Birefringence of Thin Uniaxial Polymer Films Estimated Using the Light Polarization Ellipse
Abstract
:1. Introduction
2. Theoretical Notions
3. Experimental
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorohoi, D.O. Fundamental Optics; Addleton Academic Publishers: New York, NY, USA, 2010. [Google Scholar]
- Pop, V. Bases of Optics (Bazele Opticii); University Alexandru Ioan Cuza of Iasi Publishing House: Iasi, Romania, 1987. (In Romanian) [Google Scholar]
- Pop, V.; Dorohoi, D.O.; Cringeanu, E. A new method for determining birefringence dispersion. J. Macromol. Sci. Phys. 1994, B33, 373–385. [Google Scholar] [CrossRef]
- Dumitrascu, L.; Dumitrascu, I.; Dorohoi, D.O.; Toma, M. Interferometric method for birefringence determination with a polarizing microscope. Opt. Express 2008, 16, 20884–20890. [Google Scholar] [CrossRef] [PubMed]
- Dumitrascu, L.; Dumitrascu, I.; Dorohoi, D.O. Conoscopic method for determination of the main refractive indices and thickness of a uniaxial crystal cut out parallel to its optical axis. J. Appl. Crystallogr. 2009, 42, 878–884. [Google Scholar] [CrossRef]
- Scripa, A.E.; Dimitriu, D.G.; Dorohoi, D.O. Linear birefringence of polymer foils determined by optical means. J. Mol. Struct. 2017, 1140, 67–70. [Google Scholar] [CrossRef]
- Tudose, A.E.; Dumitrascu, I.; Dumitrascu, L.; Dimitriu, D.G.; Dorohoi, D.O. Methods for determining the linear birefringence of some inorganic uniax crystals. AIP Conf. Proc. 2017, 1796, 030007. [Google Scholar] [CrossRef] [Green Version]
- Angheluta, E.A.; Angheluta, M.D. Methods for evaluation of light double refraction in transparent uniax anisotropic media. In Electromagnetic Radiation in Analysis and Design of Organic Materials: Electronic and Biotechnology Applications; Dorohoi, D.O., Aflori, M., Barzic, I.A., Eds.; CRC Press: Boca Raton, FL, USA, 2017; Volume 5, pp. 75–88. [Google Scholar]
- Ioan, S.; Cosutchi, A.I.; Dorohoi, D.O. Optical rotatory dispersion for polymers. Rom. J. Phys. 2008, 53, 85–90. [Google Scholar]
- Dimitriu, D.G.; Dorohoi, D.O. New method to determine the optical rotatory dispersion of inorganic crystals applied to some samples of Carpathian Quartz. Spectrochim. Acta A 2014, 131, 674–677. [Google Scholar] [CrossRef]
- Dorohoi, D.O.; Dimitriu, D.G.; Cosutchi, I.A.; Breaban, I. A New Method for Determining the Optical Rotatory Dispersion of Transparent Crystalline Layers. Proc. SPIE 2014, 9286, 92862Z. [Google Scholar] [CrossRef]
- Barzic, A.I.; Dimitriu, D.G.; Dorohoi, D.O. Optical Rotatory Dispersion of Poly(propylene oxide) in Benzene Solution Determined from Channelled Spectra. Int. J. Polym. Anal. Charact. 2015, 20, 565–571. [Google Scholar] [CrossRef]
- Scripa, A.E.; Dimitriu, D.G.; Dorohoi, D.O. Dispersion of the visible rotatory power of aqueous glucose solutions. U. P. B. Sci. Bull. Ser. A 2017, 79, 307–313. [Google Scholar]
- Albu, R.M.; Stoica, I.; Barzic, A.I.; Postolache, M.; Angheluta, M.D.; Dorohoi, D.O. Effect of mechanical treatments on orientation behavior and spectral properties of azoderivative dyes incorporated in poly(vinyl alcohol) films. Polym. Eng. Sci. 2021, 61, 2453–2465. [Google Scholar] [CrossRef]
- Nechifor, C.D.; Angheluta, E.; Dorohoi, D.O. Birefringence of etired poly-vinyl alcohol (PVA) foils. Mater. Plast. 2010, 47, 164–167. [Google Scholar]
