Konjac Glucomannan Induced Retarding Effects on the Early Hydration of Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Experimental Methods
2.3.1. Setting Time
2.3.2. OPC Workability Characterization
2.3.3. Microstructure of Cement Mortar
2.3.4. Cement Paste Hydration Heat
2.3.5. Hydration Product Characterization
2.3.6. Interaction of KGM and Cement Characterization
2.3.7. Molecular Dynamics Simulations
3. Results and Discussion
3.1. Effect of KGM on the Setting Times
3.2. Hydration Kinetics of OPC with KGM
3.3. Hydration Products of OPC with KGM
3.4. Interaction Mechanism of KGM and Cement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peschard, A.; Govin, A.; Grosseau, P.; Guilhot, B.; Guyonnet, R. Effect of polysaccharides on the hydration of cement paste at early ages. Cem. Concr. Res. 2004, 34, 2153–2158. [Google Scholar] [CrossRef] [Green Version]
- Wan, Q.; Wang, Z.; Huang, T.; Wang, R. Water retention mechanism of cellulose ethers in calcium sulfoaluminate cement-based materials. Constr. Build. Mater. 2021, 301, 124118. [Google Scholar] [CrossRef]
- Hayakawa, K.; Soshiroda, T. Effects of cellulose ether on bond between matrix and aggregate in concrete. In Adhesion between Polymers and Concrete; Bonding Protection Repair; Sasse, H.R., Ed.; Springer: Boston, MA, USA, 1986; pp. 22–31. [Google Scholar]
- Liu, C.; Gao, J.; Chen, X.; Zhao, Y. Effect of polysaccharides on setting and rheological behavior of gypsum-based materials. Constr. Build. Mater. 2021, 267, 120922. [Google Scholar] [CrossRef]
- Virgilio, A.G.; Paulo, J.M.M. The effects of polysaccharide gum additives on the shotcrete process. ACI Mater. J. 1998, 95, 152–157. [Google Scholar]
- Li, S.; Zhang, J.; Li, Z.; Gao, Y.; Qi, Y.; Li, H.; Zhang, Q. Investigation and practical application of a new cementitious anti-washout grouting material. Constr. Build. Mater. 2019, 224, 66–77. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, P.; Li, L.; Wang, W. Effects of starch-type polysaccharide on cement hydration and its mechanism. Thermochim. Acta 2019, 678, 178307–178315. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, R.; Wang, W.; Yu, C.; Liu, J. Effect of starch-based admixtures on the exothermic process of cement hydration. Constr. Build. Mater. 2021, 289, 122903. [Google Scholar] [CrossRef]
- Cao, Y.; Zavaterri, P.; Youngblood, J.; Moon, R.; Weiss, J. The influence of cellulose nanocrystal additions on the performance of cement paste. Cem. Concr. Compos. 2015, 56, 73–83. [Google Scholar] [CrossRef]
- Hoyos, C.G.; Zuluaga, R.; Gañán, P.; Pique, T.M.; Vazquez, A. Cellulose nanofibrils extracted from fique fibers as bio-based cement additive. J. Clean. Prod. 2019, 235, 1540–1548. [Google Scholar] [CrossRef]
- Qi, Y.; Li, S.; Li, Z.; Zhang, J.; Li, H. Hydration effect of sodium silicate on cement slurry doped with xanthan. Constr. Build. Mater. 2019, 223, 976–985. [Google Scholar] [CrossRef]
- Lei, L.; Li, R.; Fuddin, A. Influence of maltodextrin retarder on the hydration kinetics and mechanical properties of Portland cement. Cem. Concr. Compos. 2020, 114, 103774. [Google Scholar] [CrossRef]
- Wang, N.; Yu, H.; Bi, W.; Tan, Y.; Zhang, N.; Wu, C.; Ma, H.; Hua, S. Effects of sodium citrate and citric acid on the properties of magnesium oxysulfate cement. Constr. Build. Mater. 2018, 169, 697–704. [Google Scholar] [CrossRef]
- Engbert, A.; Gruber, S.; Plank, J. The effect of alginates on the hydration of calcium aluminate cement. Carbohydr. Polym. 2020, 236, 116038. [Google Scholar] [CrossRef]
- Devaraj, R.D.; Reddy, C.K.; Xu, B. Health-promoting effects of konjac glucomannan and its practical applications: A critical review. Int. J. Biol. Macromol. 2019, 126, 273–281. [Google Scholar] [CrossRef]
- Xin, C.; Chen, J.; Liang, H.; Wan, J.; Li, J.; Li, B. Confirmation and measurement of hydrophobic interaction in sol-gel system of konjac glucomannan with different degree of deacetylation. Carbohydr. Polym. 2017, 174, 337–342. [Google Scholar] [CrossRef]
