Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Polymeric Materials for Antibacterial-Loaded Membranes
3.2. Manufacturing Procedure for Polymeric Antibacterial-Loaded Membranes
3.3. Loaded Antibacterials for Bone Regeneration in Dentistry
3.4. Antibiotic Release Kinetics
3.5. Antibacterial Efficacy of Antibiotic-Loaded Membranes
3.6. Other Findings Associated with Antibiotics Loaded on Polymeric Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nyman, S.; Lindhe, J.; Karring, T.; Rylander, H. New Attachment Following Surgical Treatment of Human Periodontal Disease. J. Clin. Periodontol. 1982, 9, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Toledano-Osorio, M.; Toledano, M.; Manzano-Moreno, F.J.; Vallecillo, C.; Vallecillo-Rivas, M.; Rodriguez-Archilla, A.; Osorio, R. Alveolar Bone Ridge Augmentation Using Polymeric Membranes: A Systematic Review and Meta-Analysis. Polymers 2021, 13, 1172. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, J.-I.; Abe, G.L.; Li, A.; Thongthai, P.; Tsuboi, R.; Kohno, T.; Imazato, S. Barrier Membranes for Tissue Regeneration in Dentistry. Biomater. Investig. Dent. 2021, 8, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Omar, O.; Elgali, I.; Dahlin, C.; Thomsen, P. Barrier Membranes: More than the Barrier Effect? J. Clin. Periodontol. 2019, 46 (Suppl. 21), 103–123. [Google Scholar] [CrossRef] [Green Version]
- Ghavimi, M.A.; Bani Shahabadi, A.; Jarolmasjed, S.; Memar, M.Y.; Maleki Dizaj, S.; Sharifi, S. Nanofibrous Asymmetric Collagen/Curcumin Membrane Containing Aspirin-Loaded PLGA Nanoparticles for Guided Bone Regeneration. Sci. Rep. 2020, 10, 18200. [Google Scholar] [CrossRef]
- Sanz, M.; Dahlin, C.; Apatzidou, D.; Artzi, Z.; Bozic, D.; Calciolari, E.; De Bruyn, H.; Dommisch, H.; Donos, N.; Eickholz, P.; et al. Biomaterials and Regenerative Technologies Used in Bone Regeneration in the Craniomaxillofacial Region: Consensus Report of Group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J. Clin. Periodontol. 2019, 46 (Suppl. 21), 82–91. [Google Scholar] [CrossRef]
- Rudolf, J.-L.; Moser, C.; Sculean, A.; Eick, S. In-Vitro Antibiofilm Activity of Chlorhexidine Digluconate on Polylactide-Based and Collagen-Based Membranes. BMC Oral Health 2019, 19, 291. [Google Scholar] [CrossRef] [Green Version]
- Sipos, P.M.; Loos, B.G.; Abbas, F.; Timmerman, M.F.; van der Velden, U. The Combined Use of Enamel Matrix Proteins and a Tetracycline-Coated Expanded Polytetrafluoroethylene Barrier Membrane in the Treatment of Intra-Osseous Defects. J. Clin. Periodontol. 2005, 32, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Zucchelli, G.; Pollini, F.; Clauser, C.; De Sanctis, M. The Effect of Chlorhexidine Mouthrinses on Early Bacterial Colonization of Guided Tissue Regeneration Membranes. An in Vivo Study. J. Periodontol. 2000, 71, 263–271. [Google Scholar] [CrossRef]
- Kurtiş, B.; Unsal, B.; Cetiner, D.; Gültekin, E.; Ozcan, G.; Celebi, N.; Ocak, O. Effect of Polylactide/Glycolide (PLGA) Membranes Loaded with Metronidazole on Periodontal Regeneration Following Guided Tissue Regeneration in Dogs. J. Periodontol. 2002, 73, 694–700. [Google Scholar] [CrossRef]