- Wu, S.-T.; Efron, U.; Hess, L.D. Birefringence measurements of liquid crystals. Appl. Opt. 1984, 23, 3911–3915. [Google Scholar] [CrossRef]
- Wu, S.-T. Birefringence dispersions of liquid crystals. Phys. Rev. A 1986, 33, 1270–1274. [Google Scholar] [CrossRef]
- Li, J.; Wu, S.-T. Extended Cauchy equations for the refractive indices of liquid crystals. J. Appl. Phys. 2004, 95, 896–901. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.; Kalyar, M.A.; Raza, Z.A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym. Eng. Sci. 2018, 58, 2119–2132. [Google Scholar] [CrossRef]
- Yu, D.G.; Lin, W.C.; Lin, C.H.; Chang, L.M.; Yang, M.C. An in situ reduction method for preparing silver/poly(vinyl alcohol) nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates. Mater. Chem. Phys. 2007, 101, 93–98. [Google Scholar] [CrossRef]
- Nechifor, C.D.; Postolache, M.; Albu, R.M.; Barzic, A.I.; Dorohoi, D.O. Induced birefringence of rubbed and stretched polyvinyl alcohol foils as alignment layers for nematic molecules. Polym. Adv. Technol. 2019, 30, 2143–2152. [Google Scholar] [CrossRef]
- Nechifor, C.D.; Zelinschi, C.B.; Dorohoi, D.O. Influence of UV and Gamma irradiation on the induced birefringence of stretched poly(vinyl) alcohol (PVA) foils. J. Mol. Struct. 2014, 1062, 179–184. [Google Scholar] [CrossRef]
- Nechifor, C.D.; Aflori, M.; Dorohoi, D.O. Anisotropy of Thin Foils Obtained from Microwave-Irradiated Poly(Vinyl Alcohol) Aqueous Solutions. Polymers 2019, 11, 1072. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-T. Phase-matched compensation films for liquid crystals displays. Mater. Chem. Phys. 1995, 42, 163–168. [Google Scholar] [CrossRef]
- Li, J.; Baird, G.; Lin, Y.-H.; Ren, H.; Wu, S.-T. Refractive index matching between liquid crystals and photopolymers. J. Soc. Inf. Disp. 2005, 12, 1017–1026. [Google Scholar] [CrossRef]
- Kim, K.-H.; Song, J.-K. Technical evolution of liquid crystal displays. NPG Asia Mater. 2009, 1, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.G.; Kwak, K.; Song, J.K. Computation of refractive index and optical retardation in stretched polymer films. Opt. Express 2017, 25, 16409–16418. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Z.; Wu, S.-T. Analytical solutions for uniaxial-film-compensated wide-view liquid crystal displays. J. Disp. Technol. 2006, 2, 2–20. [Google Scholar] [CrossRef]
- Tanizaki, Y. Dichroism of Dyes in the stretched PVA sheet. II. The relation between the optical density ratio and the stretch ratio, and an attempt to analyze relative directions of absorption bands. Bull. Chem. Soc. Jpn. 1959, 32, 75–80. [Google Scholar] [CrossRef]
- Kim, S.S.; Berkeley, B.H.; Kim, K.-H.; Song, J.K. New technologies for advanced LCD-TV performance. J. Soc. Inf. Disp. 2004, 12, 353–359. [Google Scholar] [CrossRef]
- Angheluta, E.A. Determining the polarization state of the radiation crossing through an anisotropic poly (vinyl alcohol) film. Rom. J. Phys. 2011, 56, 971–975. [Google Scholar]
- Kim, T.; Han, G.; Jung, Y. Facile fabrication of polyvinyl alcohol/edge-selectively oxidized graphene composite fibers. Materials 2019, 12, 3525. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, M.S.; Niazi, M.B.K.; Jahan, Z.; Ahmad, T.; Hussain, A. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr. Polym. 2018, 184, 453–464. [Google Scholar] [CrossRef]
