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Abstract: Electrospinning is an efficient method of producing nanofibers out of polymers that shows
a great potential for the filtration territory. Featuring water-soluble chitosan (WS-CS), a low-pollution
process and a self-made needleless machine, PVA/WS-CS nanofibrous membranes were prepared
and evaluated for nanofiber diameter, bacteriostatic property, filtration efficiency, pressure drop, and
quality factor. Test results indicate that the minimal fiber diameter was 216.58 ± 58.15 nm. Regardless
of the WS-CS concentration, all of the PVA/WS-CS nanofibrous membranes attained a high porosity
and a high water vapor transmission rate (WVTR), with a pore size of 12.06–22.48 nm. Moreover,
the membranes also exhibit bacteriostatic efficacy against Staphylococcus aureus, an optimal quality
factor of 0.0825 Pa−1, and a filtration efficiency as high as 97.0%, that is 72.5% higher than that of
common masks.

Keywords: polyvinyl alcohol; chitosan; nanofibers; filtration efficiency; antibacterial property

1. Introduction

The removal of solids and particles from the air or liquids with filters is required by
production processes or other types of work in the manufacturing industry. For example,
drug, semiconductor, medical treatment materials, biotechnology, drinking water, and
even air conditioning industries employ filtration technology to assure a pollution-free
work environment and non-polluting products [1–6]. Alternative materials for filters
with corresponding purposes include the following: polypropylene (PP), polyethylene
(PE), and polyurethane (PU) for air filters [7,8]; Nomex®, glass fibers, and Teflon® for hot
gas filtration [9]; and activated carbon [10,11], ion exchange resin [12,13], and ceramic
membranes [14–17] for drinking water and sewage disposal. Notably, a majority of filter
materials are non-degradable, and the waste filters become a new environmental issue.
Natural or endurable materials are increasingly popular filter materials, encouraging
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reuse and durability for sustainable development with the least harm to both people and
nature [18–24]. However, industrial development has caused pollutions that jeopardize
the environment and human health constantly, especially particulate pollutants that have
become a global crisis. A great number of studies have proved that a long-term exposure to
a polluted environment inflicts the human body with respiratory system disorder, apoplexy,
heart disease, and cancer [24–29]. Therefore, people start seeking suitable and effective
filters in order to protect public health.

In recent years, filters are pervasively made using the melt blowing or spunbond
techniques, and thus nanofibers have drawn much attention from diverse fields. Owing
to the unique advantages, e.g., a small fiber diameter, a large specific surface area, and
a low pressure drop [30–33], nanofibers are a feasible material for filters [24,34–37]. Elec-
trospinning is effective for transforming materials into ultrafine fibers, and the related
techniques are similar to other techniques in current industry, producing micro-sized fibers,
including melt spinning, wet spinning, dry spinning, and gel spinning [38]. By contrast, the
electrospinning technology draws the viscoelastic polymer fluid into a jet via the repulsion
from electric charges of fluid surface against a high voltage electric field, thereby spins
the nanofibers out of the jet [39]. In addition, electrospinning is more capable of produc-
ing ultrafine fibers than conventional spinning, that only employs a mechanical force to
spin fibers.

Electrospinning evolved from the traditional needle electrospinning to the coaxial
nozzle, enriching the functions of nanofibers but failing in mass production [40–42]. The
successive multi-needle electrospinning fulfills the demands of mass production, yet it still
needs to overcome difficulties, e.g., needle clogging and electric field interference [43,44].
The current needleless electrospinning technique improves on the aforementioned difficul-
ties, and has been commonly used for effective mass production of nanofibers. To increase
the yield of nanofibers, many scholars have proposed diverse jet ends so far, such as cylin-
der spinneret [45], spiral coil spinneret [46], disk spinneret [47], magnetic-field-assisted
multi-spikes electrospinning [48], and porous tubular surface electrospinning [49].

