Highly Efficient Recovery of Ruthenium from Aqueous Solutions by Adsorption Using Dibenzo-30-Crown-10 Doped Chitosan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis and Characterization
2.2. Adsorption Studies
2.2.1. pH Influence
2.2.2. Influence of Contact Time and Temperature
2.2.3. Initial Concentration Influence
2.3. Desorption Studies
3. Results and Discussion
3.1. Material Synthesis and Characterization
3.1.1. Scanning Electron Microscopy Coupled with Energy Dispersive X-Ray Spectroscopy (SEM–EDX)
3.1.2. FT-IR Spectroscopy
3.1.3. Determination of the Specific Surface using the BET Method (Brunauer–Emmett–Teller)
3.1.4. Point of Zero Charge, pHpZc
3.2. Adsorption Studies
3.2.1. The pH Influence
3.2.2. Influence of the Contact Time and Temperature
3.2.3. The Ru(III) Initial Concentration Influence
3.2.4. Kinetic Studies
3.2.5. Thermodynamic Studies
3.2.6. Equilibrium Studies
3.3. Desorption Behavior
3.4. Proposal of a Mechanism for the Ru(III) Adsorption Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bush, R.P. Recovery of platinum group metals from high level radioactive waste. Platinum Met. Rev. 1991, 35, 202–208. [Google Scholar]
- Zhang, S.; Ning, S.; Liu, H.; Zhou, J.; Wang, S.; Zhang, W.; Wang, X.; Wei, Y. Highly-efficient separation and recovery of ruthenium from electroplating wastewater by a mesoporous silica-polymer based adsorbent. Microporous Mesoporous Mater. 2020, 303, 110293. [Google Scholar] [CrossRef]
- Das, N. Recovery of precious metals through biosorption—A review. Hydrometallurgy 2010, 103, 180–189. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Q.; Xiang, Z.; Yang, Y. Separation of Pt(IV), Pd(II), Ru(III), and Rh(III) from chloride medium using liquid–liquid extraction with mixed imidazolium-based ionic liquids. Sep. Sci. Technol. 2018, 53, 2064–2073. [Google Scholar] [CrossRef]
- Won, S.W.; Kwak, I.S.; Mao, J.; Yun, Y.-S. Biosorption–Incineration–Leaching–Smelting Sequential Process for Ru Recovery from Ru-Bearing Acetic Acid Waste Solution. Ind. Eng. Chem. Res. 2015, 54, 7148–7153. [Google Scholar] [CrossRef]
- Noah, N.F.M.; Othman, N.; Jusoh, N. Highly selective transport of palladium from electroplating wastewater using emulsion liquid membrane process. J. Taiwan Inst. Chem. Eng. 2016, 64, 134–141. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Liu, Z.; Yang, Y. Recovery of Ru(III) from hydrochloric acid by cloud point extraction with 2-Mercaptobenzothiazole-functionalized ionic liquid. Chem. Eng. J. 2017, 308, 370–376. [Google Scholar] [CrossRef]
- Dobson, R.S.; Burgess, J.E. Biological treatment of precious metal refinery wastewater: A review. Miner. Eng. 2007, 20, 519–532. [Google Scholar] [CrossRef]
- Kwak, I.S.; Won, S.W.; Chung, Y.S.; Yun, Y.-S. Ruthenium recovery from acetic acid waste water through sorption with bacterial biosorbent fibers. Bioresour. Technol. 2013, 128, 30–35. [Google Scholar] [CrossRef]
- Aktas, S.; Morcali, M.H.; Aksu, K.; Aksoy, B. Recovery of Ruthenium Via Zinc in the Presence of Accelerator. Trans. Indian Inst. Met. 2017, 71, 697–703. [Google Scholar] [CrossRef]
- Li, F.; Shang, Y.; Ding, Z.; Weng, H.; Xiao, J.; Lin, M. Efficient extraction and separation of palladium (Pd) and ruthenium (Ru) from simulated HLLW by photoreduction. Sep. Purif. Technol. 2017, 182, 9–18. [Google Scholar] [CrossRef]
