The Use of Bilberry Leaves (Vaccinium myrtillus L.) as an Efficient Adsorbent for Cationic Dye Removal from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Bioadsorbent Characterization
3.2. Influence of pH on Dye Adsorption
3.3. Influence of Bioadsorbent Dose on Dye Adsorption
3.4. Influence of Ionic Strength on Dye Adsorption
3.5. Influence of Contact Time on Dye Adsorption. Process Kinetics
3.6. Influence of Initial Dye Concentration on Dye Adsorption. Adsorption Isotherms
3.7. Influence of Temperature on Dye Adsorption. Process Thermodynamics
3.8. Taguchi Optimization
3.9. Desorption Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alghamdi, W.M.; El Mannoubi, I. Investigation of seeds and peels of Citrullus colocynthis as efficient natural adsorbent for Methylene blue dye. Processes 2021, 9, 1279. [Google Scholar] [CrossRef]
- Alvarez-Torrellas, S.; Boutahala, M.; Boukhalfa, N.; Munoz, M. Effective adsorption of methylene blue dye onto magnetic nanocomposites. Modeling and Reuse Studies. Appl. Sci. 2019, 9, 4563. [Google Scholar] [CrossRef] [Green Version]
- Chu, T.P.M.; Nguyen, N.T.; Vu, T.L.; Dao, T.H.; Dinh, L.C.; Nguyen, H.L.; Hoang, T.H.; Le, T.S.; Pham, T.D. Synthesis, characterization, and modification of alumina nanoparticles for cationic dye removal. Materials 2019, 12, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, P.; Nagy, J.B. Treatment of water contaminated with reactive black-5 dye by carbon nanotubes. Materials 2020, 13, 5508. [Google Scholar] [CrossRef] [PubMed]
- Maleš, L.; Fakin, D.; Bračič, M.; Gorgieva, S. Efficiency of differently processed membranes based on cellulose as cationic dye adsorbents. Nanomaterials 2020, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Salzano de Luna, M.; Greco, F.; Pastore, R.; Mensitieri, G.; Filippone, G.; Aprea, P.; Mallamace, D.; Mallamace, F.; Chen, S.-H. Tailoring chitosan/LTA zeolite hybrid aerogels for anionic and cationic dye adsorption. Int. J. Mol. Sci. 2021, 22, 5535. [Google Scholar] [CrossRef] [PubMed]
- Sui, W.; Pang, T.; Wang, G.; Liu, C.; Parvez, A.M.; Si, C.; Li, C. Stepwise ethanol-water fractionation of enzymatic hydrolysis lignin to improve its performance as a cationic dye adsorbent. Molecules 2020, 25, 2603. [Google Scholar] [CrossRef]
- Abualnaja, K.M.; Alprol, A.E.; Abu-Saied, M.A.; Ashour, M.; Mansour, A.T. Removing of anionic dye from aqueous solutions by adsorption using of multiwalled carbon nanotubes and poly (Acrylonitrile-styrene) impregnated with activated carbon. Sustainability 2021, 13, 7077. [Google Scholar] [CrossRef]
- Chahinez, H.-O.; Abdelkader, O.; Leila, Y.; Tran, H.N. One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environ. Technol. Innov. 2020, 19, 100872. [Google Scholar] [CrossRef]
- Franco, D.S.P.; Fagundes, J.L.S.; Georgin, J.; Salaua, N.P.G.; Dotto, G.L. A mass transfer study considering intraparticle diffusion and axial dispersion for fixed-bed adsorption of crystal violet on pecan pericarp (Carya illinoensis). Chem. Eng. J. 2020, 397, 125423. [Google Scholar] [CrossRef]
- Valério Filho, A.; Xavaré Kulman, R.; Vaz Tholozan, L.; Felkl de Almeida, A.R.; Silveira da Rosa, G. Preparation and characterization of activated carbon obtained from water treatment plant sludge for removal of cationic dye from wastewater. Processes 2020, 8, 1549. [Google Scholar] [CrossRef]
- Foroutan, R.; Mohammadi, R.; MousaKhanloo, F.; Sahebi, S.; Ramavandi, B.; Kumar, P.S.; Vardhan, K.H. Performance of montmorillonite/graphene oxide/CoFe2O4 as a magnetic and recyclable nanocomposite for cleaning methyl violet dye-laden wastewater. Adv. Powder Technol. 2020, 31, 3993–4004. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Peighambardoust, S.H.; Pateiro, M.; Lorenzo, J.M. Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic nanocomposite from aqueous solutions: A kinetic, equilibrium and thermodynamic study. Molecules 2021, 26, 2241. [Google Scholar] [CrossRef]