As a hydrophilic polymer, polyvinyl alcohol (PVA) is a toxin-free and efficient film-
forming, solvent-resistant, water-soluble, gas-barrier, and biocompatible material, so PVA
is commonly used as an adhesive for fabrics as well as an emulsifier for biomaterial and
cosmetics [50–55]. Besides, chitosan (CS) is a natural polymer that has the bacteriostatic
property, chelation, biocompatibility, biodegradability, and avirulent feature. CS has re-
ceived widespread acceptance in many biomedical applications, such as wound dressings,
biologic scaffolds, drug delivery, and metal ion adsorption [56–62]. Nonetheless, chitosan
is insoluble and usually combined with an acid solvent, which in turn leaves the result-
ing products with acid residue that hampers cell growth [56,58,63–66]. The presence of
water-soluble chitosan can address the problem, because organisms can absorb chitosan
efficiently. Meanwhile, the structure of soluble chitosan also exhibits better affinity to
molecules, which in turn shows a positive influence on the antimicrobial effect [67–71].

There are numerous studies reporting the results of a combination of electrospin-
ning, PVA, and chitosan (CS). Paipitak et al. successfully produced PVA/CS nanofibers.
Based on the functional groups of PVA and CS, observed with Fourier transform infrared
spectroscopy (FT-IR), a high concentration of PVA/CS blends caused a high viscosity that
stabilized the formation of fibers [72]. Similarly, Elmira et al. found that a greater CS ratio
helped generate a sleek surface of CS/SS/PVA nanofibers, and CS also worked well in
terms of bacteriostatic efficacy against E. coli [73]. Wang et al. produced PVA/CS mem-
branes and found that an intermolecular hydrogen bond occurred between PVA and CS.
With a CS concentration being 30%, the membranes had a filtration efficiency of 95.59%
and a pressure drop of 633.5 Pa, along with antibacterial efficacy against both E. coli and
S. aureus [74]. Similarly, Zou et al. developed PVA/CS nanofibrous membranes. When
OH-30 nanoparticles were incorporated, the membranes could facilitate wound healing
and demonstrate the antibacterial efficacy against E. coli and S. aureus concurrently [75].
The hydrophilicity of PVA provides PVA/CS nanofibrous membranes with degradation
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as required. When used for metal ion adsorption filtration, water filtration, special gas
filtration, a high temperature condition, and the extended drug release of wound dressings,
PVA/CS membranes demand a specified processing, e.g., thermal cross-linking, hydrogen
bond cross-linking, or solvent cross-linking, thereby attaining more general applications.
However, the specified processing is usually accompanied with toxic solvents [76–82].

According to a large majority the literature, when used in metallic filters, wound
dressings, and food packaging, scholars prefer general CS membranes over water-soluble
chitosan nanofibers. Meanwhile, scholars explored the types or antibacterial performances
of CS nanofibrous membranes rather than their filtration efficiency. Promoting natural or
low-pollution materials has become a trend in recent years, so this study proposes one kind
of degradable one-off nanofibrous membrane serving as the air filter material. Different
concentrations of WS-CS were used as the bacteriostatic agent, comprising PVA/WS-CS
nanofibrous membranes, and as such avoids the problem regarding the residue of acetic
acid. Finally, the morphology, water vapor transmission rate, bacteriostatic efficacy, and
filterability of PVA/WS-CS nanofibrous membranes were evaluated accordingly.

2. Materials and Methods
2.1. Materials

Polyvinyl alcohol (PVA) powders (Sigma-Aldrich, St. Louis, MO, USA) have a molecular
weight of 89,000–98,000 Da. Water-soluble chitosan (WS-CS) powders (Charming and Beauty
Co., Taipei, Taiwan) have a molecular weight of 30,000 Da and a deacetylation of 85%.

2.2. Preparation of Nanofibers

Figure 1 illustrates the diagram how nanofibrous membranes are made with a self-
made needleless machine. PVA powders were added to deionized water, forming a PVA
solution with a specific concentration being 10 wt%, and likewise WS-CS powders were
added to deionized water, forming WS-CS solutions with concentrations of 5, 10, and
15 wt%. Next, with a specified total mixture volume of 50 mL, PVA and different WS-CS
solutions were mixed at volume ratios of 100/0, 80/20, and 60/40, and were agitated well
for 1 h. A PVA solution and different PVA/WS-CS mixtures separately underwent the
electrospinning process with parameters of voltage 50 kV and the distance between the
nozzle and the collector plate of 15 cm, thereby producing PVA/WS-CS electrospinning
nanofibrous membranes.
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Figure 1. Configuration of the electrospinning assembly.

