Research Development in Silica Aerogel Incorporated Cementitious Composites—A Review
Abstract
:1. Introduction
2. Silica Aerogel—Synthesis and Properties
3. Composition, Mechanical and Insulating Properties of Cementitious Composites with Silica Aerogel Granulate
3.1. Overview of Cementitious Composites with Silica Aerogel
3.2. Density and Mechanical Properties
3.3. Insulating Properties of Cementitious Composites with Silica Aerogel
4. Durability and Performance of Silica Aerogel-Based Cementitious Composites
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kolokotsa, D.; Rovas, D.; Kosmatopoulos, E.; Kalaitzakis, K. A roadmap towards intelligent net zero- and positive-energy buildings. Solar Energy 2011, 85, 3067–3084. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Kaizar, H.; Shaik, R. Importance of Nanotechnology in Civil Engineering. Eur. J. Sustain. Dev. 2015, 4, 161–166. [Google Scholar]
- Scrivener, K.L. Nanotechnology and Cementitious Materials. In Nanotechnology in Construction 3: Proceedings of the NICOM3; Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 37–42. [Google Scholar]
- Naganathan, S.; Singh, C.; Singh, J.; Shen, Y.W.; Kiat, P.E. Nanotechnology in Civil Engineering. Adv. Mater. Res. 2014, 935, 151–154. [Google Scholar] [CrossRef]
- Jędrzejczak, P.; Ławniczak, Ł.; Ślosarczyk, A.; Klapiszewski, Ł. Physicomechanical and Antimicrobial Characteristics of Cement Composites with Selected Nano-Sized Oxides and Binary Oxide Systems. Materials 2022, 15, 661. [Google Scholar] [CrossRef] [PubMed]
- Janczarek, M.; Klapiszewski, Ł.; Jędrzejczak, P.; Klapiszewska, I.; Ślosarczyk, A.; Jesionowski, T. Progress of functionalized TiO2-based nanomaterials in the construction industry: A comprehensive review. Chem. Eng. J. 2022, 430, 132062. [Google Scholar] [CrossRef]
- Klapiszewska, I.; Kubiak, A.; Parus, A.; Janczarek, M.; Ślosarczyk, A. The in Situ Hydrothermal and Microwave Syntheses of Zinc Oxides for Functional Cement Composites. Materials 2022, 15, 1069. [Google Scholar] [CrossRef]
- Ślosarczyk, A.; Klapiszewska, I.; Klapiszewski, Ł. Influence of nanosilica and binary oxide systems on the selected physical and mechanical properties of cement composites. Physicochem. Probl. Miner. Process. 2022, 58, 144184. [Google Scholar] [CrossRef]
- Klapiszewska, I.; Parus, A.; Ławniczak, Ł.; Jesionowski, T.; Klapiszewski, Ł.; Ślosarczyk, A. Production of antibacterial cement composites containing ZnO/lignin and ZnO–SiO2/lignin hybrid admixtures. Cem. Concr. Compos. 2021, 124, 104250. [Google Scholar] [CrossRef]
- Ślosarczyk, A.; Pichór, W.; Frąc, M. Thermal and Electrical Characterization of the Carbon Nanofibers Based Cement Composites. Mater. Sci. Medžg. 2017, 23, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Bartos, P.J.M. Nanotechnology in Construction: A Roadmap for Development. In Nanotechnology in Construction 3: Proceedings of the NICOM3; Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 15–23. [Google Scholar]
- Sobolev, K.; Shah, S.P. Nanotechnology of Concrete: Recent Developments and Future Perspectives; ACI Special Publication: Preface; American Concrete Institute: Farmington Hills, MI, USA, 2008; SP 254. [Google Scholar]
- Porro, A. Nanoscience and Nanotechnology in Construction Materials. In NICOM 2: 2nd International Workshop on Nanotechnology in Construction; de Miguel, Y., Porro, A., Bartos, P.J.M., Eds.; RILEM Publications S.A.R.L.: Bagneux, France, 2006; pp. 3–8. [Google Scholar]
