A Review on CAD/CAM Yttria-Stabilized Tetragonal Zirconia Polycrystal (Y-TZP) and Polymethyl Methacrylate (PMMA) and Their Biological Behavior
Abstract
:1. Introduction
2. Materials and Methods
- -
- (“yttria-stabilized tetragonal zirconia polycrystal” OR “ytzp” OR “ytrium tetragonal zirconia polycrystal” OR “pmma” OR “polymethyl methacrylate”) AND (“dental implant” OR “dentistry”)
- -
- (“yttria-stabilized tetragonal zirconia polycrystal” OR “ytzp” OR “ytrium tetragonal zirconia polycrystal” OR “pmma” OR “polymethyl methacrylate”) AND “dentistry and restoration”
- -
- (“yttria-stabilized tetragonal zirconia polycrystal” OR “ytzp” OR “ytrium tetragonal zirconia polycrystal” OR “pmma” OR “polymethyl methacrylate”) AND (“dental implant” OR “dental prosthesis” OR “cad cam”)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- D’Addona, A.; Ghassemian, M.; Raaelli, L.; Manicone, P.F. Soft and hard tissue management in implant therapy—Part I: Surgical concepts. Int. J. Biomater. 2012, 2012, 531202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, N.G.; Wong, J.; Baruth, A.; Cerutis, D.R. Effect of Clinically Relevant CAD/CAM Zirconia Polishing on Gingival Fibroblast Proliferation and Focal Adhesions. Materials 2017, 10, 1358. [Google Scholar] [CrossRef] [Green Version]
- Mehl, C.; Kern, M.; Schütte, A.M.; Kadem, L.F.; Selhuber-Unkel, C. Adhesion of living cells to abutment materials, dentin, and adhesive luting cement with different surface qualities. Dent. Mater. 2016, 32, 1524–1535. [Google Scholar] [CrossRef]
- Herráez-Galindo, C.; Rizo-Gorrita, M.; Luna-Oliva, I.; Serrera-Figallo, M.Á.; Castillo-Oyagüe, R.; Torres-Lagares, D. In vitro Comparative Study of Fibroblastic Behaviour o Polymethacrylate (PMMA) and Lithium Disilicate Polymer Surfaces. Polymers 2019, 11, 744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizo-Gorrita, M.; Luna-Oliva, I.; Serrera-Figallo, M.Á.; Gutiérrez-Pérez, J.L.; Torres-Lagares, D. Comparison of Cytomorphometry and Early Cell Response of Human Gingival Fibroblast (HGFs) between Zirconium and New Zirconia-Reinforced Lithium Silicate Ceramics (ZLS). Int. J. Mol. Sci. 2018, 19, 2718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pabst, A.M.; Walter, C.; Bell, A.; Weyhrauch, M.; Schmidtmann, I.; Scheller, H.; Lehmann, K.M. Influence of CAD/CAM zirconia for implant-abutment manufacturing on gingival fibroblasts and oral keratinocytes. Clin. Oral Investig. 2016, 20, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Rutkunas, V.; Bukelskiene, V.; Sabaliauskas, V.; Balciunas, E.; Malinauskas, M.; Baltriukine, D. Assessment of human gingival fibroblast interaction with dental implant abutment materials. J. Mater. Sci. Mater. Med. 2015, 26, 169. [Google Scholar] [CrossRef]
- Tetè, S.; Zizzari, V.; Borelli, B.; De Colli, M.; Zara, S.; Sorrentino, R.; Scarano, A.; Gherlone, E.; Cataldi, A.; Zarone, F. Proliferation and adhesion capability of human gingival fibroblasts onto zirconia, lithium disilicate and feldspathic veneering ceramic in vitro. Dent. Mater. J. 2014, 33, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Grenade, C.; De Pauw-Gillet, M.; Gailly, P.; Vanheusden, A.; Mainjot, A. Biocompatibility of polymerinfiltrated-ceramic-network (PICN) materials with Human Gingival Fibroblasts (HGFs). Dent. Mater. 2016, 32, 1152–1164. [Google Scholar] [CrossRef]
- Furuhashi, A.; Ayukawa, Y.; Atsuta, I.; Okawachi, H.; Koyano, K. The difference of fibroblast behavior on titanium substrata with different surface characteristics. Odontology 2012, 100, 199–205. [Google Scholar] [CrossRef]
- Rompen, E.; Domken, O.; Degidi, M.; Pontes, A.E.; Piattelli, A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: A literature review. Clin. Oral Implant. Res. 2006, 17, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Dal Piva, A.; Contreras, L.; Ribeiro, F.C.; Anami, L.C.; Camargo, S.; Jorge, A.; Bottino, M.A. Monolithic Ceramics: Effect of Finishing Techniques on Surface Properties, Bacterial Adhesion and Cell Viability. Oper. Dent. 2018, 43, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Pae, A.; Lee, H.; Kim, H.S.; Kwon, Y.D.; Woo, Y.H. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces. Biomed. Mater. 2009, 4, 25005. [Google Scholar] [CrossRef]