- Moeyaert, P.; Miguirditchian, M.; Masson, M.; Dinh, B.; Hérès, X.; De Sio, S.; Sorel, C. Experimental and modelling study of ruthenium extraction with tri-n-butylphosphate in the purex process. Chem. Eng. Sci. 2017, 158, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Rzelewska, M.; Wiśniewski, M.; Regel-Rosocka, M. Effect of composition and ageing of chloride solutions on extraction of Rh(III) and Ru(III) with phosphonium ionic liquids Cyphos IL 101 and IL 104. Sep. Sci. Technol. 2017, 53, 1249–1260. [Google Scholar] [CrossRef]
- Tateno, H.; Park, K.C.; Tsukahara, T. Direct Extraction of Platinum Group Metals from Nitric Acid Solution Using the Phase Transition of Poly(N-isopropylacrylamide). Chem. Lett. 2018, 47, 318–321. [Google Scholar] [CrossRef] [Green Version]
- Kurimura, Y.; Nagashima, M.; Takato, K.; Tsuchida, E.; Kaneko, M.; Yamada, A. Photoredox reactions using ion-exchange resin-adsorbed Ru(bpy)32+. Photosensitized reductions of methyl viologen and molecular oxygen using ion-exchange resin-adsorbed tris(2,2′-bipyridine)ruthenium(II). J. Phys. Chem. 1982, 86, 2432–2437. [Google Scholar] [CrossRef]
- Song, Y.; Tsuchida, Y.; Matsumiya, M.; Tsunashima, K. Recovery of ruthenium by solvent extraction and direct electrodeposition using ionic liquid solution. Hydrometallurgy 2018, 181, 164–168. [Google Scholar] [CrossRef]
- Vereecken, P.M.; Radisic, A.; Ross, F.M. Differential Inhibition during Cu Electrodeposition on Ru: Combined Electrochemical and Real-Time TEM Studies. J. Electrochem. Soc. 2018, 166, D3129–D3135. [Google Scholar] [CrossRef]
- Minamisawa, H.; Kuroki, H.; Arai, N.; Okutani, T. Coprecipitation of ruthenium with chitosan and its determination by graphite furnace atomic absorption spectrometry. Anal. Chim. Acta 1999, 398, 289–296. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, Z.; Zhou, H.; Liu, G.; Liu, Y.; Zeng, L.; Jian, J.; Yuan, Z. Ion-imprinted poly(methyl methacrylate-vinyl pyrrolidone)/poly(vinylidene fluoride) blending membranes for selective removal of ruthenium(III) from acidic water solutions. Polym. Adv. Technol. 2019, 30, 1865–1877. [Google Scholar] [CrossRef]
- Ito, T.; Nagaishi, R.; Kimura, T.; Kim, S.-Y. Study on radiation effects on (MOTDGA–TOA)/SiO2-P adsorbent for separation of platinum group metals from high-level radioactive waste. J. Radioanal. Nucl. Chem. 2015, 305, 419–427. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Yan, J.; Zhou, Y.; Liu, C.; Zuo, Y.; Liu, D. Effective removal of ruthenium(III) ions from wastewater by xanthate-modified cross-linked chitosan. J. Environ. Chem. Eng. 2021, 9, 104818. [Google Scholar] [CrossRef]
- Metwally, E.; Elkholy, S.; Salem, H.; Elsabee, M. Sorption behavior of 60Co and 152+154Eu radionuclides onto chitosan derivatives. Carbohydr. Polym. 2009, 76, 622–631. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Wang, X.; Xie, Z.; Deng, N. Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J. Hazard. Mater. 2009, 168, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Santana Cadaval, T.R.; Camara, A.S.; Dotto, G.L.; Pinto, L.A.d.A. Adsorption of Cr (VI) by chitosan with different deacetylation degrees. Desalin. Water Treat. 2013, 51, 7690–7699. [Google Scholar] [CrossRef]