2.3. Scanning Electron Microscopy (SEM) Observation and Measurement

PVA/WS-CS nanofibrous membranes made of different blending ratios were coated
with a thin layer of gold, and then they were mounted in a scanning electron microscope
(S-4800, Hitachi Ltd., Tokyo, Japan) for observation and photographing. According to the
SEM images, the diameters of the nanofibers were measured employing the Image-Pro
Plus 6.2 (Media Cybernetics, Inc., Rockville, MD, USA).
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2.4. Viscosity and Conductivity Tests

The viscosity and conductivity of PVA/WS-CS mixtures at different ratios were mea-
sured using a rotational viscometer (Viscobasic+L, Fungilab, Barcelona, Spain) and a
pH/conductivity meter (EC500, Extech Instruments, Nashua, NH, USA), respectively.

2.5. Porosity and Pore Size Tests

The porosity and pore size of PVA/WS-CS nanofibrous membranes were measured
using the BET analyzers (ASAP 2000, Micromeritics Instrument Corp., Norcross, GA, USA)
with all the samples being vacuum dried for 24 h in advance.

2.6. Water Vapor Transmission Rate (WVTR) Test

As specified in ASTM E96, the water vapor transmission rate (WVTR) of PVA/WS-CS
nanofibrous membranes was measured in an airtight test box at a temperature of 25 ◦C and
relative humidity of 30–35%. The initial weight (W0) of sample bottle was weighed using a
balance, after which the sample bottle was mounted in the measurement case. After 24 h,
the sample bottle was weighed once again (Wt) and then WVTR was computed with the
following equation:

WVTR =
(W0 − Wt)

(A × t)
× 100 (1)

where W0 is the initial weight (g) of sample bottle (including a glass bottle, water, and a
nanofibrous membrane), Wt is the weight (g) of sample bottle after a 24 h WVTR test, A is
the test area (m2), and t is the volatilization time (h) for the water vapor.

2.7. Bacteriostatic Assay

As specified in the JIS1902-2002 test standard, Staphylococcus aureus (S. aureus) was
used for bacteriostatic assay. For the starter, 100 µL of S. aureus was dripped and then
smeared evenly over a solid agar. Next, a perforator was used to make PVA/WS-CS
nanofibrous membranes into circular samples with a 6 mm diameter. The membranes
then covered the solid agars that were individually smeared with S. aureus. The test was
conducted for 24 h, after which the inhibition zones surrounding the membranes were
observed, thereby examining the bacteriostatic efficacy.

2.8. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR was conducted to analyze the functional groups of PVA/WS-CS nanofibrous
membranes using a Fourier transform infrared spectrometer (Spectrum Two, PerkinElmer
Inc., Waltham, MA, USA). The spectra were in a scanning range of 400–4000 cm−1.

2.9. Filterability Measurement

The filterability of different PVA/WS-CS nanofibrous membranes was measured using
an electrical low-pressure impactor (ELPITM, Dekati Ltd., Kangasala, Finland). The test
was conducted with the parameters as follows. The flow rate of gas was 85 ± 4 L/min,
while the particle concentration of sodium chloride (NaCl) was 200 mg/m3. Serving as
a filter, a nanofibrous membrane that was positioned horizontally started retaining NaCl
particles with a 10-min suction by a downward gas flow. Concurrently, a small proportion
of NaCl particles passed through the nanofibrous membrane and entered the case of the
ELPI. Afterwards, the NaCl concentration in the ELPI was measured and defined as the
filterability of the membrane. Next, the pressure difference between two sides (upper
and lower sides) of the membrane was measured using a micromanometer (Models PVM
610, Airflow Measurements Ltd., Bolton, UK), after which the protection efficiency (PE) of
PVA/WS-CS nanofibrous membranes was computed with the following formula:

PE =
C0 − Ci

C0
× 100 % (2)
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where PE is the protection efficiency (%), C0 is the NaCl concentration (mg/m3) before
filtration, and Ci is the NaCl concentration (mg/m3) after filtration.