- Awada, A.; Nathanson, D. Mechanical properties of resin-ceramic CAD/CAMrestorative materials. J. Prosthet. Dent. 2015, 114, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Hotta, Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Aust. Dent. J. 2011, 56, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chow, T.; Matinlinna, J. Ceramic dental biomaterials and CAD/CAM technology: State of the art. J. Prosthodontic Res. 2014, 58, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvath, S.D. Key Parameters of Hybrid Materials for CAD/CAM-Based Restorative Dentistry. Compend. Contin. Educ. Dent. 2016, 37, 638–643. [Google Scholar]
- Pabst, A.; Walter, C.; Grassmann, L.; Weyhrauch, M.; Brüllmann, D.; Ziebart, T.; Scheller, H.; Lehmann, K.M. Influence of CAD/CAM all-ceramic materials on cell viability, migration ability and adenylate kinase release of human gingival fibroblasts and oral keratinocytes. Clin. Oral Investig. 2013, 18, 1111–1118. [Google Scholar] [CrossRef]
- Atay, A.; Gürdal, I.; Bozok Çetıntas, V.; Üşümez, A.; Cal, E. Effects of New Generation All-Ceramic and Provisional Materials on Fibroblast Cells. J. Prosthodont. 2018, 28, e383–e394. [Google Scholar] [CrossRef] [Green Version]
- Coldea, A.; Swain, M.V.; Thiel, N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J. Mech. Behav. Biomed. Mater. 2013, 26, 34–42. [Google Scholar]
- Proussaefs, P.; AlHelal, A. A technique for immediately restoring single dental implants with a CAD-CAM implant-supported crown milled from a poly(methyl methacrylate) block. J. Prosthet. Dent. 2018, 119, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Gautam, C.; Joyner, J.; Gautam, A.; Rao, J.; Vajtai, R. Zirconia based dental ceramics: Structure, mechanical properties, biocompatibility and applications. Dalton Trans. 2016, 45, 19194–19215. [Google Scholar] [CrossRef] [PubMed]
- El-Ghany, O.S.A.; Sherief, A.H. Zirconia based ceramics, some clinical and biological aspects: Review. Futur. Dent. J. 2016, 2, 55–64. [Google Scholar] [CrossRef]
- Hallmann, L.; Ulmer, P.; Kern, M. Effect of microstructure on the mechanical properties of lithium disilicate glass-ceramics. J. Mech. Behav. Biomed. Mater. 2018, 82, 355–370. [Google Scholar] [CrossRef]
- Chevalier, J. Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004, 25, 5539–5545. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, J.; Gremillard, L.; Virkar, A.; Clarke, D.R. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Kelly, J.R.; Denry, I. Stabilized zirconia as a structural ceramic: An overview. Dent. Mater. 2008, 24, 289–298. [Google Scholar] [CrossRef]
- Gupta, T.K.; Bechtold, J.H.; Kuznicki, R.C.; Cado, L.H.; Rossing, B.R. Stabilization of tetragonal phase in polycrystalline zirconia. J. Mater. Sci. 1977, 12, 2421. [Google Scholar] [CrossRef]
- Rizo-Gorrita, M.; Herráez-Galindo, C.; Torres-Lagares, D.; Serrera-Figallo, M.Á.; Gutiérre-Pérez, J.L. Biocompatibility of Polymer and Ceramic CAD/CAM Materials with Human Gingival Fibroblasts (HGFs). Polymers 2019, 11, 1446. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Li, J.; Wang, Y.; Huang, H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J. Prosthet. Dent. 2014, 112, 649–657. [Google Scholar] [CrossRef]
- Akin, H.; Tugut, F.; Polat, Z.A. In vitro comparison of the cytotoxicity and water sorption of two different denture base systems. J. Prosthodont. 2015, 24, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Salido, M.; Vilches, J.I.; Gutiérrez, J.L.; Vilches, J. Actin cytoskeletal organization in human osteoblasts grown on different dental titanium implant surfaces. Histol. Histopathol. 2007, 22, 1355–1364. [Google Scholar] [PubMed]