- Choudhary, N.; Yadav, V.K.; Yadav, K.K.; Almohana, A.I.; Almojil, S.F.; Gnanamoorthy, G.; Kim, D.-H.; Islam, S.; Kumar, P.; Jeon, B.-H. Application of green synthesized MMT/Ag nanocomposite for removal of methylene blue from aqueous solution. Water 2021, 13, 3206. [Google Scholar] [CrossRef]
- Giraldo, S.; Robles, I.; Godínez, L.A.; Acelas, N.; Flórez, E. Experimental and theoretical insights on methylene blue removal from wastewater using an adsorbent obtained from the residues of the orange industry. Molecules 2021, 26, 4555. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, S.; Nasar, A. Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. J. Taiwan. Inst. Chem. Eng. 2016, 66, 154–163. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, S.; Sharma, V.; Mishra, P.K.; Ekielski, A.; Sharma, V.; Kumar, V. Methylene blue dye adsorption from wastewater using hydroxyapatite/gold nanocomposite: Kinetic and thermodynamics studies. Nanomaterials 2021, 11, 1403. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.C.D.; Mazzocato, A.C.; Dotto, G.L.; Thue, P.S.; Pavan, F.A. Eragrostis plana Nees as a novel eco-friendly adsorbent for removal of crystal violet from aqueous solutions. Environ. Sci. Pollut. Res. 2017, 24, 19909–19919. [Google Scholar] [CrossRef] [PubMed]
- Georgin, J.; Franco, D.S.P.; Netto, M.S.; Allasia, D.; Oliveira, M.L.S.; Dotto, G.L. Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: Alternative kinetic approaches. Environ. Sci. Pollut. Res. 2020, 27, 25727–25739. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, N.; Aziz, E.A.; Aris, A.; Ishak, W.F.W.; Ali, N.S.M. Biosorption of azo-dye using marine macro-alga of Euchema Spinosum. J. Environ. Chem. Eng. 2017, 5, 5721–5731. [Google Scholar] [CrossRef]
- Reddy, P.M.K.; Verma, P.; Subrahmanyam, C. Bio-waste derived adsorbent material for methylene blue adsorption. J. Taiwan Inst. Chem. Eng. 2016, 58, 500–508. [Google Scholar] [CrossRef]
- Setiabudi, H.D.; Jusoh, R.; Suhaimi, S.F.R.M.; Masrur, S.F. Adsorption of methylene blue onto oil palm (Elaeis guineensis) leaves: Process optimization, isotherm, kinetics and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 2016, 63, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Boumaza, S.; Yenounne, A.; Hachi, W.; Kaouah, F.; Bouhamidi, Y.; Trari, M. Application of Typha angustifolia (L.) Dead leaves waste as biomaterial for the removal of cationic dye from aqueous solution. Int. J. Environ. Res. 2018, 12, 561–573. [Google Scholar] [CrossRef]
- Huang, Z.G.; Wang, T.; Yi, H.Y.; Li, X.B. Study on the adsorption of methylene blue from dye wastewater by Humulus japonicus leaves. In E3S Web of Conferences; EDP Sciences: Ulis, France, 2021; Volume 236, p. 03028. [Google Scholar] [CrossRef]
- Mitrogiannis, D.; Markou, G.; Çelekli, A.; Bozkurt, H. Biosorption of methylene blue onto Arthrospira platensis biomass: Kinetic, equilibrium and thermodynamic studies. J. Environ. Chem. Eng. 2015, 3, 670–680. [Google Scholar] [CrossRef]
- Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The utilization of leaf-based adsorbents for dyes removal: A review. J. Mol. Liq. 2019, 276, 728–747. [Google Scholar] [CrossRef] [Green Version]
- Khodabandehloo, A.; Rahbar-Kelishami, A.; Shayesteh, H. Methylene blue removal using Salix babylonica (Weeping willow) leaves powder as a low-cost biosorbent in batch mode: Kinetic, equilibrium, and thermodynamic studies. J. Mol. Liq. 2017, 244, 540–548. [Google Scholar] [CrossRef]