- Ma, S.; Zhu, P.; Wang, M. Effects of konjac glucomannan on pasting and rheological properties of corn starch. Food Hydrocoll. 2019, 89, 234–240. [Google Scholar] [CrossRef]
- Chen, P.P.; Zhang, H.P.; Ding, J.; Lin, X.Y.; Lu, X.; Liu, C.; Tang, Y. Carboxylmethyl konjac glucomannan conjugated polydopamine composites for Pb (II) removal. Carbohydr. Polym. 2017, 162, 62–70. [Google Scholar] [CrossRef]
- Cao, F.; Shen, J. PEI-modified CMKGM/GO porous biocomposite for superior removal of Pb (II). J. Chem. Eng. Data 2019, 64, 5622–5629. [Google Scholar] [CrossRef]
- Niu, C.; Wu, W.; Wang, Z.; Li, S.; Wang, J. Adsorption of heavy metal ions from aqueous solution by crosslinked carboxymethyl konjac glucomannan. J. Hazard. Mater. 2007, 141, 209–214. [Google Scholar] [CrossRef]
- Liu, F.; Zou, H.; Peng, J.; Hu, J.; Liu, H.; Chen, Y.; Lu, F. Removal of copper (II) using deacetylated konjac glucomannan conjugated soy protein isolate. Int. J. Biol. Macromol. 2016, 86, 338–344. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, R.; Perkins, W.S.; Cheng, Y. Morphology evolution and gelation mechanism of alkali induced konjac glucomannan hydrogel. Food Chem. 2018, 269, 80–88. [Google Scholar] [CrossRef]
- Luo, X.; He, P.; Lin, X. The mechanism of sodium hydroxide solution promoting the gelation of Konjac glucomannan (KGM). Food Hydrocoll. 2013, 30, 92–99. [Google Scholar] [CrossRef]
- Jian, W.; Siu, K.C.; Wu, J.Y. Effects of pH and temperature on colloidal properties and molecular characteristics of Konjac glucomannan. Carbohydr. Polym. 2015, 134, 285–292. [Google Scholar] [CrossRef]
- Charoenrein, S.; Tatirat, O.; Rengsutthi, K.; Thongngam, M. Effect of konjac glucomannan on syneresis, textural properties and the microstructure of frozen rice starch gels. Carbohydr. Polym. 2011, 83, 291–296. [Google Scholar] [CrossRef]
- Ning, Y.; Cui, B.; Yuan, C.; Zou, Y.; Liu, W.; Pan, Y. Effects of konjac glucomannan on the rheological, microstructure and digestibility properties of debranched corn starch. Food Hydrocoll. 2020, 100, 105342. [Google Scholar] [CrossRef]
- Wu, C.; Li, Y.; Du, Y.; Wang, L.; Tong, C.; Hu, Y.; Pang, J.; Yan, Z. Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging. Food Hydrocoll. 2019, 89, 682–690. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, H.; Wu, H.; Tong, C.; Pang, J.; Wu, C. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocoll. 2020, 107, 105942. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, G.; Chen, Y.; Huang, G.; Gao, Y. Investigations on the utilization of konjac glucomannan in the flotation separation of chalcopyrite from pyrite. Miner. Eng. 2020, 145, 106098. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, S.; Shang, L.; Zhou, P.; Li, J.; Li, B. An efficient and simple approach for the controlled preparation of partially degraded konjac glucomannan. Food Hydrocoll. 2020, 108, 106017. [Google Scholar] [CrossRef]
- Wang, H.; Mao, Q.J.; Gao, Y.; Wang, Z.M.; Cui, S.P. Effect and mechanism of sodium fluosilicate on setting time of cement. Mater. Sci. Forum 2017, 898, 1978–1983. [Google Scholar] [CrossRef]
- Kochova, K.; Schollbach, K.; Gauvin, F.; Brouwers, H.J.H. Effect of saccharides on the hydration of ordinary Portland cement. Constr. Build. Mater. 2017, 150, 268–275. [Google Scholar] [CrossRef]
- Huang, H.; Shen, X. Interaction effect of triisopropanolamine and glucose on the hydration of Portland cement. Constr. Build. Mater. 2014, 65, 360–366. [Google Scholar] [CrossRef]
- Yan, Y.; Ouzia, A.; Yu, C.; Liu, J.; Scrivener, K.L. Effect of a novel starch-based temperature rise inhibitor on cement hydration and microstructure development. Cem. Concr. Res. 2020, 129, 105961. [Google Scholar] [CrossRef]
- Ataie, F.F.; Juenger, M.C.G.; Taylor-Lange, S.C.; Riding, K.A. Comparison of the retarding mechanisms of zinc oxide and sucrose on cement hydration and interactions with supplementary cementitious materials. Cem. Concr. Res. 2015, 72, 128–136. [Google Scholar] [CrossRef]