- Özçelik, T.B.; Yilmaz, B.; ¸Seker, E.; Shah, K. Marginal Adaptation of Provisional CAD/CAM Restorations Fabricated Using Various Simulated Digital Cement Space Settings. Int. J. Oral Maxillofac. Implant. 2018, 33, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Gjengedal, H.; Cattani-Lorente, M.; Moussa, M.; Durual, S.; Schimmel, M.; Müller, F. CAD/CAM milled complete removable dental prostheses: An in vitro evaluation of biocompatibility, mechanical properties, and surface roughness. Dent. Mater. J. 2018, 37, 526–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, A.O.; Pollington, S.; Liu, Y. Comparison between direct chairside and digitally fabricated temporary crowns. Dent. Mater. J. 2018, 37, 957–963. [Google Scholar] [CrossRef] [Green Version]
- Alp, G.; Murat, S.; Yilmaz, B. Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers. J. Prosthodont. 2019, 28, e491–e495. [Google Scholar] [CrossRef]
- Lo Giudice, G.; Cicciù, M.; Cervino, G.; Lizio, A.; Visco, A.M. Flowable resin andmarginal gap on tooth third medial cavity involving enamel and radicularcementum: A SEM evaluation of two restoration techniques. Indian J. Dent. Res. 2012, 23, 763–769. [Google Scholar]
- Bagegni, A.; Abou-Ayash, S.; Rücker, G.; Algarny, A.; Att, W. The influence of prosthetic material on implant and prosthetic survival of implant-supported fixed complete dentures: A systematic review and meta-analysis. J. Prosthodont. Res. 2019, 63, 251–265. [Google Scholar] [CrossRef]
- Pituru, S.M.; Greabu, M.; Totan, A.; Imre, M.; Pantea, M.; Spinu, T.; Tancu, A.M.C.; Popoviciu, N.O.; Stanescu, I.I.; Ionescu, E. A Review on the Biocompatibility of PMMA-Based Dental Materials for Interim Prosthetic Restorations with a Glimpse into their MModern Manufacturing Techniques. Materials 2020, 13, 2894. [Google Scholar] [CrossRef]
- Shim, J.S.; Kim, H.C.; Park, S.I.; Yun, H.J.; Ryu, J.J. Comparison of Various Implant Provisional Resin Materials for Cytotoxicity and Attachment to Human Gingival Fibroblasts. Int. J. Oral Maxillofac. Implant. 2019, 34, 390–396. [Google Scholar] [CrossRef]
- Guilardi, L.F.; Pereira, G.K.R.; Wandscher, V.F.; Rippe, M.P.; Valandro, L.F. Mechanical behavior of yttria-stabilized tetragonal zirconia polycrystal: Effects of different aging regimens. Braz. Oral Res. 2017, 31, e94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez-Quijano, C.; Azevedo, L.; Antonaya-Martín, J.L.; Del Río-Highsmith, J.; Gómez-Polo, M. Evaluation of the clinical behavior of 2 different materials for implant-supported interim fixed partial prostheses: A randomized clinical trial. J. Prosthet. Dent. 2020, 124, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Pandoleon, P.; Bakopoulou, A.; Papadopoulou, L.; Koidis, P. Evaluation of the biological behaviour of various dental implant abutment materials on attachment and viability of human gingival fibroblasts. Dent. Mater. 2019, 35, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
PICO Question | What Are the Differences between Fibroblast Behavior on YTZP and PMMA? | |
---|---|---|
Search strategy | P (Problem, population) | edentulous OR crown OR edentulism OR fixed dental prosthesis OR implant-supported prosthesis OR implant-supported denture OR dental prosthesis, implant-supported OR dental abutment |
I (Intervention) | yttria-stabilized tetragonal zirconia polycrystal OR ytzp OR y-tzp OR ytzps OR y-tzps AND cad cam | |
C (Comparison) | polymethyl methacrylate OR pmma AND cad cam | |
O (Outcome) | fibroblasts OR gingival fibroblast OR gingiva |
Identification | Records identified through electronic database search according to PICO format (PubMed) n = 26,057 | Records identified through electronic database search according to keyword combination strategy (PubMed and Scopus) n = 6003 | |
Screening | n = 4461 | n = 643 | Filter application |
n = 17 | n = 27 | Studies screened (title and abstract) | |
Eligibility | Full-text articles assessed for eligibility n = 23 | ||