3. Results and Discussion
3.1. Morphology and Diameter of Nanofibers

Figure 2 shows the morphology of nanofibrous membranes as related to the voltage.
In the pilot experiment, a pure PVA solution with a concentration being 10 wt% was used.
When the voltage increased from 30 kV to 50 kV, finer nanofibers were obtained, but
when it increased to 70 kV, the nanofibers were accompanied with tremendous beads. The
electric field force was employed to draft the polymer solution into nanofibers during the
electrospinning process. A lower voltage caused an insufficient electric field force, and thus
nanofibers could not be drafted into a finer scale and the yielded nanofibers appeared to
have uneven diameters. With a rise in the voltage, polymer solutions could be drafted into
finer nanofibers, which means the yielded nanofibers were finer, with an even diameter.
An excessive voltage gave rise to an over-powerful electric field force, which triggered
excessive jets, such that electrospinning could not operate stably. Inevitably, the nanofibers
were unevenly produced and became bead-shaped [44,83], which determined that the
voltage was 50 kV in the subsequent experiment.
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(b) 50 kV, and (c) 70 kV.

Figure 3 shows the SEM images and fiber diameter diagrams of PVA/WS-CS nanofi-
brous membranes as related to the PVA/WS-CS blending ratio and the WS-CS concentra-
tion. With a blending ratio of 80/20, as in Figure 3a–c, the yielded nanofiber diameter was
smaller than those made with a blending ratio of 60/40, as in Figure 3d–f. The observation
suggests that the diameter of the nanofibers has an increasing trend when the specific
weight of water-soluble chitosan (WS-CS) is increased. Because WS-CS and PVA molecular
chains have an interaction force, the mixtures obtained a greater viscosity [72,84]. Usually,
when the molecular chains of polymers are entangled and then reach a critical point, the
mixture can be successfully drawn by an electric field force to form nanofibers. With a
low viscosity, the mixture falls short of molecular chain entanglement, and is prone to the
presence of electro-spraying. With a high viscosity, the mixture may be hampered by the
high cohesiveness of the solution, which in turn causes an unstable jet that may fail to form
electrospinning nanofibers [85]. In addition, the diameter of nanofibers is also dependent
on the viscosity. As found in a previous study, a solution with a low viscosity was prone
to form finer nanofibers, whereas a solution with a high viscosity might generate thicker
nanofibers. In the electrospinning process, a polymer solution generates counterforce
against the electric field force, which means that it becomes more difficult for a solution
with a higher viscosity to be drafted by a high voltage, and the resulting nanofibers were
finer [30,32].
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Additionally, regardless of whether the PVA/WS-CS blending ratio was 100/0, 80/20,
or 60/40, when WS-CS concentration increased, the diameter of nanofibers became smaller
accordingly. Specifically, the 60/40-15 group obtained the smallest diameter of nanofibers
of 216.58 ± 58.15 nm; interestingly, this group happened to have the highest viscosity, as
shown in Table 1. The results are ascribed to the high electrical conductivity of WS-CS,
which provided the charged polymer solution with a higher charge density, which in turn
created finer nanofibers [61,72,85].
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Table 1. Specifications of PVA/WS-CS mixtures and nanofibers.

Sample Viscosity (cP) Conductivity
(µS/cm)

Diameter of
Nanofibers (nm)

Pure PVA 584.1 0.67 × 103 233.92 ± 30.77
PVA/WS-CS (80/20-05) 709.0 2.01 × 106 303.30 ± 63.74
PVA/WS-CS (80/20-10) 792.7 2.97 × 106 293.46 ± 58.15
PVA/WS-CS (80/20-15) 911.1 3.90 × 106 277.56 ± 51.60
PVA/WS-CS (60/40-05) 788.4 3.44 × 106 378.91 ± 88.65
PVA/WS-CS (60/40-10) 891.1 6.51 × 106 297.43 ± 61.07
PVA/WS-CS (60/40-15) 991.6 8.07 × 106 216.58 ± 58.15