- Ślosarczyk, A. Synthesis and characterization of silica aerogel-based nanocomposites with carbon fibers and carbon nanotubes in hybrid system. J. Sol-Gel Sci. Technol. 2017, 84, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Ślosarczyk, A.; Barełkowski, M.; Niemier, S.; Jakubowska, P. Synthesis and characterisation of silica aerogel/carbon microfibers nanocomposites dried in supercritical and ambient pressure conditions. J. Sol-Gel Sci. Technol. 2015, 76, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Ślosarczyk, A.; Strauchmann, W.; Ziółkowski, P.; Jakubowska, P. Synthesis and characterization of carbon fiber/silica aerogel nanocomposites. J. Non-Cryst. Solids 2015, 416, 1–3. [Google Scholar] [CrossRef]
- Błaszczyński, T.; Ślosarczyk, A.; Morawski, M. Synthesis of Silica Aerogel by Supercritical Drying Method. Procedia Eng. 2013, 57, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Aegerter, M.A. Aerogels Handbook; Springer Science+Business Media: New York, NY, USA, 2011. [Google Scholar]
- Fricke, J.; Emmerling, A. Aerogels—Recent Progress in Production Techniques and Novel Applications. J. Sol-Gel Sci. Technol. 1998, 13, 299–303. [Google Scholar] [CrossRef]
- Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T. Aerogel commercialization: Technology, markets and costs. J. Non-Cryst. Solids 1995, 186, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Koebel, M.; Rigacci, A.; Achard, P. Aerogel-based thermal superinsulation: An overview. J. Sol-Gel Sci. Technol. 2012, 63, 315–339. [Google Scholar] [CrossRef] [Green Version]
- Pierre, A.C.; Pajonk, G.M. Chemistry of Aerogels and Their Applications. Chem. Rev. 2002, 102, 4243–4265. [Google Scholar] [CrossRef]
- Jelle, B.P.; Gustavsen, A.; Baetens, R. The path to the high performance thrermal building insulation materials and solutions of tomorrow. J. Build. Phys. 2010, 34, 99–123. [Google Scholar] [CrossRef] [Green Version]
- Jelle, B.P. Traditional, state of the art and future thermal buliding insulation materials and soluitons—Properties, requirements and possibilities. Energy Bulid. 2011, 43, 2549–2563. [Google Scholar] [CrossRef] [Green Version]
- Belloni, E.; Buratti, C.; Merli, F.; Moretti, E.; Ihara, T. Thermal-energy and lighting performance of aerogel glazings with hollow silica: Field experimental study and dynamic simulations. Energy Build. 2021, 243, 110999. [Google Scholar] [CrossRef]
- Tian, J.; Yang, Y.; Xue, T.; Chao, G.; Fan, W.; Liu, T. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. J. Mater. Sci. Technol. 2022, 105, 194–202. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Merli, F.; Zinzi, M. Aerogel glazing systems for building applications: A review. Energy Build. 2021, 231, 110587. [Google Scholar] [CrossRef]
- Patel, R.P.; Purohit, N.S.; Suthar, A.M. An Overview of Silica Aerogels. Int. J. ChemTech Res. 2009, 1, 1052–1057. [Google Scholar]
- Suh, D.J. Catalytic applications of composite aerogels. J. Non-Cryst. Solids 2004, 350, 314–319. [Google Scholar] [CrossRef]
- Alnaief, M.; Smirnova, I. Effect of surface functionalization of silica aerogel on their adsorptive and release properties. J. Non-Cryst. Solids 2010, 356, 1644–1649. [Google Scholar] [CrossRef]
- Ulker, Z.; Erkey, C. An emerging platform for drug delivery: Aerogel based systems. J. Control. Release 2014, 177, 51–63. [Google Scholar] [CrossRef]