- Vallecillo-Rivas, M.; Toledano-Osorio, M.; Vallecillo, C.; Toledano, M.; Osorio, R. The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes. Polymers 2021, 13, 3007. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Morrow, B.R.; Jefferson, M.M.; Li, F.; Hong, L. Antibacterial Collagen Composite Membranes Containing Minocycline. J. Pharm. Sci. 2021, 110, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Adayi, A.; Liu, Z.; Li, M.; Wu, M.; Xiao, L.; Sun, Y.; Cai, Q.; Yang, X.; Zhang, X.; et al. Asymmetric Collagen/Chitosan Membrane Containing Minocycline-Loaded Chitosan Nanoparticles for Guided Bone Regeneration. Sci. Rep. 2016, 6, 31822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kütan, E.; Duygu-Çapar, G.; Özçakir-Tomruk, C.; Dilek, O.C.; Özen, F.; Erdoğan, Ö.; Özdemir, I.; Korachi, M.; Gürel, A. Efficacy of Doxycycline Release Collagen Membrane on Surgically Created and Contaminated Defects in Rat Tibiae: A Histopathological and Microbiological Study. Arch. Oral Biol. 2016, 63, 15–21. [Google Scholar] [CrossRef]
- Mehrotra, N.; Reddy Palle, A.; Kumar Gedela, R.; Vasudevan, S. Efficacy of Natural and Allopathic Antimicrobial Agents Incorporated onto Guided Tissue Regeneration Membrane Against Periodontal Pathogens: An in Vitro Study. J. Clin. Diagn Res. 2017, 11, ZC84–ZC87. [Google Scholar] [CrossRef]
- Cheng, C.-F.; Wu, K.-M.; Chen, Y.-T.; Hung, S.-L. Bacterial Adhesion to Antibiotic-Loaded Guided Tissue Regeneration Membranes-a Scanning Electron Microscopy Study. J. Formos. Med. Assoc. 2015, 114, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Moses, O.; Frenkel, T.; Tal, H.; Weinreb, M.; Bornstein, M.M.; Nemcovsky, C.E. Effect of Systemic Tetracycline on the Degradation of Tetracycline-Impregnated Bilayered Collagen Membranes: An Animal Study. Clin. Implant. Dent. Relat. Res. 2010, 12, 331–337. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Gill, A.S.; Sikri, P. Evaluation of the Regenerative Potential of 25% Doxycycline-Loaded Biodegradable Membrane vs Biodegradable Membrane Alone in the Treatment of Human Periodontal Infrabony Defects: A Clinical and Radiological Study. Indian J. Dent. Res. 2008, 19, 116–123. [Google Scholar] [CrossRef]
- Cheng, C.-F.; Lee, Y.-Y.; Chi, L.-Y.; Chen, Y.-T.; Hung, S.-L.; Ling, L.-J. Bacterial Penetration through Antibiotic-Loaded Guided Tissue Regeneration Membranes. J. Periodontol. 2009, 80, 1471–1478. [Google Scholar] [CrossRef]
- Dowell, P.; al-Arrayed, F.; Adam, S.; Moran, J. A Comparative Clinical Study: The Use of Human Type I Collagen with and without the Addition of Metronidazole in the GTR Method of Treatment of Periodontal Disease. J. Clin. Periodontol. 1995, 22, 543–549. [Google Scholar] [CrossRef]
- Al-Arrayed, F.; Thomas, S.; Moran, J. Effect of Addition of Antimicrobial Drugs to Human Collagen Membrane. Clin. Mater. 1993, 12, 169–179. [Google Scholar] [CrossRef]
- Caballé-Serrano, J.; Abdeslam-Mohamed, Y.; Munar-Frau, A.; Fujioka-Kobayashi, M.; Hernández-Alfaro, F.; Miron, R. Adsorption and Release Kinetics of Growth Factors on Barrier Membranes for Guided Tissue/Bone Regeneration: A Systematic Review. Arch. Oral Biol. 2019, 100, 57–68. [Google Scholar] [CrossRef]
