Mechanical and Dielectric Properties of Fly Ash Geopolymer/Sugarcane Bagasse Ash Composites
Abstract
:1. Introduction
2. Experimental Section/Methods
2.1. Raw Materials
2.2. Sample Preparation
2.3. Characterization Techniques
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DI | Deionization |
FA | Fly ash |
FTIR | Fourier transform infrared |
LOI | Loss of ignition |
RH | Relative humidity |
SCBA | Sugarcane bagasse ash |
SEM | Scanning electron microscope |
XRF | X-ray fluorescence |
XRD | X-ray diffraction |
XPS | X-ray photoelectron spectroscopy |
ε′ | Dielectric constant |
C | Sample’s capacitance |
t | Sample’s thickness |
ε0 | Permittivity of free space (8.854 × 10−12 F/m) |
%W | Workability |
d | Spread-out diameter of geopolymer paste |
d0 | Original diameter |
References
- Supasri, T.; Vorayos, N.; Thongchiew, P. Performance Analysis Model Development for Mae Moh Coal-Fired Power Plant. Int. J. Mech. 2013, 7, 1882–1886. [Google Scholar]
- Phonphuak, N.; Chindaprasirt, P. Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks. In Eco-Efficient Masonry Bricks and Blocks; Elsevier: Amsterdam, The Netherlands, 2015; pp. 103–127. [Google Scholar]
- Apisitniran, L. Drought conditions and low cane supply are pushing production way down. In Bitter Outlook for Sugar Industry; Bangkok Post Public Company Limited: Bangkok, Thailand, 2020. [Google Scholar]
- Alves, H.P.; Silva, J.B.; Campos, L.F.; Torres, S.M.; Dutra, R.P.; Macedo, D.A. Preparation of mullite based ceramics from clay–kaolin waste mixtures. Ceram. Int. 2016, 42, 19086–19090. [Google Scholar] [CrossRef]
- Bahurudeen, A.; Kanraj, D.; Dev, V.G.; Santhanam, M. Performance evaluation of sugarcane bagasse ash blended cement in concrete. Cem. Concr. Compos. 2015, 59, 77–88. [Google Scholar] [CrossRef]
- Teixeira, S.R.; De Souza, A.E.; de Almeida Santos, G.T.; Vilche Pena, A.F.; Miguel, A.G. Sugarcane bagasse ash as a potential quartz replacement in red ceramic. J. Am. Ceram. Soc. 2008, 91, 1883–1887. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Labrincha, J.; Leonelli, C.; Palomo, A.; Chindaprasit, P. Handbook of Alkali-Activated Cements, Mortars and Concretes; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Van Jaarsveld, J.; Van Deventer, J.; Lorenzen, L. Factors affecting the immobilization of metals in geopolymerized flyash. Metall. Mater. Trans. B 1998, 29, 283–291. [Google Scholar] [CrossRef]
- Saafi, M.; Andrew, K.; Tang, P.L.; McGhon, D.; Taylor, S.; Rahman, M.; Yang, S.; Zhou, X. Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites. Constr. Build. Mater. 2013, 49, 46–55. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Kodur, V.; Cao, L.; Qi, S.L. Fiber Reinforced Geopolymers for Fire Resistance Applications. Procedia Eng. 2014, 71, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Evaluation of bagasse ash as supplementary cementitious material. Cem. Concr. Compos. 2007, 29, 515–524. [Google Scholar] [CrossRef]
- Hernández, J.M.; Middendorf, B.; Gehrke, M.; Budelmann, H. Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: Study of the reaction. Cem. Concr. Res. 1998, 28, 1525–1536. [Google Scholar] [CrossRef]
- Singh, N.; Singh, V.; Rai, S. Hydration of bagasse ash-blended portland cement. Cem. Concr. Res. 2000, 30, 1485–1488. [Google Scholar] [CrossRef]
- Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Constr. Build. Mater. 2009, 23, 3523–3531. [Google Scholar] [CrossRef]
- Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 2009, 23, 3352–3358. [Google Scholar] [CrossRef]
- Schmitt, R. Electromagnetics Explained: A Handbook for Wireless/RF, EMC, and High-Speed Electronics; Newnes: London, UK, 2002. [Google Scholar]