- Wang, C.-T.; Wu, C.-L.; Chen, I.-C.; Huang, Y.-H. Humidity sensors based on silica nanoparticle aerogel thin films. Sens. Actuators B Chem. 2005, 107, 402–410. [Google Scholar] [CrossRef]
- Maleki, H. Recent advances in aerogels for environmental remediation applications: A review. Chem. Eng. J. 2016, 300, 98–118. [Google Scholar] [CrossRef]
- Yashim, M.M.; Sainorudin, M.H.; Mohammad, M.; Fudholi, A.; Asim, N.; Razali, H.; Sopian, K. Recent advances on lightweight aerogel as a porous receiver layer for solar thermal technology application. Sol. Energy Mater. Sol. Cells 2021, 228, 111131. [Google Scholar] [CrossRef]
- Shafi, S.; Rasheed, T.; Naz, R.; Majeed, S.; Bilal, M. Supercritical CO2 drying of pure silica aerogels: Effect of drying time on textural properties of nanoporous silica aerogels. J. Sol-Gel Sci. Technol. 2021, 98, 478–486. [Google Scholar] [CrossRef]
- Vareda, J.P.; Lamy-Mendes, A.; Durães, L. A reconsideration on the definition of the term aerogel based on current drying trends. Micropor. Mesopor. Mater. 2018, 258, 211–216. [Google Scholar] [CrossRef]
- Bangi, U.K.H.; Venkateswara Rao, A.; Parvathy Rao, A. A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying. Sci. Technol. Adv. Mater. 2008, 9, 035006. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, Y.; Cui, S.; Yang, F.; Nie, Z.; Li, Q.; Wei, Q. Preparation of Silica Aerogels by Ambient Pressure Drying without Causing Equipment Corrosion. Molecules 2018, 23, 1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iswar, S.; Galmarini, S.; Bonanomi, L.; Wernery, J.; Roumeli, E.; Nimalshantha, S.; Ben Ishai, A.M.; Lattuada, M.; Koebel, M.M.; Malfait, W.J. Dense and strong, but superinsulating silica aerogel. Acta Mater. 2021, 213, 116959. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Mahadik, D.B.; Parale, V.G.; Park, H.-H. Composites of silica aerogels with organics: A review of synthesis and mechanical properties. J. Korean Ceram. Soc. 2020, 57, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Adhikary, S.K.; Ashish, D.K.; Rudžionis, Ž. Aerogel based thermal insulating cementitious composites: A review. Energy Build. 2021, 245, 111058. [Google Scholar] [CrossRef]
- Einarsrud, M.A.; Kirkedelen, M.B.; Nilsen, E.; Mortensen, K.; Samseth, J. Structural development of silica gels aged in TEOS. J. Non-Cryst. Solids 1998, 231, 10–16. [Google Scholar] [CrossRef]
- Einarsrud, M.A. Light gels by conventional drying. J. Non-Cryst. Solids 1998, 225, 1–7. [Google Scholar] [CrossRef]
- Hæreid, S.; Einarsrud, M.A.; Scherer, G.W. Mechanical strengthening of TMOS-based alcogels by aging in silane solutions. Civil Environ. Eng. 1994, 3, 199–204. [Google Scholar] [CrossRef]
- Pajonk, G.M. Catalytic Aerogels. Catal. Today 1997, 35, 319–337. [Google Scholar] [CrossRef]
- Parmenter, K.E.; Milstein, F. Mechanical properties of silica aerogels. J. Non-Cryst. Solids 1998, 223, 179–189. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, J.; Ni, X.; Wu, G.; Zhou, B.; Yang, M.; Gu, X.; Qian, M.; Wu, Y. Hydrophobic Silica Aerogels Strengthened with Nonwoven Fibers. J. Macromol. Sci. A 2006, 43, 1663–1670. [Google Scholar] [CrossRef]
- Ślosarczyk, A. Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites. Nanomaterials 2017, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Ślosarczyk, A.; Klapiszewski, Ł.; Buchwald, T.; Krawczyk, P.; Kolanowski, Ł.; Lota, G. Carbon Fiber and Nickel Coated Carbon Fiber–Silica Aerogel Nanocomposite as Low Frequency Microwave Absorbing Materials. Materials 2020, 13, 400. [Google Scholar] [CrossRef] [Green Version]