- Friess, W. Collagen--Biomaterial for Drug Delivery. Eur. J. Pharm. Biopharm. 1998, 45, 113–136. [Google Scholar] [CrossRef]
- Sbricoli, L.; Guazzo, R.; Annunziata, M.; Gobbato, L.; Bressan, E.; Nastri, L. Selection of Collagen Membranes for Bone Regeneration: A Literature Review. Materials 2020, 13, 786. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.-H.; Chang, H.-C.; Chang, Y.-C.; Claudia, J.; Lin, T.-C.; Chang, P.-C. PDGF-Metronidazole-Encapsulated Nanofibrous Functional Layers on Collagen Membrane Promote Alveolar Ridge Regeneration. Int. J. Nanomedicine 2017, 12, 5525–5535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saarani, N.N.; Jamuna-Thevi, K.; Shahab, N.; Hermawan, H.; Saidin, S. Antibacterial Efficacy of Triple-Layered Poly(Lactic-Co-Glycolic Acid)/Nanoapatite/Lauric Acid Guided Bone Regeneration Membrane on Periodontal Bacteria. Dent. Mater. J. 2017, 36, 260–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nublat, C.; Braud, C.; Garreau, H.; Vert, M. Ammonium Bicarbonate as Porogen to Make Tetracycline-Loaded Porous Bioresorbable Membranes for Dental Guided Tissue Regeneration: Failure Due to Tetracycline Instability. J. Biomater. Sci. Polym. Ed. 2006, 17, 1333–1346. [Google Scholar] [CrossRef] [PubMed]
- Lyons, L.C.; Weltman, R.L.; Moretti, A.J.; Trejo, P.M. Regeneration of Degree Ii Furcation Defects with a 4% Doxycycline Hyclate Bioabsorbable Barrier. J. Periodontol. 2008, 79, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.; Vaquette, C.; Hashimi, S.; Rathnayake, I.; Huygens, F.; Hutmacher, D.W.; Ivanovski, S. Antimicrobial and Immunomodulatory Surface-Functionalized Electrospun Membranes for Bone Regeneration. Adv. Healthc. Mater. 2017, 6, 1601345. [Google Scholar] [CrossRef]
- Lian, M.; Sun, B.; Qiao, Z.; Zhao, K.; Zhou, X.; Zhang, Q.; Zou, D.; He, C.; Zhang, X. Bi-Layered Electrospun Nanofibrous Membrane with Osteogenic and Antibacterial Properties for Guided Bone Regeneration. Colloids Surf. B Biointerfaces 2019, 176, 219–229. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, H.; Zhang, R.; Wang, K.; Liu, J. Construction and Characterization of Antibacterial PLGA/Wool Keratin/Ornidazole Composite Membranes for Periodontal Guided Tissue Regeneration. J. Biomater. Appl. 2020, 34, 1267–1281. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.-H.; Kweon, H.; Park, J.-B.; Kim, C.-H. The Effects of Tetracycline-Loaded Silk Fibroin Membrane on Proliferation and Osteogenic Potential of Mesenchymal Stem Cells. J. Surg. Res. 2014, 192, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Gong, M.; Chi, C.; Huang, Y.; Li, W.; Li, G.; Ye, J.; Liao, M.; Zhang, L.; Tian, W. Nano Twin-Fiber Membrane with Osteogenic and Antibacterial Dual Functions as Artificial Periosteum for Long Bone Repairing. J. Biomed. Nanotechnol. 2019, 15, 272–287. [Google Scholar] [CrossRef]
- Xue, J.; He, M.; Liang, Y.; Crawford, A.; Coates, P.; Chen, D.; Shi, R.; Zhang, L. Fabrication and Evaluation of Electrospun PCL-Gelatin Micro-/Nanofiber Membranes for Anti-Infective GTR Implants. J. Mater. Chem. B 2014, 2, 6867–6877. [Google Scholar] [CrossRef] [PubMed]