- Hanjitsuwan, S.; Hunpratub, S.; Thongbai, P.; Maensiri, S.; Sata, V.; Chindaprasirt, P. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem. Concr. Compos. 2014, 45, 9–14. [Google Scholar] [CrossRef]
- Topark-Ngarm, P.; Chindaprasirt, P.; Sata, V. Setting time, strength, and bond of high-calcium fly ash geopolymer concrete. J. Mater. Civ. Eng. 2015, 27, 04014198. [Google Scholar] [CrossRef]
- Nuruddin, M.F.; Malkawi, A.B.; Fauzi, A.; Mohammed, B.S.; Almattarneh, H.M. Geopolymer concrete for structural use: Recent findings and limitations. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Guangdong, China, 1 June 2016; IOP Publishing: Bristol, UK, 2016; p. 012021. [Google Scholar]
- Kantakam, S.; Pimraksa, K.; Ngamjarurojana, A.; Chindaprasirt, P.; Chaipanich, A. Investigation on the dielectric properties of 0–3 lead zirconate titanate-geopolymer composites. Ferroelectrics 2013, 451, 84–89. [Google Scholar] [CrossRef]
- Aradoaei, M.; Pepenar, I. Considerations on the dielectric properties and thermal profile of geopolymeric composites with ferro/ferrimagnetic inserts. In Proceedings of the 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 16 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 891–896. [Google Scholar]
- Vlasceanu, I.N.; Gharzouni, A.; Tantot, O.; Lalande, M.; Elissalde, C.; Rossignol, S. Geopolymer as dielectric materials for ultra-wideband antenna applications: Impact of magnetite addition and humidity. Open Ceram. 2020, 2, 100013. [Google Scholar] [CrossRef]
- Jumrat, S.; Chatveera, B.; Rattanadecho, P. Dielectric properties and temperature profile of fly ash-based geopolymer mortar. Int. Commun. 2011, 38, 242–248. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Chindaprasirt, P.; Pimraksa, K. Electrical conductivity and dielectric property of fly ash geopolymer pastes. Int. J. Miner. Metall. 2011, 18, 94–99. [Google Scholar] [CrossRef]
- Mebrouki, A.; Belas, N.; Bendani, K.; Bouhamou, N. A Self-Compacting Cement Paste Formulation using Mixture Design. J. Appl. Sci. 2009, 9, 4127–4136. [Google Scholar] [CrossRef] [Green Version]
- Kantro, D.L. Influence of Water-Reducing Admixtures on Properties of Cement Paste—A Miniature Slump Test. Cem. Concr. Aggreg. CCAGDP 1980, 2, 95–102. [Google Scholar]
- Astm, C. 109. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens), Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Payakaniti, P.; Pinitsoontorn, S.; Thongbai, P.; Amornkitbamrung, V.; Chindaprasirt, P. Electrical conductivity and compressive strength of carbon fiber reinforced fly ash geopolymeric composites. Constr. Build. Mater. 2017, 135, 164–176. [Google Scholar] [CrossRef]
- Rehman, S.K.U.; Imtiaz, L.; Aslam, F.; Khan, M.K.; Haseeb, M.; Javed, M.F.; Alyousef, R.; Alabduljabbar, H. Experimental investigation of NaOH and KOH mixture in SCBA-based geopolymer cement composite. Materials 2020, 13, 3437. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.V.; Morelli, M.R. Effect of calcination temperature on the pozzolanic activity of Brazilian sugar cane bagasse ash (SCBA). Mater. Res. 2014, 17, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Al-Shathr, B.; Shamsa, M.; al-Attar, T. Relationship between amorphous silica in source materials and compressive strength of geopolymer concrete. In Proceedings of the 3rd International Conference on Buildings, Construction and Environmental Engineering, BCEE3-2017, Sharm el-Shiekh, Egypt, 23–25 October 2017; EDP Sciences: Les Ulis, France, 2018; p. 02019. [Google Scholar]
- Yao, X.; Zhang, Z.; Zhu, H.; Chen, Y. Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry. Thermochim. Acta 2009, 493, 49–54. [Google Scholar] [CrossRef]