- Shafi, S.; Zhao, Y. Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation. J. Porous Mater. 2020, 27, 495–502. [Google Scholar] [CrossRef]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Kadir, A.A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052. [Google Scholar] [CrossRef] [Green Version]
- Katti, A.; Shimpi, N.; Roy, S.; Lu, H.; Fabrizio, E.F.; Dass, A.; Capadona, L.A.; Leventis, N. Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels. Chem. Mater. 2006, 18, 285–296. [Google Scholar] [CrossRef]
- Jesionowski, T.; Klapiszewski, Ł.; Ambrożewicz, D.; Kloziński, A.; Jakubowska, P.; Górny, K.; Zwierzycki, W.; Bieńczak, K.; Szczepaniak, J. Production and characterization of thermal insulation materials based on polyurethane and aerogels. Przem. Chem. 2015, 94, 85–92. [Google Scholar]
- Leventis, N.; Sotiriou-Leventis, C.; Zhang, G.; Rawashdeh, A.-M.M. Nanoengineering Strong Silica Aerogels. Nano Lett. 2002, 2, 957–960. [Google Scholar] [CrossRef]
- Maleki, H.; Durães, L.; Portugal, A. Development of Mechanically Strong Ambient Pressure Dried Silica Aerogels with Optimized Properties. J. Phys. Chem. C 2015, 119, 7689–7703. [Google Scholar] [CrossRef]
- Asadi, I.; Shafigh, P.; Abu Hassan, Z.F.B.; Mahyuddin, N.B. Thermal conductivity of concrete—A review. J. Build. Eng. 2018, 20, 81–93. [Google Scholar] [CrossRef]
- Rossignolo, J.A.; Agnesini, M.V.C. Durability of polymer-modified lightweight aggregate concrete. Cem. Concr. Compos. 2004, 26, 375–380. [Google Scholar] [CrossRef]
- Ma, H.; Li, Z. Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms. Constr. Build. Mater. 2013, 47, 579–587. [Google Scholar] [CrossRef]
- Blanco, F.; García, P.; Mateos, P.; Ayala, J. Characteristics and properties of lightweight concrete manufactured with cenospheres. Cem. Concr. Res. 2000, 30, 1715–1722. [Google Scholar] [CrossRef]
- Sengul, O.; Azizi, S.; Karaosmanoglu, F.; Tasdemir, M.A. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 2011, 43, 671–676. [Google Scholar] [CrossRef]
- Huang, X.; Ranade, R.; Zhang, Q.; Ni, W.; Li, V.C. Mechanical and thermal properties of green lightweight engineered cementitious composites. Constr. Build. Mater. 2013, 48, 954–960. [Google Scholar] [CrossRef]
- Yu, Q.; Spiesz, P.; Brouwers, H.J.H. Development of cement-based lightweight composites—Part 1: Mix design methodology and hardened properties. Cem. Concr. Compos. 2013, 44, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Rheinheimer, V.; Wu, Y.; Wu, T.; Celik, K.; Wang, J.; De Lorenzis, L.; Wriggers, P.; Zhang, M.-H.; Monteiro, P.J.M. Multi-scale study of high-strength low-thermal-conductivity cement composites containing cenospheres. Cem. Concr. Compos. 2017, 80, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; He, S.; Wang, P.; Xu, Y.; Hu, X.; Chen, Q. Ecological Upgrade of Normal-Strength Mortars by Using High Volume of GGBS. Adv. Civil Eng. 2020, 2020, 7101469. [Google Scholar] [CrossRef]
- Szymkuć, W.; Tokłowicz, P.; Glema, A.; Craveiro, H. Study on the use of ultra-lightweight cement composite for enhancing fire performance of concrete filled tubular columns. In Proceedings of the Structures in Fire SiF’2018: 10th International Conference on Structures in Fire Belfast, Ulster University, Belfast, UK, 6–8 June 2018. [Google Scholar]
- Gao, T.; Jelle, B.P.; Gustavsen, A.; Jacobsen, S. Aerogel-incorporated concrete: An experimental study. Constr. Build. Mater. 2014, 52, 130–136. [Google Scholar] [CrossRef]
