022, 14, 816. https://doi.org/10.3390/polym14040816
Yuan T, Zhang T, Huang Y, Wu Y, Wang X, Li Y. Study on Bamboo Longitudinal Flattening Technology. Polymers. 2022; 14(4):816. https://doi.org/10.3390/polym14040816
Chicago/Turabian StyleYuan, Tiancheng, Tao Zhang, Yaqian Huang, Yifei Wu, Xinzhou Wang, and Yanjun Li. 2022. "Study on Bamboo Longitudinal Flattening Technology" Polymers 14, no. 4: 816. https://doi.org/10.3390/polym14040816
APA StyleYuan, T., Zhang, T., Huang, Y., Wu, Y., Wang, X., & Li, Y. (2022). Study on Bamboo Longitudinal Flattening Technology. Polymers, 14(4), 816. https://doi.org/10.3390/polym14040816