Included | Total Studies included for quantitative synthesis n = 8 |
Inclusion Criteria | Exclusion Criteria |
---|---|
Publications in English or Spanish | Studies on animals |
CAD/CAM Y-TZP or PMMA | Patients rehabilitated with removal prosthesis |
Fixed implant prosthesis | Teeth restorations |
Implant abutment | The material’s aesthetic characteristics |
The material’s physical and biological characteristics | Implant material |
Author, Publication Year | Study Type | Material | Implants/Discs (Total No.) | Aim | Main Conclusion |
---|---|---|---|---|---|
Bagegni A et al. 2019 [38] | Systematic review | Metal-ceramic | 8938 | Assess the influence of various restorative materials on implant survival supporting FCDs **. | Implant-supported FCD material selection seems not to affect prosthetic survival rates. |
Meta-analysis | Alloy Titanium Ceramic veneer Metal framework * | ||||
Pituru SM et al. 2020 [39] | Review | PMMA | NR | Synthetize main PMMA characteristics as interim implant-prosthetic restoration material. | PMMA is an interim prosthetic material with predictable prosthetic results. |
Shim JS et al. 2019 [40] | In vitro study | Poly(ethyl methacrylate) PMMA | 210 | Evaluate HGFs’ response to various interim prosthetic materials fabricated using three methods (direct, indirect, CAD/CAM). | PMMA manufactured by CAD/CAM system offers lower cytotoxicity to HGF and better cell attachment. |
Herráez-Galindo C et al. 2019 [4] | In vitro study | PMMA Lithium disilicate | NR | Compare material surface and HGF behavior. | The two materials exhibited similar cellular reactions. |
Guilardi LF et al. 2017 [41] | In vitro study | Y-TZP | 30 | Characterize and compare the effect of various aging regimens on surface characteristics, structural stability, and mechanical performance. | None of the aging regimens impaired Y-TZP’s mechanical behavior. |
Díez-Quijano C et al. 2020 [42] | Randomized clinical trial | POM PMMA | 49 | Evaluate clinical performance of both CAD/CAM materials in implant-supported interim restorations. | PMMA performed better than POM. |
Rizo-Gorrita M et al. 2019 [29] | In vitro study | PMMA LS2 Y-TZP ZLS | 160 | Evaluate cytotoxic effect and COL-1 secretion of HGFs for materials studied. | Ceramic materials showed better cell responses than polymer materials. |
Pandoleon P et al. 2019 [43] | In vitro study | Y-TZP LS2 Ti | 315 | Investigate biological effect of Y-TZP abutment compared to LS2 and Ti and HGFs’ viability and attachment properties. | Comparable biological results in Y-TZP and conventional abutment materials. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herráez-Galindo, C.; Rizo-Gorrita, M.; Maza-Solano, S.; Serrera-Figallo, M.-A.; Torres-Lagares, D. A Review on CAD/CAM Yttria-Stabilized Tetragonal Zirconia Polycrystal (Y-TZP) and Polymethyl Methacrylate (PMMA) and Their Biological Behavior. Polymers 2022, 14, 906. https://doi.org/10.3390/polym14050906
Herráez-Galindo C, Rizo-Gorrita M, Maza-Solano S, Serrera-Figallo M-A, Torres-Lagares D. A Review on CAD/CAM Yttria-Stabilized Tetragonal Zirconia Polycrystal (Y-TZP) and Polymethyl Methacrylate (PMMA) and Their Biological Behavior. Polymers. 2022; 14(5):906. https://doi.org/10.3390/polym14050906
Chicago/Turabian StyleHerráez-Galindo, Cristina, María Rizo-Gorrita, Serafín Maza-Solano, María-Angeles Serrera-Figallo, and Daniel Torres-Lagares. 2022. "A Review on CAD/CAM Yttria-Stabilized Tetragonal Zirconia Polycrystal (Y-TZP) and Polymethyl Methacrylate (PMMA) and Their Biological Behavior" Polymers 14, no. 5: 906. https://doi.org/10.3390/polym14050906
APA StyleHerráez-Galindo, C., Rizo-Gorrita, M., Maza-Solano, S., Serrera-Figallo, M. -A., & Torres-Lagares, D. (2022). A Review on CAD/CAM Yttria-Stabilized Tetragonal Zirconia Polycrystal (Y-TZP) and Polymethyl Methacrylate (PMMA) and Their Biological Behavior. Polymers, 14(5), 906. https://doi.org/10.3390/polym14050906