- Ng, S.; Jelle, B.P.; Sandberg, L.I.C.; Gao, T.; Wallevik, Ó.H. Experimental investigations of aerogel-incorporated ultra-high performance concrete. Constr. Build. Mater. 2015, 77, 307–316. [Google Scholar] [CrossRef]
- Fickler, S.; Milow, B.; Ratke, L.; Schnellenbach-Held, M.; Welsch, T. Development of High Performance Aerogel Concrete. Energy Procedia 2015, 78, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Welsch, T.; Schnellenbach-Held, M. High Performance Aerogel Concrete. In Proceedings of the Eleventh High Performance Concrete (11th HPC) and the Second Concrete Innovation Conference (2nd CIC), Tromso, Norway, 6–8 March 2017. [Google Scholar]
- Welsch, T.; Schnellenbach-Held, M.; Milow, B. Development of a New Multifunctional Structural Material: High Performance Aerogel Concrete. In Proceedings of the 1st International Conference on New Horizons in Green Civil Engineering (NHICE-01), Victoria, BC, Canada, 25–27 April 2018. [Google Scholar]
- Al Zaidi, I.K.; Demirel, B.; Atis, C.D.; Akkurt, F. Investigation of mechanical and thermal properties of nano SiO2/hydrophobic silica aerogel co-doped concrete with thermal insulation properties. Struct. Concr. 2020, 21, 1123–1133. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Rudžionis, Ž.; Vaičiukynienė, D. Development of flowable ultra-lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. J. Build. Eng. 2020, 31, 101399. [Google Scholar] [CrossRef]
- Ng, S.; Jelle, B.P.; Stæhli, T. Calcined clays as binder for thermal insulation and structural aerogel-incorporated mortar. Cem. Concr. Compos. 2016, 72, 213–221. [Google Scholar] [CrossRef]
- Ng, S.; Jelle, B.P.; Zhen, Y.; Wallevik, Ó.H. Effect of storage and curing conditions at elevated temperatures on aerogel-incorporated mortar samples based on UHPC recipe. Constr. Build. Mater. 2016, 106, 640–649. [Google Scholar] [CrossRef]
- Stefanidou, M.; Pachta, V. Influence of perlite and aerogel addition on the performance of cement-based mortars at elevated temperatures. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012111. [Google Scholar] [CrossRef]
- Tay, L.; Lee, Y. Compressive and Flexural Strengths of Mortar with Silica Aerogel Powder. In Proceedings of the International Conference on Civil, Offshore and Environmental Engineering, Kuching, Malaysia, 13–15 June 2021. [Google Scholar]
- Khamidi, M.F.; Glover, C.; Farhan, S.A.; Puad, N.H.A.; Nuruddin, M.F. Effect of silica aerogel on the thermal conductivity of cement paste for the construction of concrete buildings in sustainable cities. WIT Trans. Built Environ. 2014, 137, 665–673. [Google Scholar]
- Hanif, A.; Diao, S.; Lu, Z.; Fan, T.; Li, Z. Green lightweight cementitious composite incorporating aerogel and fly ash cenospheres—Mechanical and thermal insulation properties. Constr. Build. Mater. 2016, 116, 422–430. [Google Scholar] [CrossRef]
- Abbas, N.; Khalid, H.R.; Ban, G.; Kim, H.T.; Lee, H.K. Silica aerogel derived from rice husk: An aggregate replacer for lightweight and thermally insulating cement-based composites. Constr. Build. Mater. 2019, 195, 312–322. [Google Scholar] [CrossRef]
- Shafi, S.; Navik, R.; Ding, X.; Zhao, Y. Improved heat insulation and mechanical properties of silica aerogel/glass T fiber composite by impregnating silica gel. J. Non-Cryst. Solids 2019, 503–504, 78–83. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.-Y.; Monteiro, P.J.M.; Zhang, M.-H. Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Constr. Build. Mater. 2015, 87, 100–112. [Google Scholar] [CrossRef]
