Carbon-Based Polymer Nanocomposites for High-Performance Applications II
Conflicts of Interest
References
- Monthioux, M.; Kuznetsov, V.L. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006, 44, 1621–1623. [Google Scholar] [CrossRef]
- Mouras, S.A.; Djurado, D.; Hamm, A.; Cousseins, J. Synthesis of first stage graphite intercalation compounds with fluorides. Inorg. Chem. Rev. 1987, 24, 572–582. [Google Scholar]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Poly(propylene fumarate)/polyethylene glycol-modified graphene oxide biocomposites for tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 17902–17914. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yao, X.; Ma, K.; Niu, X.; Grothe, J.; Xu, Q. Metal–organic framework/graphene quantum dot nanoparticles used for synergistic chemo- and photothermal therapy. ACS Omega 2017, 2, 1249–1258. [Google Scholar] [CrossRef] [Green Version]
- Diez-Pascual, A.M.; Naffakh, M.; Gomez, M.A.; Marco, C.; Ellis, G.; Gonzalez-Dominguez, J.M.; Anson, A.; Martínez, M.T.; Martínez-Rubi, Y.; Simard, B.; et al. Influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites. Nanotechnology 2009, 20, 315707–315720. [Google Scholar] [CrossRef] [PubMed]
- Díez-Pascual, A.M.; Sánchez, J.A.L.; Capilla, R.P.; Díaz, P.G. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells. Polymers 2018, 10, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siwal, S.S.; Zhang, Q.; Devi, N.; Thakur, V.K. Carbon-based polymer nanocomposite for high-performance energy storage applications. Polymers 2020, 12, 505. [Google Scholar] [CrossRef] [Green Version]
- Diez-Pascual, A.M.; Naffakh, M.; Marco, C.; Ellis, G. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene- like WS2 nanoparticles. J. Phys. Chem. B 2012, 116, 7959–7969. [Google Scholar] [CrossRef] [Green Version]
- Mérai, L.; Deák, Á.; Sebők, D.; Kukovecz, Á.; Dékány, I.; Janovák, L. A Stimulus-Responsive Polymer Composite Surface with Magnetic Field-Governed Wetting and Photocatalytic Properties. Polymers 2020, 12, 1890. [Google Scholar] [CrossRef]
- Luceño Sánchez, J.A.; Peña Capilla, R.; Díez-Pascual, A.M. High-Performance PEDOT:PSS/hexamethylene diisocyanate-functionalized graphene oxide nanocomposites: Preparation and properties. Polymers 2018, 10, 1169. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cai, K.F.; Song, H.J.; Shen, S. Simultaneously enhanced electrical conductivity and Seebeck coefficient in Poly(3,4-ethylenedioxythiophene) films treated with hydroiodic acid. Synth. Met. 2016, 220, 585–590. [Google Scholar] [CrossRef]
- Luceño Sánchez, J.A.; Díez-Pascual, A.M.; Peña Capilla, R.; García Díaz, P. The effect of hexamethylene diisocyanate-modified graphene oxide as a nanofiller material on the properties of conductive polyaniline. Polymers 2019, 11, 1032. [Google Scholar] [CrossRef] [Green Version]
- Luceño-Sánchez, J.A.; Charas, A.; Díez-Pascual, A.M. Effect of HDI-Modified GO on the Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene): Poly(Styrenesulfonate) Nanocomposite Films. Polymers 2021, 13, 1503. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yao, Q.; Qu, S.; Chen, Y.; Li, H.; Chen, L. Preparation and Thermoelectric Properties of Semiconducting Single-Walled Carbon Nanotubes/Regioregular Poly(3-dodecylthiophene) Composite Films. Polymers 2020, 12, 2720. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, N.G.; Rana, S.; Cho, J.W.; Li, L.; Chan, S.H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010, 35, 837–867. [Google Scholar] [CrossRef]
