Novel Cuboid-like Crystalline Complexes (CLCCs), Photon Emission, Fluorescent Fibers, and Bright Red Fabrics of Eu3+ Complexes Adjusted by Amphiphilic Molecules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Eu3+-TTA-Phen Complexes (ETPC)
2.3. Synthesis of Eu3+-TTA-Phen-SA (ETPC-SA)
2.4. Synthesis of Eu3+-TTA-Phen-HQ (ETPC-HQ)
2.5. Preparations of Hybrid Fluorescent Fibers Doped with ETPC, ETPC-SA, and ETPC-HQ (CLCC Fibers, CLCCF)
2.6. Characterizations
3. Results and Discussion
3.1. Adjustment of Cuboid-like Crystal Structures
3.2. Composition Characterizations of ETPC, ETPC-SA, and ETPC-HQ
3.3. Photophysical Properties of ETPC, ETPC-SA, and ETPC-HQ
3.4. Morphological Structure and Dispersion of ETPC, ETPC-SA, and ETPC-HQ in Hybrid Fluorescent Fibers
3.5. Morphological and Crystalline Structures of ETPC, ETPC-SA, and ETPC-HQ in Fluorescent Fibers
3.6. Luminescent Property of ETPC, ETPC-SA, and ETPC-HQ in Hybrid Fluorescent Fibers
3.7. Fluorescence Lifetime and Fluorescence Quantum Yield of CLCCs and CLCCF
3.8. Bright Red Fabric Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rout, A.; Vinodkumar, P.; Shankar Panigrahi, B. Europium(III) Coordination in a Combined Ligand System: A Luminescence Spectroscopy Study. ChemistrySelect 2020, 5, 10848–10854. [Google Scholar] [CrossRef]
- Yuan, L.; Yin, M.; Yuan, E.; Sun, J.; Zhang, K. Syntheses, structures and luminescence of Europium α-thiophene carboxylates coordination polymer and supramolecular compound. Inorg. Chim. Acta 2004, 357, 89–94. [Google Scholar] [CrossRef]
- Chen, P.; Li, Q.; Grindy, S.; Holten-Andersen, N. White-Light-Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties. J. Am. Chem. Soc. 2015, 137, 11590–11593. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xie, Z.; Meng, L.; Hu, Z.; Kuang, X.; Xie, Y.; Lu, C.Z. Luminescence Tunable Europium and Samarium Complexes: Reversible On/Off Switching and White-Light Emission. Inorg. Chem. 2020, 59, 6963–6977. [Google Scholar] [CrossRef]
- Gorai, T.; Schmitt, W.; Gunnlaugsson, T. Highlights of the development and application of luminescent lanthanide based coordination polymers, MOFs and functional nanomaterials. Dalton Trans. 2021, 50, 770–784. [Google Scholar] [CrossRef]
- Gil-Kowalczyk, M.; Lyszczek, R.; Jusza, A.; Piramidowicz, R. Thermal, Spectroscopy and Luminescent Characterization of Hybrid PMMA/Lanthanide Complex Materials. Materials 2021, 14, 3156. [Google Scholar] [CrossRef]
- Lapaev, D.V.; Nikiforov, V.G.; Lobkov, V.S.; Knyazev, A.A.; Krupin, A.S.; Galyametdinov, Y.G. New insights into UV laser irradiation effect on luminescent behavior of vitrified films based on mesogenic lanthanide(III) β-diketonate complexes. J. Photochem. Photobiol. A Chem. 2019, 382, 111962. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, G.; Barillaro, G.; Qiu, J.; Yang, Z. Emerging and perspectives in microlasers based on rare-earth ions activated micro-/nanomaterials. Prog. Mater. Sci. 2021, 121, 100814. [Google Scholar] [CrossRef]
- Verma, P.; Singh, A.; Maji, T.K. Photo-modulated wide-spectrum chromism in Eu3+ and Eu3+/Tb3+ photochromic coordination polymer gels: Application in decoding secret information. Chem. Sci. 2020, 12, 2674–2682. [Google Scholar] [CrossRef]
- Jaiswal, V.V.; Chandar Rao, P.; Sreelatha, C.J.; Sai Prasad, A.S.; Haranath, D. Luminescence enhancement of high temperature hexagonal phase of Ba0.99MgAl10O17: Eu0.01 nanophosphor synthesized at moderately low temperature. Mater. Sci. Eng. B 2021, 263, 114791. [Google Scholar] [CrossRef]
