Suberin Fatty Acid Hydrolysates from Outer Birch Bark for Hydrophobic Coating on Aspen Wood Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Suberin Fatty Acids Extraction Process
2.3. Wood Samples and Coating Solutions Preparation
- SFA and maleic anhydride (MA) (treatment name, SFA–MA): Fixed amounts (70:30) of SFA and maleic anhydride as a hardener were mixed and boiled at 45 °C in ethanol. A manual brush coating was used to prepare a uniform two-layer coating of SFA–MA on wood and dried for 24 h at 105 °C;
- Treatment of coated samples with octadecyltrichlorosilane (OTS) (treatment name, SFA–MA + OTS): SFA–MA-coated samples dipped into a solution (1/100) (v/v) of OTS and n-hexane for 30 min and dried for 24 h at 105 °C;
- OTS treatment of sample: Wood samples dipped in a solution (1/100) (v/v) of OTS and n-hexane for 30 min and dried at 24 h at 105 °C;
- SFA–OTS: In 100 mL ethanol, 5 g SFA and 500 µL OTS were mixed and boiled at 120 °C (10 min) and cooled down to room temperature and applied manually to the wood surface (two coatings).
2.4. GC and GC-MS Analysis
2.5. SEM and EDS Analysis
2.6. Color Measurement
2.7. Water Contact Angle Measurement
2.8. ATR-FTIR Measurement
2.9. Artificial Aging
3. Results and Discussion
3.1. Analysis of the SFA Hydrolysates
3.2. Analysis of SFA Hydrolysates-Based Coatings
3.2.1. ATR-FTIR
3.2.2. SEM-EDS
3.2.3. Water Contact Angle (WCA)
3.2.4. Color
3.3. Artificial Aging
3.3.1. ATR-FTIR
3.3.2. Water Contact Angle
3.3.3. Color
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Richter, J.; Tywoniak, J.; Hajek, P.; Adamopoulos, S.; Šegedin, U.; Petrič, M. Surface modification of Norway spruce wood by octadecyltrichlorosilane (OTS) nanosol by dipping and water vapour diffusion properties of the OTS-modified wood. Holzforschung 2017, 72, 45–56. [Google Scholar] [CrossRef]
- Petrič, M. Surface Modification of Wood. Rev. Adhes. Adhes. 2013, 1, 216–247. [Google Scholar] [CrossRef]
- Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 5. [Google Scholar]
- Kumar, A.; Jyske, T.; Petrič, M. Delignified Wood from Understanding the Hierarchically Aligned Cellulosic Structures to Creating Novel Functional Materials: A Review. Adv. Sustain. Syst. 2021, 5, 2000251. [Google Scholar] [CrossRef]
- Petrič, M.; Oven, P. Determination of wettability of wood and its significance in wood science and technology: A critical review. Rev. Adhes. Adhes. 2015, 3, 121–187. [Google Scholar] [CrossRef]
- Rajput, S.D.; Mahulikar, P.P.; Gite, V.V. Biobased dimer fatty acid containing two pack polyurethane for wood finished coatings. Prog. Org. Coat. 2014, 77, 38–46. [Google Scholar] [CrossRef]
- Kumar, A.; Petrič, M.; Kričej, B.; Žigon, J.; Tywoniak, J.; Hajek, P.; Škapin, A.S.; Pavlič, M. Liquefied-Wood-Based Polyurethane–Nanosilica Hybrid Coatings and Hydrophobization by Self-Assembled Monolayers of Orthotrichlorosilane (OTS). ACS Sustain. Chem. Eng. 2015, 3, 2533–2541. [Google Scholar] [CrossRef]
- Gandini, A.; Neto, C.; Silvestre, A.J.D. Suberin: A promising renewable resource for novel macromolecular materials. Prog. Polym. Sci. 2006, 31, 878–892. [Google Scholar] [CrossRef]
- Holmbom, B. Extraction and Utilisation of Non-Structural Wood and Bark Components. In Biorefining of Forest Resources; Paperi ja Puu Oy: Espoo, Finland, 2011. [Google Scholar]
- A Sustainable Bioeconomy for Europe—Strengthening the Connection between Economy, Society and the Environment 2018. Available online: https://ec.europa.eu/research/bioeconomy/pdf/ec_bioeconomy_strategy_2018 (accessed on 20 October 2021).