3.2. Porosity, Pore Size, and Water Vapor Transmission Rate (WVTR)

Table 2 summarizes the porosity, pore size, and WVTR of PVA/WS-CS nanofibrous
membranes. Firstly, PVA/WS-CS nanofibrous membranes show a greater porosity than
commercially available masks, which highlights a high porosity of the proposed mem-
branes [86,87]. Next, the pore size of the membranes (12.06–22.48 nm) is smaller than that
of the mask (2824.07 nm). A smaller pore size means that the nanofibrous membranes can
intercept smaller particulates; therefore, they exhibit better filtration efficiency in the subse-
quent test. As for the WVTR, the masks with a largest pore size that facilitated volatilization
of water vapor demonstrated the maximal WVTR among all groups. By contrast, PVA/WS-
CS nanofibrous membranes showed a greater WVTR when at a blending ratio of 80/20
than at a blending ratio of 60/40. Because PVA is a hydrophilic material containing a great
number of hydroxyl group, PVA/WS-CS nanofibrous membranes attract more water vapor
to pass through [55,88]. In particular, the 60/40-05 group demonstrates the maximal WVTR
because the resulting nanofibers were thicker and bead-shaped, which increased the pore
size among nanofibers, as well as the permeability of the membranes [89–91].

Table 2. Characterizations of PVA/WS-CS nanofibrous membranes.

Sample Pore Volume
(cm3/g)

Pore Size
(nm)

WVTR
(g/(day × m2)

mask 0.009621 2824.07 2171.53 ± 54.18
PVA/WS-CS (80/20-05) 0.014591 19.73 1561.45 ± 31.65
PVA/WS-CS (80/20-10) 0.015361 18.91 1567.96 ± 24.78
PVA/WS-CS (80/20-15) 0.014436 17.02 1542.78 ± 35.18
PVA/WS-CS (60/40-05) 0.019788 22.48 1608.12 ± 45.16
PVA/WS-CS (60/40-10) 0.020176 17.93 1384.92 ± 29.92
PVA/WS-CS (60/40-15) 0.012706 12.06 1319.27 ± 30.88

3.3. Bacteriostatic Property

Figure 4 shows the bacteriostatic zone of PVA/WS-CS nanofibrous membranes as
related to the PVA/WS-CS blending ratio (80/20 and 60/40) and the WS-CS concentration
(5, 10, and 15 wt%). The bacteriostatic zone increased when WS-CS concentration rose,
which suggests that PVA/WS-CS nanofibrous membranes demonstrate a strengthened
bacteriostatic property. The test result is in conformity with the finding of Santiago-Castillo
et al., which substantiates that PVA/CS nanofibrous membranes were antibacterial [92].
Similarly, in the study by Nokhasteh et al., alkali treatment was used to improve the water
solubility of chitosan, and they also found that PVA/CS nanofibrous membranes were
antibacterial [84]. By contrast, Yousefi et al. reported that the presence of CS did not
provide samples with antibacterial efficacy against Staphylococcus aureus (S. aureus), which
was ascribed to a low CS concentration [93]. S. aureus is Gram-positive bacteria, and like
most bacteria, S. aureus contains cell walls carrying negative electrification. As a cationic
polymer, WS-CS consists of amino groups. When amino groups are in contact with cell
walls, the interaction makes the structure of cell walls unstable, which in turn makes the
matter from the interior exposed. In this case, amino groups damage the cell walls and then



Polymers 2022, 14, 1054 8 of 15

enter the cells to synthesize with the DNA and RNA, hindering mRNA and protein from
transcription and translation, and, as such, causes the death of cells eventually [94,95].
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respectively.

3.4. FTIR Analysis

Figure 5 shows FTIR spectra of PVA/WS-CS nanofibrous membranes as related to
the PVA/WS-CS blending ratios. Pure PVA nanofibrous membranes (the control group)
shows the O-H stretching vibration at 3316 cm−1, the stretching C-H of alkyl groups at
2944 cm−1, the stretching vibration of C-OH and C-C separately at 1090 cm−1 and 850 cm−1,
respectively, the -CH2 stretching at 1425 cm−1 and 1250 cm−1, respectively, and the -C=O
stretching peaks at 1718 cm−1. By contrast, PVA/WS-CS nanofibrous membranes consist
of O-H stretching vibration at 3308 cm−1, Amide I and Amide II characteristic peak at
corresponding 1639 cm−1 and 1531 cm−1, respectively, and C-H stretching characteristic
peaks at 2869 cm−1. The FTIR spectra indicate that PVA/WS-CS nanofibrous membranes
are composed of the characteristic peaks belonging to both PVA and WS-CS, which is in
conformity with the findings in the bacteriostatic property test. Namely, the bacteriostatic
property of the membranes is mainly attributed to WS-CS that contains amino groups.
Meanwhile, the FTIR spectra also substantiated that PVA/WS-CS nanofibrous membranes
were composed of WS-CS functional groups [50,56,96–103].
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3.5. Filtration Efficiency