- Peydayesh, M.; Rahbar-Kelishami, A. Adsorption of methylene blue onto Platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies. J. Ind. Eng. Chem. 2015, 21, 1014–1019. [Google Scholar] [CrossRef]
- Weng, C.H.; Lin, Y.T.; Tzeng, T.W. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. J. Hazard. Mater. 2009, 170, 417–424. [Google Scholar] [CrossRef]
- Han, R.; Zou, W.; Yu, W.; Cheng, S.; Wang, Y.; Shi, J. Biosorption of methylene blue from aqueous solution by fallen phoenix tree’s leaves. J. Hazard. Mater. 2007, 141, 156–162. [Google Scholar] [CrossRef]
- Nestby, R.; Percival, D.; Martinussen, I.; Opstad, N.; Rohloff, J. The european blueberry (Vaccinium myrtillus L.) and the potential for cultivation. A review. Eur. J. Plant Sci. Biotechnol. 2011, 5, 5–16. [Google Scholar]
- Mažeikienė, I.; Frercks, B.; Burokienė, D.; Mačionienė, I.; Šalaševičienė, A. Endophytic community composition and genetic-enzymatic features of cultivable bacteria in Vaccinium myrtillus L. in forests of the Baltic-Nordic region. Forests 2021, 12, 1647. [Google Scholar] [CrossRef]
- Bujor, O.; Le, B.C.; Volf, I.; Popa, V.I.; Dufour, C. Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chem. 2016, 213, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 2012, 77, C1064–C1070. [Google Scholar] [CrossRef] [PubMed]
- Pires, T.C.S.P.; Caleja, C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C. Vaccinium myrtillus L. Fruits as a Novel source of phenolic compounds with health benefits and industrial applications—A review. Curr. Pharm. Des. 2020, 26, 1917–1928. [Google Scholar] [CrossRef] [PubMed]
- Zorenc, Z.; Veberic, R.; Mikulic-Petkovsek, M. Are processed bilberry products a good source of phenolics? J. Food Sci. 2018, 83, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Assessment of cytotoxicity and antioxidant properties of berry leaves as by-products with potential application in cosmetic and pharmaceutical products. Sci. Rep. 2021, 11, 3240. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, A.K.; Gupta, N.; Chattopadhyaya, M.C. Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota. J. Saudi. Chem. Soc. 2014, 18, 200–207. [Google Scholar] [CrossRef]
- Zaidi, N.A.H.M.; Lim, L.B.L.; Usman, A. Artocarpus odoratissimus leaf-based cellulose as adsorbent for removal of methyl violet and crystal violet dyes from aqueous solution. Cellulose 2018, 25, 3037–3049. [Google Scholar] [CrossRef]
- Dotto, G.L.; Salau, N.P.G.; Piccin, J.S.; Cadaval, T.R.S.; de Pinto, L.A.A. Adsorption kinetics in liquid phase: Modeling for discontinuous and continuous systems. In Adsorption Processes for Water Treatment and Purification; Bonilla-Petriciolet, A., Mendoza-Castillo, D., Reynel-Avila, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 53–76. [Google Scholar]
- Esquerdo, V.M.; Quintana, T.M.; Dotto, G.L.; Pinto, L.A.A. Kinetics and mass transfer aspects about the adsorption of tartrazine by a porous chitosan sponge. Reac. Kinet. Mech. Cat. 2015, 116, 105–117. [Google Scholar] [CrossRef]
- Netto, M.S.; Georgin, J.; Franco, D.S.P.; Mallmann, E.S.; Foletto, E.L.; Godinho, M.; Pinto, D.; Dotto, G.L. Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. Environ. Sci. Pollut. Res. 2021, 29, 3672–3685. [Google Scholar] [CrossRef] [PubMed]
- Piccin, J.S.; Cadaval, T.R.S.; de Pinto, L.A.A.; Dotto, G.L. Adsorption isotherms in liquid phase: Experimental, modeling, and interpretations. In Adsorption Processes for Water Treatment and Purification; Bonilla-Petriciolet, A., Mendoza-Castillo, D., Reynel-Avila, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 19–51. [Google Scholar]