- Figueira, D.R.; Miguel, S.P.; de Sá, K.D.; Correia, I.J. Production and Characterization of Polycaprolactone- Hyaluronic Acid/Chitosan- Zein Electrospun Bilayer Nanofibrous Membrane for Tissue Regeneration. Int. J. Biol. Macromol. 2016, 93, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Jian, C.; Xu, F.; Bao, T.; Lan, S.; Wu, G.; Qi, B.; Bai, Z.; Yu, A. Vancomycin-Impregnated Electrospun Polycaprolactone (PCL) Membrane for the Treatment of Infected Bone Defects: An Animal Study. J. Biomater. Appl. 2018, 32, 1187–1196. [Google Scholar] [CrossRef]
- Shi, R.; Ye, J.; Li, W.; Zhang, J.; Li, J.; Wu, C.; Xue, J.; Zhang, L. Infection-Responsive Electrospun Nanofiber Mat for Antibacterial Guided Tissue Regeneration Membrane. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 523–534. [Google Scholar] [CrossRef]
- He, M.; Jiang, H.; Wang, R.; Xie, Y.; Zhao, C. Fabrication of Metronidazole Loaded Poly (ε-Caprolactone)/Zein Core/Shell Nanofiber Membranes via Coaxial Electrospinning for Guided Tissue Regeneration. J. Colloid Interface Sci. 2017, 490, 270–278. [Google Scholar] [CrossRef]
- Owen, G.R.; Jackson, J.K.; Chehroudi, B.; Brunette, D.M.; Burt, H.M. An in Vitro Study of Plasticized Poly(Lactic-Co-Glycolic Acid) Films as Possible Guided Tissue Regeneration Membranes: Material Properties and Drug Release Kinetics. J. Biomed. Mater. Res. Part A 2010, 95, 857–869. [Google Scholar] [CrossRef]
- Park, Y.J.; Lee, Y.M.; Park, S.N.; Lee, J.Y.; Ku, Y.; Chung, C.P.; Lee, S.J. Enhanced Guided Bone Regeneration by Controlled Tetracycline Release from Poly(L-Lactide) Barrier Membranes. J. Biomed. Mater. Res. 2000, 51, 391–397. [Google Scholar] [CrossRef]
- Gao, J.; Huang, G.; Liu, G.; Liu, Y.; Chen, Q.; Ren, L.; Chen, C.; Ding, Z. A Biodegradable Antibiotic-Eluting PLGA Nanofiber-Loaded Deproteinized Bone for Treatment of Infected Rabbit Bone Defects. J. Biomater. Appl. 2016, 31, 241–249. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Li, Y.; Huang, Z.; Guo, Z.-Z.; Luo, B.; Zhou, C.-R.; Li, H. A Multifunctional Coaxial Fiber Membrane Loaded with Dual Drugs for Guided Tissue Regeneration. J. Biomater. Appl. 2020, 34, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Yamada, S. Evaluation of the Regenerative Effect of a 25% Doxycycline-Loaded Biodegradable Membrane for Guided Tissue Regeneration. J. Periodontol. 2000, 71, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Zarkesh, N.; Nowzari, H.; Morrison, J.L.; Slots, J. Tetracycline-Coated Polytetrafluoroethylene Barrier Membranes in the Treatment of Intraosseous Periodontal Lesions. J. Periodontol. 1999, 70, 1008–1016. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Hung, S.-L.; Lin, L.-W.; Chi, L.-Y.; Ling, L.-J. Attachment of Periodontal Ligament Cells to Chlorhexidine-Loaded Guided Tissue Regeneration Membranes. J. Periodontol. 2003, 74, 1652–1659. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomedicine 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [Green Version]
- Toledano, M.; Toledano-Osorio, M.; Osorio, R.; Carrasco-Carmona, Á.; Gutiérrez-Pérez, J.-L.; Gutiérrez-Corrales, A.; Serrera-Figallo, M.-A.; Lynch, C.D.; Torres-Lagares, D. Doxycycline and Zinc Loaded Silica-Nanofibrous Polymers as Biomaterials for Bone Regeneration. Polymers 2020, 12, 1201. [Google Scholar] [CrossRef]