- Yan, J.-B.; Wang, J.-Y.; Liew, J.Y.R.; Qian, X. Applications of ultra-lightweight cement composite in flat slabs and double skin composite structures. Constr. Build. Mater. 2016, 111, 774–793. [Google Scholar] [CrossRef]
- Jang, D.; Yoon, H.N.; Seo, J.; Lee, H.K.; Kim, G.M. Effects of silica aerogel inclusion on the stability of heat generation and heat-dependent electrical characteristics of cementitious composites with CNT. Cem. Concr. Compos. 2021, 115, 103861. [Google Scholar] [CrossRef]
- Rostami, J.; Khandel, O.; Sedighardekani, R.; Sahneh, A.R.; Ghahari, S.A. Enhanced workability, durability, and thermal properties of cement-based composites with aerogel and parafin coated recycled aggregates. J. Clean. Prod. 2021, 297, 126518. [Google Scholar] [CrossRef]
- Ismail, F.I.; Farhan, S.A.; Shafiq, N.; Husna, N.; Sharif, M.T.; Affan, S.U.; Veerasenan, A.K. Nano-Porous Silica-Aerogel-Incorporated Composite Materials for Thermal-Energy-Efficient Pitched Roof in the Tropical Region. Appl. Sci. 2021, 11, 6081. [Google Scholar] [CrossRef]
- Morgado, A.; Soares, A.; Flores-Colen, I.; do Rosário Veiga, M.; Gomes, M.G. Durability of Thermal Renders with Lightweight and Thermal Insulating Aggregates: Regranulated Expanded Cork, Silica Aerogel and Expanded Polystyrene. Gels 2021, 7, 35. [Google Scholar] [CrossRef]
- Ratke, L.; Welsch, T.; Schnellenbach-Held, M.; Milow, B. High performance aerogel concrete. In Proceedings of the Conference: Advanced Building Skins, Bern, Switzerland, 2–3 October 2017. [Google Scholar]
- Shah, S.N.; Mo, K.H.; Yap, S.P.; Radwan, M.K.H. Effect of micro-sized silica aerogel on the properties of lightweight cement composite. Constr. Build. Mater. 2021, 290, 123229. [Google Scholar] [CrossRef]
- Jia, G.; Li, Z. Influence of the aerogel/expanded perlite composite as thermal insulation aggregate on the cement-based materials: Preparation, property, and microstructure. Constr. Build. Mater. 2021, 273, 121728. [Google Scholar] [CrossRef]
- Westgate, P.; Paine, K.; Ball, R.J. Physical and mechanical properties of plasters incorporating aerogel granules and polypropylene monofilament fibres. Constr. Build. Mater. 2018, 158, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Pedroso, M.; Flores-Colen, I.; Silvestre, J.D.; Gomes, M.G.; Silva, L.; Ilharco, L. Physical, mechanical, and microstructural characterisation of an innovative thermal insulating render incorporating silica aerogel. Energy Build. 2020, 211, 109793. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Lim, T.-K.; Jeong, S.-M.; Yang, K.H. Thermal transfer and moisture resistances of nano-aerogel-embedded foam concrete. Constr. Build. Mater. 2020, 236, 117575. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, J.; Lu, Z.; Li, J.; Niu, Y.; Yang, Y. Pore structure and hardened properties of aerogel/cement composites based on nanosilica and surface modification. Constr. Build. Mater. 2020, 245, 118434. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Rudžionis, Ž.; Tučkuté, S.; Asish, D.K. Effect of carbon nanotubes on expanded glass and silica aerogel based lightweight concrete. Sci. Rep. 2021, 11, 2104. [Google Scholar] [CrossRef] [PubMed]