- Fernández-López, J.A.; Angosto, J.M.; Roca, M.J.; Miñarro, M.D. Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke. Sci. Total. Environ. 2018, 653, 55–63. [Google Scholar] [CrossRef]
- Zolgharnein, J.; Rastgordani, M. Optimization of simultaneous removal of binary mixture of indigo carmine and methyl orange dyes by cobalt hydroxide nano-particles through Taguchi method. J. Mol. Liq. 2018, 262, 405–414. [Google Scholar] [CrossRef]
- Kokot, S.; Czarnik-Matusewicz, B.; Ozaki, Y. Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose. Biopolymers 2002, 67, 456–469. [Google Scholar] [CrossRef]
- Pang, X.; Sellaoui, L.; Franco, D.; Dotto, G.L.; Georgin, J.; Bajahzar, A.; Belmabrouk, H.; Ben Lamine, A.; Bonilla-Petriciolet, A.; Li, Z. Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chem. Eng. J. 2019, 378, 122101. [Google Scholar] [CrossRef]
- Asefnejad, A.; Taghi Khorasani, M.; Behnamghader, A.; Farsadzadeh, B.; Bonakdar, S. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: Physical properties and in vitro assay. Int. J. Nanomed. 2011, 6, 2375–2384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djelad, A.; Mokhtar, A.; Khelifa, A.; Bengueddach, A.; Sassia, M. Alginate-whey an effective and green adsorbent for crystal violet removal: Kinetic, thermodynamic and mechanism studies. Int. J. Biol. Macromol. 2019, 139, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Senthamaraikannan, P.; Sanjay, M.R.; Bhat, K.S.; Padmaraj, N.H.; Jawaid, M. Characterization of natural cellulosic fiber frombark of Albizia amara. J. Nat. Fibers 2018, 20, 1124–1131. [Google Scholar]
- Shaharuddin, S.; Razak, S.I.A.; Muhamad, I.I. Sugarcane bagasse as the potential agro-waste resource for the immobilization of Lactobacillus rhamnosus NRRL 442. Adv. Mat. Res. 2014, 1043, 214–218. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [Green Version]
- Grassi, P.; Reis, C.; Drumm, F.C.; Georgin, J.; Tonato, D.; Escudero, L.B.; Kuhn, R.; Jahn, S.L.; Dotto, G.L. Biosorption of crystal violet dye using inactive biomass of the fungus Diaporthe schini. Water Sci. Technol. 2019, 79, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.T.; Yeh, T.F.; Hsu, F.L.; Kuo-Huang, L.L.; Lee, C.M.; Huang, Y.S.; Chang, S.T. Profiling the chemical composition and growth strain of giant bamboo (Dendrocalamus giganteus Munro). BioResources 2015, 10, 1260–1270. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Seydibeyoglu, M.O.; Mohanty, A.K.; Misra, M. Characterization of industrial lignins for their utilization in future value added applications. Biomass. Bioenergy 2011, 35, 4230–4237. [Google Scholar] [CrossRef]
- Popescu, C.M.; Popescu, M.C.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willfor, S. Spectral characterization of eucalyptus wood. Appl. Spectrosc. 2007, 61, 1168–1177. [Google Scholar] [CrossRef]
- Thinh, P.X.; Basavaraja, C.; Kim, D.G.; Huh, D.S. Characterization and electrochemical behaviors of honeycomb-patterned poly(N-vinylcarbazole)/polystyrene composite films. Polym. Bull. 2012, 69, 81–94. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Tallapragada, R.M.; Branton, A.; Trivedi, D.; Nayak, G.; Mishra, R.K.; Jana, S. Characterization of physical, spectroscopic and thermal properties of biofield treated biphenyl. Am. J. Chem. Eng. 2015, 3, 58–65. [Google Scholar] [CrossRef]
- Md Salim, R.; Asik, J.; Sarjadi, M.S. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci. Technol. 2021, 55, 295–313. [Google Scholar] [CrossRef]
- Alshehri, A.A.; Malik, M.A. Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. J. Mater. Sci.: Mater. Electron. 2019, 30, 16156–16173. [Google Scholar] [CrossRef]