- Rogojanu, A.; Rusu, E.; Olaru, N.; Dobromir, M.; Dorohoi, D.O. Development and characterization of poly(vinyl) alcohol matrix for drug release. Dig. J. Nanomater. Biostruct. 2018, 6, 809–818. [Google Scholar]
- Zelinschi, C.B. Interaction of radiations with stretched polymer foils in controlling the release of a drug for Alzheimer’s disease. In Electromagnetic Radiation in Analysis and Design of Organic Materials: Electronic and Biotechnology Applications; Dorohoi, D.O., Aflori, M., Barzic, I.A., Eds.; CRC Press: Boca Raton, FL, USA, 2017; Volume 11, pp. 175–189. [Google Scholar]
- Wang, K.; Zhang, X.; Li, C.; Sun, X.; Meng, Q.; Ma, Y.; Wei, Z. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performances. Adv. Mater. 2015, 27, 7451–7457. [Google Scholar] [CrossRef]
- Li, X.; Shao, J.; Kim, S.-K.; Yao, C.; Wang, J.; Miao, Y.-R.; Zheng, Q.; Sun, P.; Zhang, R.; Braun, P.V. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat. Commun. 2018, 9, 2578. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zheng, K.; Wan, P. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 2018, 14, 1704497. [Google Scholar] [CrossRef]
- Li, W.; Gao, F.; Wang, X.; Zhang, N.; Ma, M. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem. Int. Ed. Eng. 2016, 55, 9196–9201. [Google Scholar] [CrossRef]
- Hu, R.; Zheng, J. Preparation of high-strain porous polyvinyl alcohol/polyaniline composite and its applications in all-solid-state supercapacitor. J. Power Sources 2017, 364, 200–207. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Zhang, X.; Wu, J.; Tian, X.; Zeng, M.J.; Qu, J.; Yu, Z.-Z. Flexible poly(vinyl alcohol)-polyaniline hydrogel film with vertically aligned channels for integrated and self-healable supercapacitor. ACS Appl. Energy Mater. 2020, 3, 9408–9416. [Google Scholar] [CrossRef]
- Lai, F.; Fang, L.; Cao, L.; Li, W.; Lin, Z.; Zhang, P. Self-healing flexible and strong hydrogel nanocomposites based on polyaniline for supercapacitors. Ionics 2020, 26, 3015–3025. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Wang, Y.; Xu, J.; Zhuu, J.; Zhang, C.; Liu, T. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 2020, 11, 62. [Google Scholar] [CrossRef]
- Chen, Q.; Miao, X.; Liu, Y.; Zhang, X.; Chen, S.; Chen, Z.; Chen, Y.; Lin, J.; Zhang, Y. Polyaniline electropolymerized within template of vertically ordered polyvinyl alcohol as electrodes of flexible supercapacitors with long cycle life. Electrochim. Acta 2021, 390, 138819. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Cao, W.-T.; Ma, M.-G.; Wan, P. Ultrasensitive wearable soft strain sensors for conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl. Mater. Interf. 2017, 9, 25559–25570. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Kim, S.H.; Cho, C.S. Synthesis and swelling characteristics of pH and thermo-responsive interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and poly(acrylic acid). J. Appl. Polym. Sci. 1996, 62, 301–311. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, Y.M. Drug release behavior of electrical responsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus. J. Appl. Polym. Sci. 1999, 74, 1752–1761. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, D.; Li, T.; Zhao, X.; Cao, Y.; Yang, H.; Duan, Y.Y. Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electro-neural tissue interface. Biomaterials 2009, 30, 4143–4151. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Ko, H.-U.; Kim, H.C.; Kim, J.W.; Li, Y.; Kim, J. Transparent and semi-interpenetrating network P(vinyl alcohol)–P(acrylic acid) hydrogels: pH responsive and electroactive application. Int. J. Smart Nano Mater. 2017, 8, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Guo, G.; Liu, M.; Tang, Z.; Xie, L.; Huo, Y. Multi-responsive, bidirectional, and large deformation bending actuators based on borax cross-linked polyvinyl alcohol derivative hydrogel. RSC Adv. 2017, 7, 40005. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-L.; Oh, I.-K.; Lee, S. Electroactive artificial muscle based on crosslinked PVA/SPTES. Sens. Actuators B Chem. 2010, 150, 57–64. [Google Scholar] [CrossRef]
- Wang, F.; Kim, S.-S.; Kee, C.-D.; Shen, Y.-D.; Oh, I.-K. Novel electroactive PVA-TOCN actuator that is extremely sensitive to low electrical inputs. Smart Mater. Struct. 2014, 23, 074006. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Ko, H.-U.; Kim, H.C.; Kim, J.W.; Muthoka, R.M.; Kim, J. Electroactive hydrogels made with polyvinyl alcohol/cellulose nanocrystals. Materials 2018, 11, 1615. [Google Scholar] [CrossRef] [Green Version]
- Fereydonian, F.; Semnani, D.; Morshed, M.; Rezaei, B.; Behtaj, S. Investigation of electroactive behavior of PVA/TiO2 nanofibers webs coated with polyaniline. J. Compos. Mater. 2016, 50, 1321–1330. [Google Scholar] [CrossRef]
- Chokkiah, B.; Eswaran, M.; Wabaidur, S.M.; Alothman, Z.A.; Lee, S.C.; Dhanusuraman, R. An efficient amperometric sensor for chloride ion detection through electroactive e-spun PVA-PANI-g-C3N4 nanofiber. J. Mater. Sci. Mater. Electron. 2021, 1–13. [Google Scholar] [CrossRef]
- Dudchenko, A.V.; Rolf, J.; Russell, K.; Duan, W.; Jassby, D. Organic fouling inhibition on electrically conducting carbon nanotube—Polyvinyl alcohol composite ultrafiltration membranes. J. Membr. Sci. 2014, 468, 1–10. [Google Scholar] [CrossRef]
- Duan, W.; Chen, G.; Chen, C.; Sanghvi, R.; Iddya, A.; Walker, S.; Liu, H.; Ronen, A.; Jassby, D. Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes. J. Membr. Sci. 2017, 531, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Guo, Z.-X.; Zhan, B.; Luo, H.; Li, Y.; Zhu, D. Actuator based on MWNT/PVA hydrogels. J. Phys. Chem. B 2005, 109, 14789–14791. [Google Scholar] [CrossRef]
- Tanizaki, Y. Dichroism of dyes in the stretched PVA sheet. III. Direction of absorption of pinacyanol iodide. Bull. Chem. Soc. Jpn. 1960, 33, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Van Gurp, M.; van Ginkel, G.; Levine, Y.K. On the distribution of dye molecules in stretched poly(vinyl alcohol). J. Polym. Sci. B Polym. Phys. 1988, 26, 1613–1625. [Google Scholar] [CrossRef]
- Natarajan, L.V.; Robinson, M.; Blankenship, R.E. Linear dichroism of cyanine dyes in stretched polyvinyl alcohol films: A physical chemistry laboratory experiment. J. Chem Educ. 1983, 60, 241. [Google Scholar] [CrossRef]