- Godlewska-Żyłkiewicz, B.; Zambrzycka-Szelewa, E.; Leśniewska, B.; Wilczewska, A. Separation of ruthenium from environmental samples on polymeric sorbent based on imprinted Ru(III)-allyl acetoacetate complex. Talanta 2012, 89, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, Y.-E.; Yun, Y.-S. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers. J. Hazard. Mater. 2016, 313, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.; Hasegawa, H.; Sugimoto, W.; Maki, T.; Ueda, K. Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresour. Technol. 2008, 99, 3801–3809. [Google Scholar] [CrossRef]
- Zhang, A.; Xu, L.; Lei, G. Separation and complexation of palladium(ii) with a new soft N-donor ligand 6,6′-bis(5,6-dinonyl-1,2,4-triazin-3-yl)-2,2′-bipyridine (C9-BTBP) in nitric acid medium. New J. Chem. 2016, 40, 6374–6383. [Google Scholar] [CrossRef]
- Borah, D.; Satokawa, S.; Kato, S.; Kojima, T. Sorption of As(V) from aqueous solution using acid modified carbon black. J. Hazard. Mater. 2009, 162, 1269–1277. [Google Scholar] [CrossRef]
- Borah, D.; Satokawa, S.; Kato, S.; Kojima, T. Surface-modified carbon black for As(V) removal. J. Colloid Interface Sci. 2008, 319, 53–62. [Google Scholar] [CrossRef]
- Kumar, S.; Koh, J. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications. Int. J. Mol. Sci. 2012, 13, 6102–6116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Koh, J.; Kim, H.; Gupta, M.K.; Dutta, P.K. A new chitosan–thymine conjugate: Synthesis, characterization and biological activity. Int. J. Biol. Macromol. 2012, 50, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Grad, O.; Ciopec, M.; Negrea, A.; Duțeanu, N.; Vlase, G.; Negrea, P.; Dumitrescu, C.; Vlase, T.; Vodă, R. Precious metals recovery from aqueous solutions using a new adsorbent material. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Vino, A.B.; Ramasamy, P.; Shanmugam, V.; Shanmugam, A. Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pac. J. Trop. Biomed. 2012, 2, S334–S341. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hu, P.; Wang, J.; Huang, R. Crosslinked quaternized chitosan/bentonite composite for the removal of Amino black 10B from aqueous solutions. Int. J. Biol. Macromol. 2016, 93, 217–225. [Google Scholar] [CrossRef]
- Kausar, A.; Naeem, K.; Hussain, T.; Nazli, Z.-I.; Bhatti, H.N.; Jubeen, F.; Nazir, A.; Iqbal, M. Preparation and characterization of chitosan/clay composite for direct Rose FRN dye removal from aqueous media: Comparison of linear and non-linear regression methods. J. Mater. Res. Technol. 2018, 8, 1161–1174. [Google Scholar] [CrossRef]
- Balcerzak, M. Analytical Methods for the Determination of Ruthenium: The State of the Art. Crit. Rev. Anal. Chem. 2002, 32, 181–226. [Google Scholar] [CrossRef]
- Rard, J.A. Chemistry and thermodynamics of ruthenium and some of its inorganic compounds and aqueous species. Chem. Rev. 1985, 85, 1–39. [Google Scholar] [CrossRef]
- Musić, S.; Ristic, M. Adsorption of microamounts of ruthenium on hydrous iron oxides. J. Radioanal. Nucl. Chem. Artic. 1987, 109, 495–506. [Google Scholar] [CrossRef]