- Li, B.; Lv, J.Q.; Guo, J.Z.; Fu, S.Y.; Guo, M.; Yang, P. The polyaminocarboxylated modified hydrochar for efficient capturing methylene blue and Cu(II) from water. Bioresour. Technol. 2019, 275, 360–367. [Google Scholar] [CrossRef]
- Han, X.; Wang, W.; Ma, X. Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. Chem. Eng. J. 2011, 171, 1–8. [Google Scholar] [CrossRef]
- Uddin, M.T.; Islam, M.A.; Mahmud, S.; Rukanuzzaman, M. Adsorptive removal of methylene blue by tea waste. J. Hazard. Mater. 2009, 164, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Suyamboo, B.K.; Srikrishnaperumal, R. Biosorption of crystal violet onto cyperus rotundus in batch system: Kinetic and equilibrium modeling. Desalin. Water Treat. 2014, 52, 3535–3546. [Google Scholar] [CrossRef]
- Quansah, J.O.; Hlaing, T.; Lyonga, F.N.; Kyi, P.P.; Hong, S.-H.; Lee, C.-G.; Park, S.-J. Nascent rice husk as an adsorbent for removing cationic dyes from textile wastewater. Appl. Sci. 2020, 10, 3437. [Google Scholar] [CrossRef]
- Silva, F.; Nascimento, L.; Brito, M.; da Silva, K.; Paschoal, W.; Fujiyama, R. Biosorption of methylene blue dye using natural biosorbents made from weeds. Materials 2019, 12, 2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryee, A.A.; Zhang, R.; Liu, H.; Han, R.; Li, Z.; Qu, L. Application of magnetic peanut husk for methylene blue adsorption in batch mode. Desalin. Water Treat. 2020, 194, 269–279. [Google Scholar] [CrossRef]
- Özçelik, G.; Şahin, E.K.; Şahin, S. Effect of ionic strength on methylene blue sorption onto macroporous resins: A comprehensive study. J. Dispers. Sci. Technol. 2020, 1–10. [Google Scholar] [CrossRef]
- Al-Ghamdi, Y.O.; Jabli, M.; Soury, R.; Ali Khan, S. A cellulosic fruit derived from nerium oleander biomaterial: Chemical characterization and its valuable use in the biosorption of methylene blue in a batch mode. Polymers 2020, 12, 2539. [Google Scholar] [CrossRef]
- Hurairah, S.; Lajis, N.; Halim, A. Methylene blue removal from aqueous solution by adsorption on Archidendron jiringa seed shells. J. Geosci. Environ. Prot. 2020, 8, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Kankiliç, G.B.; Metin, A.U.; Tüzün, I. Phragmites australis: An alternative biosorbent for basic dye removal. Ecol. Eng. 2016, 86, 85–94. [Google Scholar] [CrossRef]
- Koyuncu, H.; Kul, A.R. Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent. Appl. Water Sci. 2020, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Rangabhashiyam, S.; Lata, S.; Balasubramanian, P. Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surf. Interfaces 2018, 10, 197–215. [Google Scholar]
- Singh, R.; Singh, T.S.; Odiyo, J.O.; Smith, J.A.; Edokpayi, J.N. Evaluation of methylene blue sorption onto low-cost biosorbents: Equilibrium, kinetics, and thermodynamics. J. Chem. 2020, 2020, 8318049. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, D.C.; Adebayo, M.A.; de Fátima Pinheiro Pereira, S.; Prola, L.D.T.; Cataluña, R.; Lima, E.C.; Saucier, C.; Gally, C.R.; Machado, F.M. New carbon composite adsorbents for the removal of textile dyes from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Korean J. Chem. Eng. 2014, 31, 1470–1479. [Google Scholar] [CrossRef]
- Ribas, M.C.; Adebayo, M.A.; Prola, L.D.T.; Lima, E.C.; Cataluña, R.; Feris, L.A.; Puchana-Rosero, M.J.; Machado, F.M.; Pavan, F.A.; Calvete, T. Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions. Chem. Eng. J. 2014, 248, 315–326. [Google Scholar] [CrossRef]
- Saucier, C.; Adebayo, M.A.; Lima, E.C.; Prola, L.D.T.; Thue, P.S.; Umpierres, C.S.; Puchana-Rosero, M.J.; Machado, F.M. Comparison of a homemade bacuri shell activated carbon with carbon nanotubes for food dye removal. Clean 2015, 43, 1389–1400. [Google Scholar] [CrossRef]