- Pásztory, Z.; Mohácsiné, I.R.; Gorbacheva, G.; Börcsök, Z. The utilization of tree bark. BioResources 2016, 11, 7859–7888. [Google Scholar] [CrossRef]
- Pinto, P.C.R.O.; Sousa, A.F.; Silvestre, A.J.D.; Neto, C.P.; Gandini, A.; Eckerman, C.; Holmbom, B. Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: A comparative study. Ind. Crops Prod. 2009, 29, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.-P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef]
- Roitto, M.; Siwale, W.; Tanner, J.; Ilvesniemi, H.; Julkunen-Tiitto, R.; Verkasalo, E. Characterization of Extractives in Tree Biomass and By-Products of Plywood and Saw Mills from Finnish Birch in Different Climatic Regions for Value-Added Chemical Products; FPInnovations: Montreal, QC, Canada, 2015; pp. 174–181. [Google Scholar]
- Korpinen, R.I.; Kilpeläinen, P.; Sarjala, T.; Nurmi, M.; Saloranta, P.; Holmbom, T.; Koivula, H.; Mikkonen, K.S.; Willför, S.; Saranpää, P.T. The Hydrophobicity of Lignocellulosic Fiber Network Can Be Enhanced with Suberin Fatty Acids. Molecules 2019, 24, 4391. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.; Garcia, H.; Sousa, A.F.; Freire, C.S.R.; Silvestre, A.J.D.; Rebelo, L.P.N.; Pereira, C.S. Isolation of suberin from birch outer bark and cork using ionic liquids: A new source of macromonomers. Ind. Crops Prod. 2013, 44, 520–527. [Google Scholar] [CrossRef]
- Cordeiro, N.; Belgacem, M.N.; Gandini, A.; Neto, C. Urethanes and polyurethanes from suberin 2: Synthesis and characterization. Ind. Crops Prod. 1999, 10, 1–10. [Google Scholar] [CrossRef]
- Rizikovs, J.; Godina, D.; Makars, R.; Paze, A.; Abolins, A.; Fridrihsone, A.; Meile, K.; Kirpluks, M. Suberinic Acids as a Potential Feedstock for Polyol Synthesis: Separation and Characterization. Polymers 2021, 13, 4380. [Google Scholar] [CrossRef]
- Grzybek, J.; Sepperer, T.; Petutschnigg, A.; Schnabel, T. Organosolv Lignin from European Tree Bark: Influence of Bark Pretreatment. Materials 2021, 14, 7774. [Google Scholar] [CrossRef]
- Torron, S.; Semlitsch, S.; Martinelle, M.; Johansson, M. Polymer Thermosets from Multifunctional Polyester Resins Based on Renewable Monomers. Macromol. Chem. Phys. 2014, 215, 2198–2206. [Google Scholar] [CrossRef]
- Heinämäki, J.; Halenius, A.; Paavo, M.; Alakurtti, S.; Pitkänen, P.; Pirttimaa, M.; Kirsimäe, K.; Kogermann, K.; Yliruusi, J. Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings. Int. J. Pharm. 2015, 489, 91–99. [Google Scholar] [CrossRef]
- Handiso, B.; Valle-Delgado, J.J.; Johansson, L.-S.; Hughes, M. The physicochemical properties of cellulose surfaces modified with (depolymerised) suberin and suberin fatty acid. Ind. Crops Prod. 2021, 159, 113070. [Google Scholar] [CrossRef]
- Rüdiger, A.; Hendil-Forssell, P.; Hedfors, C.; Martinelle, M.; Trey, S.; Johansson, M. Chemoenzymatic Route to Renewable Thermosets Based on a Suberin Monomer. J. Renew. Mater. 2013, 1, 124–140. [Google Scholar] [CrossRef]
- Li, C.; Fan, H.; Aziz, T.; Bittencourt, C.; Wu, L.; Wang, D.-Y.; Dubois, P. Biobased epoxy resin with low electrical permissivity and flame retardancy: From environmental friendly high-throughput synthesis to properties. ACS Sustain. Chem. Eng. 2018, 6, 8856–8867. [Google Scholar] [CrossRef]
- Ekman, R. The Suberin Monomers and Triterpenoids from the Outer Bark of Betula verrucosa Ehrh. Holzforschung 1983, 37, 205–211. [Google Scholar] [CrossRef]