- Rogojanu, A.; Dascalu, C.F.; Zelinschi, C.B.; Caprosu, M.; Dorohoi, D.O. Birefringence and dichroism of poly(vinyl-alcohol) foils containing phthalazinium ylids. Spectrochim. Acta A 2011, 81, 334–338. [Google Scholar] [CrossRef]
- Stoica, I.; Dumitrascu, L.; Dumitrascu, I.; Dorohoi, D.O. Dichroism of stretched poly vinyl alcohol (PVA) foils containing pyridazinium ylids II. Proc. SPIE 2014, 9286, 928615. [Google Scholar] [CrossRef]
α (Degrees) | θ (Degrees) | φa’ (a.u.) | φc’ (a.u.) | tan2α | tan2θ | Δψ (Degrees) | Δn 1 |
---|---|---|---|---|---|---|---|
10 | 3.4 | 0.974 | 0.027 | 0.364 | 0.119 | 70.88 | 0.002305 |
20 | 7.8 | 0.988 | 0.113 | 0.839 | 0.279 | 70.29 | 0.002301 |
25 | 10.6 | 0.846 | 0.154 | 1.192 | 0.388 | 71.00 | 0.002324 |
30 | 15.2 | 0.789 | 0.211 | 1.732 | 0.587 | 70.20 | 0.002298 |
35 | 20.7 | 0.732 | 0.268 | 2.747 | 0.882 | 71.28 | 0.002334 |
40 | 31.7 | 0.685 | 0.315 | 5.671 | 1.997 | 69.38 | 0.002714 |
43 | 38.9 | 0.665 | 0.334 | 14.300 | 4.625 | 71.12 | 0.002328 |
α (Degrees) | θ (Degrees) | φa’ (a.u.) | φc’ (a.u.) | tan2α | tan2θ | Δψ (Degrees) | Δn 1 |
---|---|---|---|---|---|---|---|
10 | 6.45 | 0.982 | 0.018 | 0.364 | 0.229 | 51.00 | 0.0166969 |
20 | 13.9 | 0.933 | 0.067 | 0.839 | 0.527 | 51.10 | 0.0167296 |
25 | 18.4 | 0.901 | 0.098 | 1.192 | 0.748 | 51.12 | 0.0167361 |
30 | 23.8 | 0.858 | 0.142 | 1.732 | 1.095 | 50.78 | 0.0162481 |
35 | 30.0 | 0.841 | 0.159 | 2.747 | 1.732 | 50.92 | 0.0166704 |
40 | 37.1 | 0.821 | 0.179 | 5.671 | 3.534 | 51.45 | 0.0168442 |
43 | 41.8 | 0.813 | 0.187 | 14.300 | 8.999 | 51.43 | 0.0168376 |
α (Degrees) | θ (Degrees) | φa’ (a.u.) | φc’ (a.u.) | tan2α | tan2θ | Δψ (Degrees) | Δn 1 |
---|---|---|---|---|---|---|---|
10 | 1.8 | 0.97 | 0.02 | 0.364 | 0.070 | 78.91 | 0.0258343 |
20 | 4.2 | 0.89 | 0.12 | 0.839 | 0.148 | 79.84 | 0.0261387 |
25 | 5.9 | 0.83 | 0.17 | 1.192 | 0.209 | 79.90 | 0.0261584 |
30 | 8.4 | 0.76 | 0.24 | 1.732 | 0.302 | 79.96 | 0.0261780 |
35 | 13.0 | 0.68 | 0.31 | 2.747 | 0.488 | 79.78 | 0.0261909 |
40 | 22.3 | 0.62 | 0.38 | 5.671 | 0.986 | 79.99 | 0.0261878 |
43 | 34.2 | 0.59 | 0.40 | 14.300 | 2.526 | 79.83 | 0.0261355 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postolache, M.; Dimitriu, D.G.; Nechifor, C.D.; Condurache Bota, S.; Closca, V.; Dorohoi, D.O. Birefringence of Thin Uniaxial Polymer Films Estimated Using the Light Polarization Ellipse. Polymers 2022, 14, 1063. https://doi.org/10.3390/polym14051063
Postolache M, Dimitriu DG, Nechifor CD, Condurache Bota S, Closca V, Dorohoi DO. Birefringence of Thin Uniaxial Polymer Films Estimated Using the Light Polarization Ellipse. Polymers. 2022; 14(5):1063. https://doi.org/10.3390/polym14051063
Chicago/Turabian StylePostolache, Mihai, Dan Gheorghe Dimitriu, Cristina Delia Nechifor, Simona Condurache Bota, Valentina Closca, and Dana Ortansa Dorohoi. 2022. "Birefringence of Thin Uniaxial Polymer Films Estimated Using the Light Polarization Ellipse" Polymers 14, no. 5: 1063. https://doi.org/10.3390/polym14051063
APA StylePostolache, M., Dimitriu, D. G., Nechifor, C. D., Condurache Bota, S., Closca, V., & Dorohoi, D. O. (2022). Birefringence of Thin Uniaxial Polymer Films Estimated Using the Light Polarization Ellipse. Polymers, 14(5), 1063. https://doi.org/10.3390/polym14051063