- Bueno, J.; Sánchez, M.C.; Toledano-Osorio, M.; Figuero, E.; Toledano, M.; Medina-Castillo, A.L.; Osorio, R.; Herrera, D.; Sanz, M. Antimicrobial Effect of Nanostructured Membranes for Guided Tissue Regeneration: An in Vitro Study. Dent. Mater. 2020, 36, 1566–1577. [Google Scholar] [CrossRef]
- Li, N.; Jiang, L.; Jin, H.; Wu, Y.; Liu, Y.; Huang, W.; Wei, L.; Zhou, Q.; Chen, F.; Gao, Y.; et al. An Enzyme-Responsive Membrane for Antibiotic Drug Release and Local Periodontal Treatment. Colloids Surf. B Biointerfaces 2019, 183, 110454. [Google Scholar] [CrossRef]
- Qasim, S.S.B.; Nogueria, L.P.; Fawzy, A.S.; Daood, U. The Effect of Cross-Linking Efficiency of Drug-Loaded Novel Freeze Gelated Chitosan Templates for Periodontal Tissue Regeneration. AAPS PharmSciTech 2020, 21, 173. [Google Scholar] [CrossRef]
- Kim, I.-Y.; Jung, U.-W.; Kim, C.-S.; Lee, Y.-K.; Cho, K.-S.; Chai, J.-K.; Kim, C.-K.; Choi, S.-H. Effects of a Tetracycline Blended Polylactic and Polyglycolic Acid Membrane on the Healing of One-Wall Intrabony Defects in Beagle Dogs. Biomed. Mater. 2007, 2, S106–S110. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Niu, Y.; Gong, M.; Shi, R.; Chen, D.; Zhang, L.; Lvov, Y. Electrospun Microfiber Membranes Embedded with Drug-Loaded Clay Nanotubes for Sustained Antimicrobial Protection. ACS Nano 2015, 9, 1600–1612. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhou, W.; Jia, Z.; Xiong, P.; Li, Y.; Wang, P.; Li, Q.; Cheng, Y.; Zheng, Y. Endowing Polyetheretherketone with Synergistic Bactericidal Effects and Improved Osteogenic Ability. Acta Biomater. 2018, 79, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-C.; Chen, W.-C.; Chen, C.-H.; Ko, C.-L.; Liu, S.-M.; Chen, J.-C. Chemical Cross-Linking on Gelatin-Hyaluronan Loaded with Hinokitiol for the Preparation of Guided Tissue Regeneration Hydrogel Membranes with Antibacterial and Biocompatible Properties. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 119, 111576. [Google Scholar] [CrossRef] [PubMed]
- Murgia, D.; Angellotti, G.; Conigliaro, A.; Carfi Pavia, F.; D’Agostino, F.; Contardi, M.; Mauceri, R.; Alessandro, R.; Campisi, G.; De Caro, V. Development of a Multifunctional Bioerodible Nanocomposite Containing Metronidazole and Curcumin to Apply on L-PRF Clot to Promote Tissue Regeneration in Dentistry. Biomedicines 2020, 8, 425. [Google Scholar] [CrossRef]
- Marques, M.S.; Zepon, K.M.; Petronilho, F.C.; Soldi, V.; Kanis, L.A. Characterization of Membranes Based on Cellulose Acetate Butyrate/Poly(Caprolactone)Triol/Doxycycline and Their Potential for Guided Bone Regeneration Application. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 365–373. [Google Scholar] [CrossRef]
- Markman, C.; Fracalanzza, S.E.; Novaes, A.B.; Novaes, A.B. Slow Release of Tetracycline Hydrochloride from a Cellulose Membrane Used in Guided Tissue Regeneration. J. Periodontol. 1995, 66, 978–983. [Google Scholar] [CrossRef]