- Bao, G.; Wen, S.; Lin, G.; Yuan, J.; Lin, J.; Wong, K.-L.; Bünzli, J.-C.G.; Jin, D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coordinat. Chem. Rev. 2021, 429, 213642. [Google Scholar] [CrossRef]
- Zhang, Q.; O’Brien, S.; Grimm, J. Biomedical Applications of Lanthanide Nanomaterials, for Imaging, Sensing and Therapy. Nanotheranostics 2022, 6, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, Y.; Tsurui, M.; Hasegawa, Y. Bright red emission with high color purity from Eu(III) complexes with π-conjugated polycyclic aromatic ligands and their sensing applications. RSC Adv. 2022, 12, 810–821. [Google Scholar] [CrossRef]
- Podyachev, S.N.; Zairov, R.R.; Mustafina, A.R. 1,3-Diketone Calix[4]arene Derivatives—A New Type of Versatile Ligands for Metal Complexes and Nanoparticles. Molecules 2021, 26, 1214. [Google Scholar] [CrossRef]
- Farnaby, J.H.; Chowdhury, T.; Horsewill, S.J.; Wilson, B.; Jaroschik, F. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2019. Coordinat. Chem. Rev. 2021, 437, 213830. [Google Scholar] [CrossRef]
- Zhu, T.; Chen, P.; Li, H.; Sun, W.; Gao, T.; Yan, P. Structural effects on the photophysical properties of mono-beta-diketonate and bis-beta-diketonate Eu(III) complexes. Phys. Chem. Chem. Phys. 2015, 17, 16136–16144. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, D.; Liu, R.; Zhao, S.; Xiao, X.; Wang, C.; Cao, Y.; Xu, W. Synthesis and fluorescent pH sensing properties of nanoscale lanthanide metal-organic frameworks with silk fibroin powder as polymer ligands. Dyes Pigments 2016, 130, 129–137. [Google Scholar] [CrossRef]
- Lin, L.R.; Tang, H.H.; Wang, Y.G.; Wang, X.; Fang, X.M.; Ma, L.H. Functionalized Lanthanide(III) Complexes Constructed from Azobenzene Derivative and β-Diketone Ligands: Luminescent, Magnetic, and Reversible Trans-to-Cis Photoisomerization Properties. Inorg. Chem. 2017, 56, 3889–3900. [Google Scholar] [CrossRef]
- Lempicki, A.; Samelson, H. Optical maser action in europium benzoylacetonate. Phys. Lett. 1963, 4, 133–135. [Google Scholar] [CrossRef]
- Hamacek, J.; Vuillamy, A. Controlling the Structures of Lanthanide Complexes in Self-Assemblies with Tripodal Ligands. Eur. J. Inorg. Chem. 2017, 2018, 1155–1166. [Google Scholar] [CrossRef]
- Lin, R.-L.; Zhou, J.-J.; Zhou, F.H.; Sun, W.-Q.; Liu, J.-X.; Chen, K. The lanthanide contraction effect and organic additives impact the coordination structures of lanthanide ions with symmetrical octamethyl-substituted cucurbit[6]uril ligands. CrystEngComm 2019, 21, 5641–5649. [Google Scholar] [CrossRef]
- Malina, I.; Kampars, V.; Belyakov, S. Luminescence properties of 2-benzoyl-1,3-indandione based Eu3+ ternary and tetrakis complexes and their polymer films. Dyes Pigments 2018, 159, 655–665. [Google Scholar] [CrossRef]
- Song, Z.; Wang, J.; Wang, J.; Liu, J.; Wang, X.; Wang, Y.; Aleem, A.R.; Kipper, M.J.; Belfiore, L.A.; Tang, J. Eu3+-induced polysaccharide nano-dumbbell aggregates (PNDA) as drug carriers to smartly report drug concentration through variable fluorescence. Sens. Actuators B Chem. 2021, 336, 129724. [Google Scholar] [CrossRef]
- Jiang, Y.; Yan, C.; Zhang, H.; Wu, M.; Zheng, S.; Zhang, Y.; Xu, L. Biodegradable Polylactide/Rare Earth Complexes in Light Conversion Agricultural Films. Coatings 2021, 11, 139. [Google Scholar] [CrossRef]
- Yin, H.; Tang, Z.; Fu, G.; Ai, X.; Xia, J.; Tang, H.; Yang, C.; Qu, L.; Li, Y. Novel rare earth coordination polymers with greatly enhanced fluorescence by synergistic effect of carboxyl-functionalized poly(arylene ether nitrile) and 1,10-phenanthroline. Eur. Polym. J. 2020, 141, 110078. [Google Scholar] [CrossRef]