- De Fátima Júlio, M.; Soares, A.; Ilharco, L.M.; Flores-Colen, I.; de Brito, J. Aerogel-based renders with lightweight aggregates: Correlation between molecular/pore structure and performance. Constr. Build. Mater. 2016, 124, 485–495. [Google Scholar] [CrossRef]
- Becker, P.F.B.; Effting, C.; Schackow, A. Lightweight thermal insulating coating mortars with aerogel, EPS, and vermiculite for energy conservation in buildings. Cem. Concr. Compos. 2022, 125, 104283. [Google Scholar] [CrossRef]
- Zeng, Q.; Mao, T.; Li, H.; Peng, Y. Thermally insulating lightweight cement-based composites incorporating glass beads and nanosilica aerogels for sustainably energy-saving buildings. Energy Build. 2018, 174, 97–110. [Google Scholar] [CrossRef]
- Lamy Mendes, A.; Pontinha, A.D.R.; Alves, P.; Santos, P.; Durães, L. Progress in silica-aerogel-containing materials for buildings’ thermal insulation. Constr. Build. Mater. 2021, 286, 122815. [Google Scholar] [CrossRef]
- De Fátima Júlio, M.; Soares, A.; Ilharco, L.M.; Flores-Colen, I.; de Brito, J. Silica-based aerogels as aggregates for cement based thermal renders. Cem. Concr. Compos. 2016, 72, 309–318. [Google Scholar] [CrossRef]
- Berardi, U. Aerogel-enhanced systems for building energy retrofits: Insights from a case study. Energy Build. 2018, 159, 370–381. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Thermal performance of a selection of insulation materials suitable for historic buildings. Build. Environ. 2015, 94, 155–165. [Google Scholar] [CrossRef]
- Stahl, T.; Wakili, K.G.; Hartmeier, S.; Franov, E.; Niederberger, W.; Zimmermann, M. Temperature and moisture evolution beneath an aerogel based rendering applied to a historic building. J. Build. Eng. 2017, 12, 140–146. [Google Scholar] [CrossRef]
- Strzałkowki, J.; Garbalińska, H. Thermal and strength properties of lightweight concretes with the addition of aerogel particles. Adv. Cem. Res. 2016, 28, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Garbalińska, H.; Strzałkowki, J. The thermal and strength properties of lightweight concretes with variable porosity structures. J. Mater. Civ. Eng. 2018, 30, 2549. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U.; Nosrati, R.H. Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions. Energy 2018, 147, 1188–1202. [Google Scholar] [CrossRef]
- Bostanci, L.; Ustundag, O.; Sola, O.C.; Uysal, M. Effect of various curing methods and addition of silica aerogel on mortar properties. Gradevinar 2019, 8, 651–661. [Google Scholar]
- Zhu, P.; Xu, X.; Liu, H.; Liu, S.; Chen, C.; Jia, Z. Tunnel fire resistance of self-compacting concrete coated with SiO2 aerogel cement paste under 2.5 h HC fire loading. Constr. Build. Mater. 2020, 239, 117857. [Google Scholar] [CrossRef]
- Shah, S.N.; Mo, K.H.; Yap, S.P.; Radwan, M.K.H. Towards an energy efficient cement composite incorporating silica aerogel: A state of the art review. J. Build. Eng. 2021, 44, 103227. [Google Scholar] [CrossRef]
- Sakiyama, N.R.M.; Frick, J.; Stipetic, M.; Oertel, T.; Garrecht, H. Hygrothermal performance of a new aerogel based insulating render through weathering: Impact on building energy efficiency. Build. Envirom. 2021, 202, 108004. [Google Scholar] [CrossRef]
- Ibrahim, M.; Wurtz, E.; Biwolea, P.H.; Acharda, P.; Salle, H. Hygrothermal performance of exterior walls covered with aerogel-based insulating rendering. Energy Build. 2014, 84, 241–251. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Zhang, Y.; Yang, J.; He, F. Structure characteristics and hygrothermal performance of silica aerogel composites for building thermal insulation in humid areas. Energy Build. 2020, 228, 110452. [Google Scholar] [CrossRef]