- Al-Azabi, K.; Al-Marog, S.; Abukrain, A.; Sulyman, M. Equilibrium, isotherm studies of dye adsorption onto orange peel powder. Chem. Res. J. 2018, 3, 45–59. [Google Scholar]
- Dawood, S.; Sen, T.K.; Phan, C. Adsorption removal of Methylene Blue (MB) dye from aqueous solution by bio-char prepared from Eucalyptus sheathiana bark: Kinetic, equilibrium, mechanism, thermodynamic and process design. Desalin. Water Treat. 2016, 57, 28964–28980. [Google Scholar] [CrossRef]
- Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Reffas, A.; Gatica, J.M.; Amrane, A. Batch adsorption of synthetic dye by Maclura Pomifera, a new eco-friendly waste biomass: Experimental studies and modeling. Int. J. Chem. React. Eng. 2019, 17, 20180063. [Google Scholar] [CrossRef]
- Gago, D.; Chagas, R.; Ferreira, L.M.; Velizarov, S.; Coelhoso, I. A novel cellulose-based polymer for efficient removal of methylene blue. Membranes 2020, 10, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthanna, J.A.; Samar, K.D. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib. 2012, 317, 9–14. [Google Scholar]
- Ponnusami, V.; Vikram, S.; Srivastava, S.N. Guava (Psidium guajava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions. J. Hazard. Mater. 2008, 152, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Mosoarca, G.; Vancea, C.; Popa, S.; Gheju, M.; Boran, S. Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: Isotherms, kinetics, thermodynamic and optimization by Taguchi method. Sci. Rep. 2020, 10, 17676. [Google Scholar] [CrossRef] [PubMed]
- Jawad, A.H.; Rashid, R.A.; Mahmuod, R.M.A.; Ishak, M.A.M.; Kasim, N.N.; Ismail, K. Adsorption of methylene blue onto coconut (Cocos nucifera) leaf: Optimization, isotherm and kinetic studies. Desalination Water Treat. 2015, 57, 8839–8853. [Google Scholar] [CrossRef]
- Krishni, R.R.; Foo, K.Y.; Hameed, B.H. Adsorptive removal of methylene blue using the natural adsorbent-banana leaves. Desalination Water Treat. 2014, 52, 6104–6112. [Google Scholar] [CrossRef]
- Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M.C. Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab. J. Chem. 2016, 9, S707–S716. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, K.G.; Sharma, A. Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes Pigm. 2005, 65, 51–59. [Google Scholar] [CrossRef]
- Loulidi, I.; Boukhlifi, F.; Ouchabi, M.; Amar, A.; Jabri, M.; Kali, A.; Chraibi, S.; Hadey, C.; Aziz, F. Adsorption of crystal violet onto an AgriculturalWaste Residue: Kinetics, isotherm, thermodynamics, and mechanism of adsorption. Sci. World. J. 2020, 2020, 5873521. [Google Scholar] [CrossRef]
- Jiang, Z.; Hu, D. Molecular mechanism of anionic dyes adsorption on cationized rice husk cellulose from agricultural wastes. J. Mol. Liq. 2019, 276, 105–114. [Google Scholar] [CrossRef]
- Zhai, Q.-Z. Studies of adsorption of crystal violet from aqueous solution by nano mesocellular foam silica: Process equilibrium, kinetic, isotherm, and thermodynamic studies. Water Sci. Technol. 2020, 81, 2092–2108. [Google Scholar] [CrossRef] [PubMed]
- Gerçel, O.; Özcan, A.; Özcan, A.S.; Gerçel, H.F. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Appl. Surf. Sci. 2007, 253, 4843–4852. [Google Scholar] [CrossRef]
- Soldatkina, L.; Yanar, M. Equilibrium, kinetic, and thermodynamic studies of cationic dyes adsorption on corn stalks modified by citric acid. Colloids Interfaces 2021, 5, 52. [Google Scholar] [CrossRef]
- Fathy, N.A.; El-Shafey, O.I.; Khalil, L.B. Effectiveness of alkali-acid treatment in enhancement the adsorption capacity for rice straw: The removal of methylene blue dye. Phys. Chem. 2013, 2013, 208087. [Google Scholar] [CrossRef] [Green Version]