- Wei, X.; Tao, D.; Sheng, X.; Zhang, M. Modification of Poplar Wood Using Polyhexahydrotriazine and Its Effect on Hygroscopicity. J. Wood Chem. Technol. 2018, 38, 214–223. [Google Scholar] [CrossRef]
- Pandey, K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. Weathering characteristics of modified rubberwood (Hevea brasiliensis). J. Appl. Polym. Sci. 2002, 85, 622–631. [Google Scholar] [CrossRef]
- Kumar, A.; Staněk, K.; Ryparová, P.; Hajek, P.; Tywoniak, J. Hydrophobic treatment of wood fibrous thermal insulator by octadecyltrichlorosilane and its influence on hygric properties and resistance against moulds. Compos. Part B Eng. 2016, 106, 285–293. [Google Scholar] [CrossRef]
- Pandey, K.K.; Vuorinen, T. Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym. Degrad. Stab. 2008, 93, 2138–2146. [Google Scholar] [CrossRef]
Compound | MEAN mg g−1 (o.d.) | SD |
---|---|---|
16:0 Fatty acid (palmitic acid) | 0.83 | 0.06 |
Ferulic acid | 5.48 | 1.42 |
17:0 fatty acid | 0.12 | 0.02 |
18:2 Fatty acid (linoleic acid) | 0.97 | 0.03 |
18:1 Fatty acid (oleic acid) | 0.37 | 0.00 |
18:0 Fatty acid (stearic acid) | 0.09 | 0.01 |
16-Hydroxy-16:0 acid | 1.38 | 0.11 |
20:0 Fatty acid (arachidic acid) | 0.19 | 0.03 |
1,16-Dioic-16:0 acid | 3.36 | 0.25 |
18-Hydroxy-(9)18:1 acid | 41.55 | 4.36 |
9,16- and 10,16-Dihydroxy-16:0 acids | 13.70 | 0.22 |
18-Hydroxy-18:0 acid | 1.31 | 0.17 |
1,18-Dioic-(9)18:1 acid | 16.64 | 0.42 |
22:0 Fatty acid | 0.00 | 0.00 |
1,18-Dioic-18:0 acid | 6.93 | 0.53 |
9,18-Dihydroxy-(9)18:1 acid | 5.22 | 0.02 |
9,10-Epoxy-18-hydroxy-18:0 acid | 138.71 | 28.18 |
20-Hydroxy-20:1 acid | 5.07 | 0.48 |
Dihydroxyoctadecanoic acid | 3.73 | 0.13 |
20-Hydroxy-20:0 acid | 8.60 | 1.52 |
1,20-Dioic-20:1 acid | 2.89 | 0.04 |
24:0 Fatty acid | 0.22 | 0.05 |
1,20-Dioic-20:0 acid | 7.44 | 1.17 |
9,10,18-Trihydroxy-18:0 acid | 130.53 | 40.72 |
(9)10-Chloro-10(9),18-dihydroxy-18:0 acid | 22.99 | 11.72 |
22-Hydroxy-22:1 acid | 1.21 | 0.08 |
22-Hydroxy-22:0 acid | 11.29 | 3.17 |
1,22-Dioic-22:0 acid | 13.59 | 7.10 |
24-Hydroxy-24:0 acid | 0.00 | 0.00 |
Lupenone (lup-20(29)-en-3-one) | 0.00 | 0.00 |
Sitosterol | 0.66 | 0.08 |
Olean-12-ene-3,28-diol | 0.94 | 0.18 |
Lupeol | 0.24 | 0.04 |
Betulinol | 20.49 | 2.22 |
Betulinic acid | 18.17 | 2.49 |
Monogynol A (lupane-3b,20-diol) | 0.00 | 0.00 |
Lupaen-3b,20,28-triol | 0.00 | 0.00 |
Total identified (mg g−1) | 484.91 | 25.07 |
Total eluted (mg g−1) | 573.24 | 21.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Korpinen, R.; Möttönen, V.; Verkasalo, E. Suberin Fatty Acid Hydrolysates from Outer Birch Bark for Hydrophobic Coating on Aspen Wood Surface. Polymers 2022, 14, 832. https://doi.org/10.3390/polym14040832
Kumar A, Korpinen R, Möttönen V, Verkasalo E. Suberin Fatty Acid Hydrolysates from Outer Birch Bark for Hydrophobic Coating on Aspen Wood Surface. Polymers. 2022; 14(4):832. https://doi.org/10.3390/polym14040832
Chicago/Turabian StyleKumar, Anuj, Risto Korpinen, Veikko Möttönen, and Erkki Verkasalo. 2022. "Suberin Fatty Acid Hydrolysates from Outer Birch Bark for Hydrophobic Coating on Aspen Wood Surface" Polymers 14, no. 4: 832. https://doi.org/10.3390/polym14040832
APA StyleKumar, A., Korpinen, R., Möttönen, V., & Verkasalo, E. (2022). Suberin Fatty Acid Hydrolysates from Outer Birch Bark for Hydrophobic Coating on Aspen Wood Surface. Polymers, 14(4), 832. https://doi.org/10.3390/polym14040832