Figure 6 shows the filtration efficiency and pressure drop of PVA/WS-CS nanofibrous
membranes. Notably, all PVA/WS-CS nanofibrous membranes exhibit a filtration efficiency
that is higher than 90% and the maximal filtration efficiency achieves 97%, which is consid-
erably greater than the filtration performance of masks. Common filtration mechanisms
include the inertial impaction, direct interception, diffusional interception, sieving, and
gravitational settling that intercept particles from passing through. In this study, mechani-
cal filtration was adopted; therefore, nanofibrous membranes with pore sizes much smaller
than common filters are able to block particles with sizes smaller than 2.5 µm [2,104]. More-
over, the pressure drops of the PVA/WS-CS nanofibrous membranes were between 41 Pa
and 44 Pa without significant differences. Although this was marginally higher than that of
the mask (40 Pa), it is still inferior to that of N95 (48 Pa). Specifically, the 60/40-5 group
exhibits a rather smaller pressure drop because the constituent nanofibers were thicker, in-
dicating that larger pores among stacked nanofibers facilitate the air going past. Moreover,
Zhu et al. also found a similar filtration efficiency as they produced CS-PVA@SiO2 NPs
nanofibrous membranes via electrospinning and the membranes acquired a filtration effi-
ciency that was greater than 96% [105]. Cui et al. incorporated PVA nanofibers with masks,
and the products achieved a 99% filtration efficiency against particles that was smaller than
PM1.0 [106]. The findings of previous studies prove that nanofibrous membranes are a
powerful and effective material for filtering and purifying the air. Generally speaking, the
service life of filters is correlated with the feature of pressure drop, and a greater pressure
drop means that the air passes through the filter with more difficulty. Subsequently, the
filter will intercept increasingly accumulated particles with time, forming a barrier against
the air flux and compromising the service life of filter [107–109].
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Figure 7 shows the filtration efficiency of PVA/WS-CS nanofibrous membranes as
related to the particle size. Regardless of the particle size, the membranes exhibit excellent
filtration efficiency, especially particles smaller than 2.5 µm. The filterability was as high as
93.1%, whereas masks only intercept 72.5% in the same condition.

Lastly, Figure 8 shows the quality factor of PVA/WS-CS nanofibrous membranes with
a correlation equation as Qf =

− ln(1−E)
∆P , where Qf is the quality factor; E is the filtration

efficiency; and ∆P is the pressure drop. According to Figure 8, PVA/WS-CS nanofibrous
membranes have a much greater quality factor than masks, and despite the highest pressure
drop, the 60/40-15 group still retains the optimal quality factor. As far as filter evaluation
is concerned, the pressure drop is not the only standard to determine the quality, yet there
are a great number of influential factors, e.g., thickness, pore size, and specific area [2,104].
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4. Conclusions

With a low-pollution process and a self-made needleless machine, PVA/WS-CS nanofi-
brous membranes were successfully made with water-soluble chitosan and PVA in this
study. The test results confirm that the proposed 80/20 and 60/40 blending ratio of PVA
to WS-CS can be electrospun into PVA/WS-CS nanofibers, and the 60/40-15 group pos-
sesses the smallest diameter of nanofibers. Furthermore, all the proposed PVA/WS-CS
nanofibrous membranes have an average pore size of 12.06 nm–22.48 nm, a high porosity,
and a high water vapor transmission rate (WVTR), in addition to the excellent bacterio-
static property and filtration efficiency, which blocks particles that are smaller than 2.5 µm.
The optimal filtration efficiency is between 93.1% and 97%, which is higher than that of
commercially available masks (72.5%), while an optimal pressure drop was found to be
between 41 Pa and 44 Pa, suggesting that PVA/WS-CS nanofibrous membranes outper-
form masks in terms of excellent quality factor and are a qualified candidate for use in the
filtration field.
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