- Namasivayam, C.; Muniasamy, N.; Gayatri, K.; Rani, M.; Ranganathan, K. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresour. Technol. 1996, 57, 37–43. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Chandrasekhar Rao, N.; Karthikeyan, J. Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: A kinetic and mechanistic study. J. Hazard. Mater. 2002, 90, 189–204. [Google Scholar] [CrossRef]
Factor | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
---|---|---|---|---|---|
pH | 2 | 4 | 6 | 8 | 10 |
Time (min) | 5 | 15 | 30 | 40 | 50 |
Adsorbent dose (mg·L−1) | 1 | 2 | 3 | 4 | 5 |
Initial dye concentration (mg·L−1) | 25 | 50 | 100 | 150 | 200 |
Temperature (K) | 278 | 287 | 297 | 305 | 311 |
Ionic strength (mol L−1) | 0 | 0.05 | 0.10 | 0.15 | 0.20 |
Adsorbent | Equilibrium Time (min) | Reference |
---|---|---|
Humulus japonicas leaves | 20 | [24] |
Daucus carota leaves powder | 30 | [38] |
Arthrospira platensis biomass | 30 | [25] |
Vaccinium myrtillus L. leaves powder | 40 | This study |
Archidendron jiringa seed shells | 60 | [70] |
Typha angustifolia leaves | 60 | [23] |
pineapple leaf powder | 60 | [29] |
Platanus orientalis leaf powder | 70 | [28] |
Phragmites australis biomass | 90 | [71] |
nonliving lichen Pseudevernia furfuracea | 90 | [72] |
Carica papaya wood | 100 | [73] |
Ginkgo biloba leaves | 100 | [74] |
phoenix tree’s leaves | 150 | [30] |
lotus leaf | 150 | [62] |
Citrullus colocynthis peels | 180 | [1] |
Kinetic Model | Parameters | Value |
---|---|---|
Pseudo-first order | k1 (min−1) | 0.278 ± 0.032 |
qe,calc (mg g−1) | 20.25 ± 0.31 | |
R2 | 0.9952 | |
χ2 | 0.0893 | |
SSE | 1.69 | |
ARE (%) | 13.07 | |
Pseudo-second order | k2 (min−1) | 0.019 ± 0.008 |
qe,calc (g mg−1 min−1) | 21.48 ± 0.19 | |
R2 | 0.9997 | |
χ2 | 0.0050 | |
SSE | 0.09 | |
ARE (%) | 0.51 | |
Elovich | a (g mg−1) | 0.252 ± 0.047 |
b (mg g−1 min−1) | 2346 ± 127 | |
R2 | 0.9936 | |
χ2 | 0.1473 | |
SSE | 2.26 | |
ARE (%) | 13.30 | |
General order | kN (min−1 (g mg−1)n–1) | 4.256 ± 0.245 |
qn (mg g−1) | 21.27± 0.35 | |
n | 1.269 | |
R2 | 0.9999 | |
χ2 | 0.0007 | |
SSE | 0.01 | |
ARE (%) | 0.16 | |
Avrami | kAV (min−1) | 0.636 ± 0.054 |
qAV (mg g−1) | 20.25 ± 0.48 | |
nAV | 0.436 | |
R2 | 0.9952 | |
χ2 | 0.0888 | |
SSE | 1.69 | |
ARE (%) | 11.10 |
Isotherm Model | Parameters | Value |
---|---|---|
Langmuir non-linear | KL (L mg−1) | 0.015 ± 0.001 |
qmax (mg g−1) | 180.1 ± 5.17 | |
R2 | 0.9994 | |
χ2 | 0.0993 | |
SSE | 2.47 | |
ARE (%) | 2.80 | |
Freundlich non-linear | Kf (mg g−1) | 4.41 ± 0.81 |
1/n | 0.74 ± 0.04 | |
R2 | 0.9977 | |
χ2 | 0.3887 | |
SSE | 10.13 | |
ARE (%) | 5.18 | |
Temkin non-linear | KT (L mg−1) | 0.314 ± 0.057 |
b (kJ g−1) | 94.94 ± 4.69 | |
R2 | 0.9695 | |
χ2 | 9.6559 | |
SSE | 131.51 | |
ARE (%) | 33.60 | |
Sips non-linear | Qsat (mg g−1) | 200.4 ± 5.74 |
KS (L mg−1) | 0.014 ± 0.002 | |
n | 0.9625 | |
R2 | 0.9994 | |
χ2 | 0.0784 | |
SSE | 2.25 | |
ARE (%) | 2.27 | |
Redlich-Peterson non-linear | KRP (L g−1) | 2.90 ± 0.65 |
aRP (L mg−1) | 0.028 ± 0.003 | |
βRP | 0.87 ± 0.09 | |
R2 | 0.9994 | |
χ2 | 0.0827 | |
SSE | 2.28 | |
ARE (%) | 2.37 |
Adsorbent | Maximum Adsorption Capacity (mg g−1) | Reference |
---|---|---|
Arthrospira platensis biomass | 312.5 | [25] |
guava leaf powder | 295.04 | [83] |
lotus leaf | 221.7 | [62] |
Vaccinium myrtillus L. leaves powder | 200.4 | This study |
Syringa vulgaris leaves powder | 188.2 | [84] |
Humulus japonicas leaves | 145.56 | [24] |
Platanus orientalis leaf powder | 114.9 | [28] |
tea waste | 113.14 | [63] |
Cocos nucifera leaf | 112.35 | [85] |
banana leaves | 109.9 | [86] |