- Diez-Pascual, A.M.; Naffakh, M. Grafting of an aminated poly(phenylene sulphide) derivative to functionalized single-walled carbon nanotubes. Carbon 2012, 50, 857–868. [Google Scholar] [CrossRef] [Green Version]
- Pitchan, M.K.; Bhowmik, S.; Balachandran, M.; Abraham, M. Effect of surface functionalization on mechanical properties and decomposition kinetics of high performance polyetherimide/MWCNT nano composites. Compos. Part A 2016, 90, 147–160. [Google Scholar] [CrossRef]
- Diez-Pascual, A.M.; Martinez, G.; Gonzalez-Dominguez, J.M.; Anson, A.; Martínez, M.T.; Gomez, M.A. Grafting of a hydroxylated poly(ether ether ketone) to the surface of single-walled carbon nanotubes. J. Mater. Chem. 2010, 20, 8285–8296. [Google Scholar] [CrossRef]
- Sapiai, N.; Jumahat, A.; Jawaid, M.; Khan, A. Effect of MWCNT Surface Functionalisation and Distribution on Compressive Properties of Kenaf and Hybrid Kenaf/Glass Fibres Reinforced Polymer Composites. Polymers 2020, 12, 2522. [Google Scholar] [CrossRef]
- Ansón-Casaos, A.; González-Domínguez, J.M.; Díez-Pascual, A.M.; Gómez-Fatou, M.A.; Martínez, M.T. J Choosing the Chemical Route for Carbon Nanotube Integration in Poly(vinylidene fluoride). Phys. Chem. C 2012, 116, 16217–16225. [Google Scholar] [CrossRef]
- Li, J.-W.; Huang, C.-Y.; Chen, K.-Y.; Chen, J.-X.; Hsu, X.-Y.; Chen, Y.-F.; Kuo, C.-F.J.; Cheng, C.-C.; Suen, M.-C.; Chiu, C.-W. Enhanced Piezoelectric Properties of Poly(Vinylidenefluoride-Co-Trifluoroethylene)/Carbon-Based Nanomaterial Composite Films for Pressure Sensing Applications. Polymers 2020, 12, 2999. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Suzuki, R.; Ogata, K.; Nakamura, T.; Dong, A.; Weng, W. Near-Linear Responsive and Wide-Range Pressure and Stretch Sensor Based on Hierarchical Graphene-Based Structures via Solvent-Free Preparation. Polymers 2020, 12, 1814. [Google Scholar] [CrossRef] [PubMed]
- Shiju, J.; Al-Sagheer, F.; Ahmad, Z. Thermal Mechanical Properties of Graphene Nano-Composites with Kevlar-Nomex Copolymer: A Comparison of the Physical and Chemical Interactions. Polymers 2020, 12, 2740. [Google Scholar] [CrossRef] [PubMed]
- Luceño, J.A.; Maties, G.; Gonzalez-Arellano, C.; Díez-Pascual, A.M. Synthesis and characterization of graphene oxide derivatives via functionalization reaction with hexamethylene diisocyanate. Nanomaterials 2018, 8, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baibarac, M.; Daescu, M.; Socol, M.; Bartha, C.; Negrila, C.; Fejer, S.N. Influence of Reduced Graphene Oxide on the Electropolymerization of 5-Amino-1-naphthol and the Interaction of 1,4-Phenylene Diisothiocyanate with the Poly(5-Amino-1-naphtol)/Reduced Graphene Oxide Composite. Polymers 2020, 12, 1299. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díez-Pascual, A.M. Carbon-Based Polymer Nanocomposites for High-Performance Applications II. Polymers 2022, 14, 870. https://doi.org/10.3390/polym14050870
Díez-Pascual AM. Carbon-Based Polymer Nanocomposites for High-Performance Applications II. Polymers. 2022; 14(5):870. https://doi.org/10.3390/polym14050870
Chicago/Turabian StyleDíez-Pascual, Ana M. 2022. "Carbon-Based Polymer Nanocomposites for High-Performance Applications II" Polymers 14, no. 5: 870. https://doi.org/10.3390/polym14050870
APA StyleDíez-Pascual, A. M. (2022). Carbon-Based Polymer Nanocomposites for High-Performance Applications II. Polymers, 14(5), 870. https://doi.org/10.3390/polym14050870