- Adam, A.A.; Horianto, X. The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia Eng. 2014, 95, 410–414. [Google Scholar] [CrossRef] [Green Version]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Steveson, M.; Sagoe-Crentsil, K. Relationships between composition, structure and strength of inorganic polymers. J. Mater. Sci. 2005, 40, 2023–2036. [Google Scholar] [CrossRef]
- Taylor, W. Application of infrared spectroscopy to studies of silicate glass structure: Examples from the melilite glasses and the systems Na2O-SiO2 and Na2O-Al2O3-SiO2. Proc. Indian Natl. Sci. 1990, 99, 99–117. [Google Scholar] [CrossRef] [Green Version]
- Voll, D.; Lengauer, C.; Beran, A.; Schneider, H. Infrared band assignment and structural refinement of Al-Si, Al-Ge, and Ga-Ge mullites. Eur. J. Mineral. 2001, 13, 591–604. [Google Scholar] [CrossRef]
- Kiefer, J.; Stärk, A.; Kiefer, A.L.; Glade, H. Infrared spectroscopic analysis of the inorganic deposits from water in domestic and technical heat exchangers. Energies 2018, 11, 798. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Liu, L.; Zhao, X.; Tang, C.; Wang, X. Properties of phosphorus-slag-based cementitious pastes for stabilizing lead. Materials 2019, 12, 3831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 2011, 3, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.-T.; Liu, C. Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12. Chem. Mater. 2005, 17, 5167–5171. [Google Scholar] [CrossRef]
- Tuichai, W.; Danwittayakul, S.; Maensiri, S.; Thongbai, P. Investigation on temperature stability performance of giant permittivity (In+ Nb) in co-doped TiO2 ceramic: A crucial aspect for practical electronic applications. RSC Adv. 2016, 6, 5582–5589. [Google Scholar] [CrossRef]
- Kaatze, U.; Hübner, C. Electromagnetic techniques for moisture content determination of materials. Meas. Sci. Technol. 2010, 21, 082001. [Google Scholar] [CrossRef]
- McCarter, W.J.; Chrisp, T.M.; Starrs, G.; Blewett, J. Characterization and monitoring of cement-based systems using intrinsic electrical property measurements. Cem. Concr. Res. 2003, 33, 197–206. [Google Scholar] [CrossRef]
- Cui, X.M.; Liu, L.P.; He, Y.; Chen, J.Y.; Zhou, J. A novel aluminosilicate geopolymer material with low dielectric loss. Mater. Chem. Phys. 2011, 130, 1–4. [Google Scholar] [CrossRef]
Oxide Compound | Fly Ash (wt.%) | Treated SCBA (wt.%) |
---|---|---|
Silicon dioxide (SiO2) | 28.54 | 66.91 |
Calcium oxide (CaO) | 26.37 | 9.48 |
Aluminum oxide (Al2O3) | 14.94 | 6.66 |
Ferric oxide (Fe2O3) | 18.14 | 8.11 |
Sulfur trioxide (SO3) | 4.56 | 0.32 |
Potassium oxide (K2O) | 2.80 | 3.49 |
Magnesium oxide (MgO) | 2.01 | 1.62 |
Sodium oxide (Na2O) | 1.05 | 0.40 |
Compound | Fly Ash (at.%) | SCBA Treated (at.%) |
---|---|---|
C 1s | 34.26 | 41.14 |
O 1s | 52.66 | 46.75 |
Si 2p | 7.92 | 10.88 |
Ca 2p | 5.16 | 1.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuewangkam, N.; Nachaithong, T.; Chanlek, N.; Thongbai, P.; Pinitsoontorn, S. Mechanical and Dielectric Properties of Fly Ash Geopolymer/Sugarcane Bagasse Ash Composites. Polymers 2022, 14, 1140. https://doi.org/10.3390/polym14061140
Chuewangkam N, Nachaithong T, Chanlek N, Thongbai P, Pinitsoontorn S. Mechanical and Dielectric Properties of Fly Ash Geopolymer/Sugarcane Bagasse Ash Composites. Polymers. 2022; 14(6):1140. https://doi.org/10.3390/polym14061140
Chicago/Turabian StyleChuewangkam, Nattapong, Theeranuch Nachaithong, Narong Chanlek, Prasit Thongbai, and Supree Pinitsoontorn. 2022. "Mechanical and Dielectric Properties of Fly Ash Geopolymer/Sugarcane Bagasse Ash Composites" Polymers 14, no. 6: 1140. https://doi.org/10.3390/polym14061140
APA StyleChuewangkam, N., Nachaithong, T., Chanlek, N., Thongbai, P., & Pinitsoontorn, S. (2022). Mechanical and Dielectric Properties of Fly Ash Geopolymer/Sugarcane Bagasse Ash Composites. Polymers, 14(6), 1140. https://doi.org/10.3390/polym14061140