- Maia, J.; Pedroso, M.; Ramos, N.M.M.; Flores-Colen, I.; Pereira, P.F.; Silva, L. Durability of a New Thermal Aerogel-Based Rendering System under Distinct Accelerated Aging Conditions. Materials 2021, 14, 5413. [Google Scholar] [CrossRef] [PubMed]
Aggregate Type/Maximum Size | Dry Density (kg/m3) | Compressive Strength (MPa) | Thermal Conductivity (W/(m·K)) | References |
---|---|---|---|---|
Cenosphere/4 mm | 1050–1350 | 5.0–30.1 | 0.46–0.60 | [60] |
Expanded perlite/2–4 mm | 354–1833 | 0.1–28.8 | 0.06–0.13 | [61] |
Cenosphere/600 µm | 1483–1890 | 44.3–48.1 | 0.29–0.37 | [62] |
Expanded glass/4 mm | 1100–1380 | 23–30 | 0.49–0.85 | [63] |
Cenosphere/300 µm | 1042–1300 | 40.9–69.4 | 0.31–0.40 | [64] |
Cenosphere/300 µm/GGBS (20–60%) in place of cement | 1240–1270 | Above 55 | 0.39–0.45 | [65] |
Cenosphere/500 µm | 1282 | 52.5 | 0.6 | [66] |
Type of Cementitious Composite | Scientific Name of Cementitious Composites with Silica Aerogel | Silica Aerogel Volume (%) | References |
---|---|---|---|
Concretes | Ultra-high-performance aerogel concrete | 20–80 | [68] |
High-performance aerogel concrete | 45–70 | [69,70,71] | |
Aerogel-incorporated concrete | 10–60 | [67,72] | |
Ultra-lightweight concrete | 15–60 | [73] | |
Mortars | Silica aerogel-incorporated mortar | 20–80 | [74,75,76,77,78] |
Lightweight Composites | Green lightweight composite | 1–5 | [62,79] |
Lightweight cement-based composite | 15–100 | [80,81] | |
Ultra-lightweight cement composite | – | [73,82,83] | |
Silica aerogel-incorporated composite | 2–8 | [84,85,86] | |
Thermal renders with silica aerogel | 0–20 | [86,87] |
No. | Type of Cementitious Composite | Thermal Conductivity at 28 Days (W/(m·K)) | References | |||
---|---|---|---|---|---|---|
Silica Aerogel Content (vol%) | ||||||
0 | 20 | 40 | 60 | |||
1 | Concrete | 1.9 | 1.45 | 0.8 | 0.25 | [67] |
2 | Concrete | 2.3 | 1.5 | 0.8 | 0.5 | [68] |
3 | High-performance concrete | 0.35 | 0.20 | 0.19 | [69] | |
4 | High-performance concrete | 0.28 | 0.20 | [70] | ||
5 | High-performance concrete | 0.26–0.14 | [71] | |||
6 | Ultra-lightweight concrete | 0.31–0.30 | [73] | |||
7 | Structural concrete | 1–0.86 | [72] | |||
8 | Mortar | 0.48 | 0.30 | [74] | ||
9 | Mortar | 1.2 | 0.2 | [78] | ||
10 | Mortar | 1.76 | 1.14 | 0.80 | 0.60 | [77] |
11 | Lightweight composite | 0.41–0.25 | [79] | |||
12 | Lightweight composite | 0.65–0.58 | [85] | |||
13 | Lightweight composite | 0.18 | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślosarczyk, A.; Vashchuk, A.; Klapiszewski, Ł. Research Development in Silica Aerogel Incorporated Cementitious Composites—A Review. Polymers 2022, 14, 1456. https://doi.org/10.3390/polym14071456
Ślosarczyk A, Vashchuk A, Klapiszewski Ł. Research Development in Silica Aerogel Incorporated Cementitious Composites—A Review. Polymers. 2022; 14(7):1456. https://doi.org/10.3390/polym14071456
Chicago/Turabian StyleŚlosarczyk, Agnieszka, Andrii Vashchuk, and Łukasz Klapiszewski. 2022. "Research Development in Silica Aerogel Incorporated Cementitious Composites—A Review" Polymers 14, no. 7: 1456. https://doi.org/10.3390/polym14071456
APA StyleŚlosarczyk, A., Vashchuk, A., & Klapiszewski, Ł. (2022). Research Development in Silica Aerogel Incorporated Cementitious Composites—A Review. Polymers, 14(7), 1456. https://doi.org/10.3390/polym14071456