- da Silva, M.A.C.; Oliveira, R.N.; Mendonça, R.H.; Lourenço, T.G.B.; Colombo, A.P.V.; Tanaka, M.N.; Tude, E.M.O.; da Costa, M.F.; Thiré, R.M.S.M. Evaluation of Metronidazole-Loaded Poly(3-Hydroxybutyrate) Membranes to Potential Application in Periodontitis Treatment. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 106–115. [Google Scholar] [CrossRef]
- Boschin, F.; Blanchemain, N.; Bria, M.; Delcourt-Debruyne, E.; Morcellet, M.; Hildebrand, H.F.; Martel, B. Improved Drug Delivery Properties of PVDF Membranes Functionalized with Beta-Cyclodextrin--Application to Guided Tissue Regeneration in Periodontology. J. Biomed. Mater. Res. Part A 2006, 79, 78–85. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, X.; Sun, H.; Yang, J.; Chen, Y.; Li, C.; Wang, H.; Xing, T.; Zhang, F.; Gu, N. Biomimetic Domain-Active Electrospun Scaffolds Facilitating Bone Regeneration Synergistically with Antibacterial Efficacy for Bone Defects. ACS Appl. Mater. Interfaces 2018, 10, 3248–3259. [Google Scholar] [CrossRef]
- Toledano-Osorio, M.; Manzano-Moreno, F.J.; Toledano, M.; Osorio, R.; Medina-Castillo, A.L.; Costela-Ruiz, V.J.; Ruiz, C. Doxycycline-Doped Membranes Induced Osteogenic Gene Expression on Osteoblastic Cells. J. Dent. 2021, 109, 103676. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Song, J.; Almassri, H.N.S.; Zhang, D.; Zhang, T.; Cheng, Y.; Wu, X. Minocycline-Loaded PLGA Electrospun Membrane Prevents Alveolar Bone Loss in Experimental Peridontitis. Drug Deliv. 2020, 27, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Baldino, L.; Aragón, J.; Mendoza, G.; Irusta, S.; Cardea, S.; Reverchon, E. Production, characterization and testing of antibacterial PVA membranes loaded with HA-Ag3PO4 nanoparticles, produced by SC-CO2 phase inversion. J. Chem. Technol. Biotechnol. 2018, 94, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Prihandana, G.S.; Sriani, T.; Muthi’ah, A.D.; Machmudah, A.; Mahardika, M.; Miki, N. Study Effect of NAg Particle Size on the Properties and Antibacterial Characteristics of Polysulfone Membranes. Nanomaterials 2022, 12, 388. [Google Scholar] [CrossRef] [PubMed]
- Gay, S.; Lefebvre, G.; Bonnin, M.; Nottelet, B.; Boury, F.; Gibaud, A.; Calvignac, B. PLA Scaffolds Production from Thermally Induced Phase Separation: Effect of Process Parameters and Development of an Environmentally Improved Route Assisted by Supercritical Carbon Dioxide. J. Supercrit. Fluids 2018, 136, 123–135. [Google Scholar] [CrossRef]
- de Oliveira, L.F.; Jorge, A.O.C.; Dos Santos, S.S.F. In Vitro Minocycline Activity on Superinfecting Microorganisms Isolated from Chronic Periodontitis Patients. Braz. Oral Res. 2006, 20, 202–206. [Google Scholar] [CrossRef]
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and Resistance Mechanisms of Antibiotics: A Guide for Clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 300–305. [Google Scholar] [CrossRef]
- Xue, J.; Shi, R.; Niu, Y.; Gong, M.; Coates, P.; Crawford, A.; Chen, D.; Tian, W.; Zhang, L. Fabrication of Drug-Loaded Anti-Infective Guided Tissue Regeneration Membrane with Adjustable Biodegradation Property. Colloids Surf. B Biointerfaces 2015, 135, 846–854. [Google Scholar] [CrossRef]
- Kim, J.-E.; Lee, E.-J.; Kim, H.-E.; Koh, Y.-H.; Jang, J.-H. The Impact of Immobilization of BMP-2 on PDO Membrane for Bone Regeneration. J. Biomed. Mater. Res. Part A 2012, 100, 1488–1493. [Google Scholar] [CrossRef]