- Niu, T.; Yao, C.; Xie, W.; Zhang, S.; Xu, Y. A red luminescent Eu3+ doped conjugated microporous polymer for highly sensitive and selective detection of aluminum ions. Polym. Chem. 2021, 12, 356–360. [Google Scholar] [CrossRef]
- Lucas, J.; Lucas, P.; Le Mercier, T.; Rollat, A.; Davenport, W. Applications of Rare Earth Luminescent Materials. In Rare Earths; Elsevier B.V.: Amsterdam, The Netherlands, 2015; pp. 281–318. [Google Scholar]
- Guo, X.; Ge, M.; Zhao, J. Photochromic properties of rare-earth strontium aluminate luminescent fiber. Fibers Polym. 2011, 12, 875–879. [Google Scholar] [CrossRef]
- Maouche, R.; Belaid, S.; Benmerad, B.; Bouacida, S.; Daiguebonne, C.; Suffren, Y.; Freslon, S.; Bernot, K.; Guillou, O. Highly Luminescent Europium-Based Heteroleptic Coordination Polymers with Phenantroline and Glutarate Ligands. Inorg. Chem. 2021, 60, 3707–3718. [Google Scholar] [CrossRef]
- Kot, K.; Oczko, G.; Puchalska, M.; Starynowicz, P. Relationships between structural and spectroscopic properties of complexes of o-phenanthroline and 2,2′-bipyridine with lanthanide (Ln = Sm, Eu) thiocyanates. Polyhedron 2020, 190, 114770. [Google Scholar] [CrossRef]
- Yang, J.; Cao, J.; Shen, D.; Xiong, J.; Tang, J.; Hu, S. Morphology-controlled synthesis and luminescence properties of ScPO4·2H2O:Ln3+nano/micro-crystals by a facile approach. CrystEngComm 2016, 18, 8944–8952. [Google Scholar] [CrossRef]
- Gierschner, J.; Shi, J.; Milián-Medina, B.; Roca-Sanjuán, D.; Varghese, S.; Park, S. Luminescence in Crystalline Organic Materials: From Molecules to Molecular Solids. Adv. Opt. Mater. 2021, 9, 2002251. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, J.; Li, H.; Wang, Y.; Wang, X.; Wang, Y.; Huang, L.; Belfiore, L.A. Red light emitting nano-PVP fibers that hybrid with Ag@SiO2@Eu(tta)3phen-NPs by electrostatic spinning method. Opt. Mater. 2018, 78, 220–225. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Yang, R.-D.; Li, F.-S.; Yu, K.-B. Crystal structure and antitumor activity of some rare earth metal complexes with Schiff base. Polyhedron 2000, 19, 2599–2604. [Google Scholar] [CrossRef]
- Wang, L.-H.; Wang, W.; Zhang, W.-G.; Kang, E.-T.; Huang, W. Synthesis and Luminescence Properties of Novel Eu-Containing Copolymers Consisting of Eu(III)–Acrylate–β-Diketonate Complex Monomers and Methyl Methacrylate. Chem. Mater. 2000, 12, 2212–2218. [Google Scholar] [CrossRef]
- Zhao, Y.-c.; Huang, L.-j.; Wang, Y.-x.; Tang, J.-g.; Wang, Y.; Liu, J.-x.; Belfiore, L.A.; Kipper, M.J. Synthesis of graphene oxide/rare-earth complex hybrid luminescent materials via π-π stacking and their pH-dependent luminescence. J. Alloys Compd. 2016, 687, 95–103. [Google Scholar] [CrossRef]
- Parreira, R.L.T.; Nassar, E.J.; da Silva, E.H.; Rocha, L.A.; Bergamo, P.A.d.S.; Ferreira, C.M.A.; Kar, T.; Fonseca, D.E.P.; Coimbra, D.F.; Caramori, G.F. Electronic properties and metal-ligand bonding situation in Eu(III) complexes containing tris(pyrazolyl)borate and phenantroline ligands. J. Lumin. 2017, 182, 137–145. [Google Scholar] [CrossRef]
- Garcia-Torres, J.; Bosch-Jimenez, P.; Torralba-Calleja, E.; Kennedy, M.; Ahmed, H.; Doran, J.; Gutierrez-Tauste, D.; Bautista, L.; Della Pirriera, M. Modulating the photoluminescence of europium-based emitting polymers: Influence of the matrix on the photophysical properties. J. Photochem. Photobiol. A Chem. 2014, 275, 103–113. [Google Scholar] [CrossRef]
- Shahi, P.K.; Prakash, R.; Rai, S.B. Impact of viscosity on photo-induced bimodal emission, decay profile and energy transfer in lanthanide based hybrid nanostructure. Opt. Mater. 2020, 107, 110086. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Wang, Z.; Zheng, Y.; Zheng, X.; Gao, L.; Wang, C.; Yang, C.; Tang, H.; Li, Y. Biodegradable film enabling visible light excitation of Hexanuclear Europium(III) complex for various applications. J. Lumin. 2021, 229, 117706. [Google Scholar] [CrossRef]