- Yaphary, Y.L.; Yu, Z.; Lam, R.H.W.; Lau, D. Effect of triethanolamine on cement hydration toward initial setting time. Constr. Build. Mater. 2017, 141, 94–103. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y.; Lu, C.; Huang, Z. Effects of sodium gluconate on early hydration and mortar performance of Portland cement-calcium aluminate cement-anhydrite binder. Constr. Build. Mater. 2017, 157, 1065–1073. [Google Scholar] [CrossRef]
- Ma, S.; Li, W.; Zhang, S.; Ge, D.; Yu, J.; Shen, X. Influence of sodium gluconate on the performance and hydration of Portland cement. Constr. Build. Mater. 2015, 91, 138–144. [Google Scholar] [CrossRef]
- Singh, N.B.; Singh, A.K.; Singh, S.P. Effect of citric acid on the hydration of portland cement. Cem. Concr. Res. 1986, 16, 911–920. [Google Scholar] [CrossRef]
- Beaudoin, J.J.; Feldman, R.F.; Tumidajski, P.J. Pore structure of hardened portland cement pastes and its influence on properties. Adv. Cem. Based Mater. 1994, 1, 224–236. [Google Scholar] [CrossRef]
- Lian, C.; Zhuge, Y.; Beecham, S. The relationship between porosity and strength for porous concrete. Constr. Build. Mater. 2011, 25, 4294–4298. [Google Scholar] [CrossRef]
- Zajac, M.; Skocek, J.; Adu-Amankwah, S.; Black, L.; Haha, M.B. Impact of microstructure on the performance of composite cements: Why higher total porosity can result in higher strength. Cem. Concr. Compos. 2018, 90, 178–192. [Google Scholar] [CrossRef]
- Boukhatem, A.; Bouarab, K.; Yahia, A. Kappa (κ)-carrageenan as a novel viscosity-modifying admixture for cement-based materials—Effect on rheology, stability, and strength development. Cem. Concr. Compos. 2021, 124, 104221. [Google Scholar] [CrossRef]
- Ortiz-Álvarez, N.; Lizarazo-Marriaga, J.; Brandão, P.F.B.; Santos-Panqueva, Y.; Carrillo, J. Rheological properties of cement-based materials using a biopolymer viscosity modifying admixture (BVMA) under different dispersion conditions. Cem. Concr. Compos. 2021, 124, 104224. [Google Scholar] [CrossRef]
- Nassiri, S.; Chen, Z.; Jian, G.; Zhong, T.; Haider, M.M.; Li, H.; Fernandez, C.; Sinclair, M.; Varga, T.; Fifield, L.S.; et al. Comparison of unique effects of two contrasting types of cellulose nanomaterials on setting time, rheology, and compressive strength of cement paste. Cem. Concr. Compos. 2021, 123, 104201. [Google Scholar] [CrossRef]
- Wang, C.; Xu, M.; Lv, W.-p.; Qiu, P.; Gong, Y.-y.; Li, D. Study on rheological behavior of konjac glucomannan. Phys. Procedia 2012, 33, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, L.; Feng, P.; Wang, W.; Tian, Q.; Liu, J. Impact of temperature rising inhibitor on hydration kinetics of cement paste and its mechanism. Cem. Concr. Compos. 2018, 93, 289–300. [Google Scholar] [CrossRef]
- Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. Mechanisms of cement hydration. Cem. Concr. Res. 2011, 41, 1208–1223. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Tang, P.; Zhong, C.; Liu, L.; Zhang, Y.; Tang, Y.; Zhang, H. Konjac Glucomannan Induced Retarding Effects on the Early Hydration of Cement. Polymers 2022, 14, 1064. https://doi.org/10.3390/polym14051064
Chen Y, Tang P, Zhong C, Liu L, Zhang Y, Tang Y, Zhang H. Konjac Glucomannan Induced Retarding Effects on the Early Hydration of Cement. Polymers. 2022; 14(5):1064. https://doi.org/10.3390/polym14051064
Chicago/Turabian StyleChen, Yushan, Pengfei Tang, Chen Zhong, Laibao Liu, Yunsheng Zhang, Youhong Tang, and Hongping Zhang. 2022. "Konjac Glucomannan Induced Retarding Effects on the Early Hydration of Cement" Polymers 14, no. 5: 1064. https://doi.org/10.3390/polym14051064
APA StyleChen, Y., Tang, P., Zhong, C., Liu, L., Zhang, Y., Tang, Y., & Zhang, H. (2022). Konjac Glucomannan Induced Retarding Effects on the Early Hydration of Cement. Polymers, 14(5), 1064. https://doi.org/10.3390/polym14051064