- Garrett, T.R.; Bhakoo, M.; Zhang, Z. Bacterial Adhesion and Biofilms on Surfaces. Prog. Nat. Sci. 2008, 18, 1049–1056. [Google Scholar] [CrossRef]
- Toledano-Osorio, M.; Manzano-Moreno, F.J.; Toledano, M.; Medina-Castillo, A.L.; Costela-Ruiz, V.J.; Ruiz, C.; Osorio, R. Doxycycline-Doped Polymeric Membranes Induced Growth, Differentiation and Expression of Antigenic Phenotype Markers of Osteoblasts. Polymers 2021, 13, 1063. [Google Scholar] [CrossRef] [PubMed]
Polymeric Material | Origin | Resorbable | Loaded Antibiotic | References |
---|---|---|---|---|
Expanded Polytetrafluoroethylene-ePTFE- | Synthetic | No | Tetracycline | [8,16,19,44] |
Amoxicillin | [16,19] | |||
(MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 | Synthetic | No | Doxycycline | [47,48] |
Collagen | Natural or Synthetic | Yes | Minocycline | [12] |
Doxycycline | [14] | |||
Tetracycline | [16,17,18,19] | |||
Amoxicillin | [15,16,19] | |||
Metronidazole | [15,20,21] | |||
Niridazole | [21] | |||
Tinidazole | [21] | |||
Chitosan | Yes | Minocycline | [49] | |
Doxycycline | [50] | |||
Collagen-Chitosan | Yes | Minocycline | [13] | |
Poly(lactic acid) -PLA- | Synthetic | Yes | Metronidazole | [25] |
Doxycycline | [28] | |||
Tetracycline | [27] | |||
Poly(glycolic acid) -PGA- | Synthetic | Yes | Azithromycin | [29] |
Doxycycline | [30] | |||
Tetracycline | [16,19,51] | |||
Amoxicillin | [16,19] | |||
Ornidazole | [31] | |||
Polycaprolactone-PCL- | Synthetic | Yes | Moxifloxacin | [33] |
Metronidazole | [34,37,38,52] | |||
Vancomycin | [36] | |||
Salicylic acid | [35] | |||
PGA-PLA | Synthetic | Yes | Tetracycline | [39,40,43] |
Vancomycin | [41] | |||
Metronidazole | [10,42] | |||
Polyetheretherketone | Synthetic | No | Gentamicin | [53] |
Hyaluronic acid | Synthetic | Yes | Hinokitiol | [54] |
Metronidazole | [55] | |||
Cellulose | Synthetic | Yes | Doxycycline | [56] |
Tetracycline | [57] | |||
Hydroxybutyrate | Synthetic | Yes | Metronidazole | [58] |
Silk fibroin | Synthetic | Yes | Tetracycline | [32] |
Polyvinylidene difluoride-PVDF- | Synthetic | No | Doxycycline | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toledano-Osorio, M.; Vallecillo, C.; Vallecillo-Rivas, M.; Manzano-Moreno, F.-J.; Osorio, R. Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review. Polymers 2022, 14, 840. https://doi.org/10.3390/polym14040840
Toledano-Osorio M, Vallecillo C, Vallecillo-Rivas M, Manzano-Moreno F-J, Osorio R. Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review. Polymers. 2022; 14(4):840. https://doi.org/10.3390/polym14040840
Chicago/Turabian StyleToledano-Osorio, Manuel, Cristina Vallecillo, Marta Vallecillo-Rivas, Francisco-Javier Manzano-Moreno, and Raquel Osorio. 2022. "Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review" Polymers 14, no. 4: 840. https://doi.org/10.3390/polym14040840
APA StyleToledano-Osorio, M., Vallecillo, C., Vallecillo-Rivas, M., Manzano-Moreno, F. -J., & Osorio, R. (2022). Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review. Polymers, 14(4), 840. https://doi.org/10.3390/polym14040840