- Divya, V.; Reddy, M.L.P. Visible-light excited red emitting luminescent nanocomposites derived from Eu3+-phenathrene-based fluorinated β-diketonate complexes and multi-walled carbon nanotubes. J. Mater. Chem. C 2013, 1, 160–170. [Google Scholar] [CrossRef]
- Graffion, J.; Cattoën, X.; Wong Chi Man, M.; Fernandes, V.R.; André, P.S.; Ferreira, R.A.S.; Carlos, L.D. Modulating the Photoluminescence of Bridged Silsesquioxanes Incorporating Eu3+-Complexed n,n′-Diureido-2,2′-bipyridine Isomers: Application for Luminescent Solar Concentrators. Chem. Mater. 2011, 23, 4773–4782. [Google Scholar] [CrossRef] [Green Version]
- Sabater i Serra, R.; Torregrosa Cabanilles, C.; Meseguer Dueñas, J.M.; Gómez Ribelles, J.L.; Molina-Mateo, J. Conformational Changes and Dynamics during Adsorption of Macromolecules with Different Degree of Polymerization Studied by Monte Carlo Simulations. Macromol. Theory Simul. 2018, 27, 1800012. [Google Scholar] [CrossRef]
- Yang, C.; Liu, S.; Xu, J.; Li, Y.; Shang, M.; Lei, L.; Wang, G.; He, J.; Wang, X.; Lu, M. Efficient red emission from poly(vinyl butyral) films doped with a novel europium complex based on a terpyridyl ancillary ligand: Synthesis, structural elucidation by Sparkle/RM1 calculation, and photophysical properties. Polym. Chem. 2016, 7, 1147–1157. [Google Scholar] [CrossRef]
Compound | Eu3d (eV) | O1s (eV) | N1s (eV) |
---|---|---|---|
Phen | − | − | 398.5 |
TTA | − | 533.2 | − |
EuCl3·6H2O | 1137.0 | − | − |
ETPC | 1135.0 | 531.2 | 399.3 |
ETPC-SA | 1134.9 | 531.4 | 399.4 |
ETPC-HQ | 1134.9 | 531.4 | 399.3 |
Materials | Φ/% | τ1/µs | τ2/µs | τ3/µs | B1% | B2% | B3% | τA/µs |
---|---|---|---|---|---|---|---|---|
ETPC | 92.5 | 446 | 778 | − | 25.3 | 74.7 | − | 694 |
ETPC-SA | 98.4 | 684 | 959 | − | 63.4 | 36.6 | − | 785 |
ETPC-HQ | 17.2 | 183 | 736 | − | 5.2 | 94.8 | − | 707 |
ETPC fiber | 51.8 | 417 | 1453 | − | 18.7 | 81.3 | − | 1259 |
ETPC-SA fiber | 58.4 | 40 | 406 | 1255 | 4.5 | 42.4 | 53.1 | 840 |
ETPC-HQ fiber | 5.6 | 185 | 617 | 1537 | 2.7 | 33.9 | 63.4 | 1189 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Liu, S.; Liu, J.; Wang, Y.; Wang, Y.; Wang, S.; Du, Z.; Huang, L.; Belfiore, L.A.; Tang, J. Novel Cuboid-like Crystalline Complexes (CLCCs), Photon Emission, Fluorescent Fibers, and Bright Red Fabrics of Eu3+ Complexes Adjusted by Amphiphilic Molecules. Polymers 2022, 14, 905. https://doi.org/10.3390/polym14050905
Tang Q, Liu S, Liu J, Wang Y, Wang Y, Wang S, Du Z, Huang L, Belfiore LA, Tang J. Novel Cuboid-like Crystalline Complexes (CLCCs), Photon Emission, Fluorescent Fibers, and Bright Red Fabrics of Eu3+ Complexes Adjusted by Amphiphilic Molecules. Polymers. 2022; 14(5):905. https://doi.org/10.3390/polym14050905
Chicago/Turabian StyleTang, Qinglin, Shasha Liu, Jin Liu, Yao Wang, Yanxin Wang, Shichao Wang, Zhonglin Du, Linjun Huang, Laurence A. Belfiore, and Jianguo Tang. 2022. "Novel Cuboid-like Crystalline Complexes (CLCCs), Photon Emission, Fluorescent Fibers, and Bright Red Fabrics of Eu3+ Complexes Adjusted by Amphiphilic Molecules" Polymers 14, no. 5: 905. https://doi.org/10.3390/polym14050905
APA StyleTang, Q., Liu, S., Liu, J., Wang, Y., Wang, Y., Wang, S., Du, Z., Huang, L., Belfiore, L. A., & Tang, J. (2022). Novel Cuboid-like Crystalline Complexes (CLCCs), Photon Emission, Fluorescent Fibers, and Bright Red Fabrics of Eu3+ Complexes Adjusted by Amphiphilic Molecules. Polymers, 14(5), 905. https://doi.org/10.3390/polym14050905