Typha angustifolia leaves | 106.75 | [23] |
Elaeis guineensis leaves | 103.0 | [22] |
phoenix tree’s leaves | 80.9 | [30] |
Daucus carota leaves powder | 66.5 | [38] |
Salix babylonica leaves | 60.9 | [27] |
Phragmites australis biomass | 58.82 | [71] |
potato leaves powder | 52.60 | [87] |
Carica papaya wood | 32.25 | [73] |
Ginkgo biloba leaves | 48.07 | [74] |
Archidendron jiringa seed shells | 44.64 | [70] |
Neem leaf powder | 19.6 | [88] |
Citrullus colocynthis seeds | 18.83 | [1] |
Citrullus colocynthis peels | 4.36 | [1] |
ΔG0 (kJ mol−1) | ΔH0 (kJ mol−1) | ΔS0 (J mol−1 K−1) | ||||
---|---|---|---|---|---|---|
278 K | 287 K | 297 K | 303 K | 311 K | ||
−18.91 | −20.19 | −21.56 | −22.23 | −23.1 | 2.02 | 15.49 |
pH | Adsorbent Dose | Ionic Strenght | Time | Initial Dye Concentration | Temperature | Dye Removal Efficiency | S/N Ratio |
---|---|---|---|---|---|---|---|
2 | 1 | 0 | 5 | 25 | 278 | 32.95 | 30.35 |
2 | 2 | 0.05 | 15 | 50 | 287 | 47.23 | 33.48 |
2 | 3 | 0.1 | 30 | 100 | 297 | 51.78 | 34.28 |
2 | 4 | 1.15 | 40 | 150 | 305 | 51.18 | 34.18 |
2 | 5 | 2 | 50 | 200 | 311 | 50.01 | 33.98 |
3 | 2 | 2 | 5 | 100 | 305 | 50.39 | 34.04 |
3 | 3 | 0 | 15 | 150 | 311 | 69.6 | 36.85 |
3 | 4 | 0.05 | 30 | 200 | 278 | 57.01 | 35.11 |
3 | 5 | 0.1 | 40 | 25 | 287 | 69.41 | 36.82 |
3 | 1 | 1.15 | 50 | 50 | 297 | 60 | 35.56 |
6 | 3 | 1.15 | 5 | 200 | 287 | 51.16 | 34.17 |
6 | 4 | 2 | 15 | 25 | 297 | 74.46 | 37.43 |
6 | 5 | 0 | 30 | 50 | 305 | 87.92 | 38.88 |
6 | 1 | 0.05 | 40 | 100 | 311 | 75.21 | 37.52 |
6 | 2 | 0.1 | 50 | 150 | 278 | 62.44 | 35.90 |
8 | 4 | 0.1 | 5 | 50 | 311 | 65.24 | 36.29 |
8 | 5 | 1.15 | 15 | 100 | 278 | 62.26 | 35.88 |
8 | 1 | 2 | 30 | 150 | 287 | 59.91 | 35.55 |
8 | 2 | 0 | 40 | 200 | 297 | 77.37 | 37.77 |
8 | 3 | 0.05 | 50 | 25 | 305 | 90.44 | 39.12 |
10 | 5 | 0.05 | 5 | 150 | 297 | 62.43 | 35.90 |
10 | 1 | 0.1 | 15 | 200 | 305 | 63.95 | 36.11 |
10 | 2 | 1.15 | 30 | 25 | 311 | 79.82 | 38.04 |
10 | 3 | 2 | 40 | 50 | 278 | 65.9 | 36.37 |
10 | 4 | 0 | 50 | 100 | 287 | 82.17 | 38.29 |
Level | pH | Adsorbent Dose | Ionic Strenght | Time | Initial Dye Concentration | Temperature |
---|---|---|---|---|---|---|
1 | 33.26 | 35.02 | 36.43 * | 34.16 | 36.36 * | 34.73 |
2 | 35.68 | 35.85 | 36.23 | 35.96 | 36.12 | 35.67 |
3 | 36.79 | 36.16 | 35.89 | 36.38 | 36.01 | 36.19 |
4 | 36.92 | 36.26 | 35.57 | 36.54 | 35.68 | 36.47 |
5 | 36.95 * | 36.30 * | 35.48 | 36.57 * | 35.43 | 36.54 * |
Delta | 3.69 | 1.27 | 0.95 | 2.42 | 0.93 | 1.81 |
Rank | 1 | 4 | 5 | 2 | 6 | 3 |
Contribution (%) | 53.34 | 6.05 | 3.63 | 22.11 | 2.86 | 12.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosoarca, G.; Vancea, C.; Popa, S.; Dan, M.; Boran, S. The Use of Bilberry Leaves (Vaccinium myrtillus L.) as an Efficient Adsorbent for Cationic Dye Removal from Aqueous Solutions. Polymers 2022, 14, 978. https://doi.org/10.3390/polym14050978
Mosoarca G, Vancea C, Popa S, Dan M, Boran S. The Use of Bilberry Leaves (Vaccinium myrtillus L.) as an Efficient Adsorbent for Cationic Dye Removal from Aqueous Solutions. Polymers. 2022; 14(5):978. https://doi.org/10.3390/polym14050978
Chicago/Turabian StyleMosoarca, Giannin, Cosmin Vancea, Simona Popa, Mircea Dan, and Sorina Boran. 2022. "The Use of Bilberry Leaves (Vaccinium myrtillus L.) as an Efficient Adsorbent for Cationic Dye Removal from Aqueous Solutions" Polymers 14, no. 5: 978. https://doi.org/10.3390/polym14050978
APA StyleMosoarca, G., Vancea, C., Popa, S., Dan, M., & Boran, S. (2022). The Use of Bilberry Leaves (Vaccinium myrtillus L.) as an Efficient Adsorbent for Cationic Dye Removal from Aqueous Solutions. Polymers, 14(5), 978. https://doi.org/10.3390/polym14050978