- Marenich, A.V.; Majumdar, A.; Lenz, M.; Cramer, C.J.; Truhlar, D.G. Construction of Pourbaix Diagrams for Ruthenium-Based Water-Oxidation Catalysts by Density Functional Theory. Angew. Chem. Int. Ed. 2012, 51, 12810–12814. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, S. About the theory of so-called adsorption of soluble substabces. Kungl. Sven. Vetenskapsakad. Handlingarl 1898, 24, 1–39. [Google Scholar]
- Ho, Y.-S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, Y.S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process. Saf. Environ. Prot. 1998, 76, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.S.; Mckay, G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 1998, 76, 822–827. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, F.; Cheng, W.; Wang, J.; Ma, J. Adsorption Equilibrium and Kinetics of the Removal of Ammoniacal Nitrogen by Zeolite X/Activated Carbon Composite Synthesized from Elutrilithe. J. Chem. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Atkins, P.; de Paula, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, Z.; Dong, Z.; Ren, P.; Li, Y.; Liu, X. Fabrication and characterization of an ion-imprinted membrane via blending poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) with polyvinylidene fluoride for selective adsorption of Ru(III). React. Funct. Polym. 2017, 115, 1–9. [Google Scholar] [CrossRef]
- Colica, G.; Caparrotta, S.; De Philippis, R. Selective biosorption and recovery of Ruthenium from industrial effluents with Rhodopseudomonas palustris strains. Appl. Microbiol. Biotechnol. 2012, 95, 381–387. [Google Scholar] [CrossRef] [PubMed]
Pseudo-First Order | ||||
---|---|---|---|---|
Temperature (K) | qe,exp (mg/g) | k1 (1/min) | qe,calc (mg/g) | R2 |
298 | 2.34 | 0.012 | 1.73 | 0.9808 |
308 | 2.44 | 0.013 | 1.61 | 0.9887 |
318 | 2.50 | 0.023 | 1.68 | 0.9716 |
Pseudo-second order | ||||
Temperature (K) | qe,exp (mg/g) | k2 (g/mg∙min) | qe,calc (mg/g) | R2 |
298 | 2.34 | 0.461 | 2.43 | 0.9971 |
308 | 2.44 | 0.677 | 2.49 | 0.9979 |
318 | 2.50 | 0.923 | 2.60 | 0.9965 |
Intraparticle Diffusion Model | ||||||
---|---|---|---|---|---|---|
Temperature (K) | K1diff (mg/g·min1/2) | C1 | R2 | K2diff (mg/g·min1/2) | C2 | R2 |
298 | 0.402 | 0.108 | 0.9237 | 0.174 | 0.0186 | 0.8979 |
308 | 1.611 | 0.139 | 0.9231 | 0.383 | 0.0492 | 0.7989 |
318 | 2.216 | 0.166 | 0.8912 | 0.585 | 0.0566 | 0.8986 |
ΔHº (kJ/mol) | ΔSº (J/mol∙K) | ΔGº (kJ/mol) | R2 | ||
---|---|---|---|---|---|
298 K | 308 K | 318 K | |||
97.06 | 362.4 | −10.9 | −14.56 | −18.19 | 0.9981 |
Langmuir Isotherm | |||
qm,exp (mg/g) | KL (L/mg) | qL (mg/g) | R2 |
52.1 | 0.053 | 73.6 | 0.9626 |
Freundlich isotherm | |||
KF (mg/g) | 1/nF | R2 | |
8.19 | 0,481 | 0.8764 | |
Sips isotherm | |||
KS | qS (mg/g) | 1/nS | R2 |
0.013 | 55.9 | 0.78 | 0.9931 |
Adsorbent Material | pH | T (K) | C0 (mg L−1) | qm (mg g−1) | Reference |
---|---|---|---|---|---|
Raw C. glutamicum biomass | 2.5–2.7 | 293 | 61.6 | 16 | [9] |
Lewatit MonoPlus M600 | 2.5–2.7 | 293 | 61.6 | 6.7 | [9] |
Ion-imprinted blend membrane (Ru(III)-IIM) | 2 | 298 | 60 | 44.1 | [51] |
PNSBs | 2 | 338 | 3250 | 40 | [52] |
Amberjet 4200 | 2.5–2.7 | 298 | 1000 | 31.2 | [26] |
NIM | 2 | 298 | 60 | 20.6 | [51] |
M500 | 2.5–2.7 | 298 | 3250 | 17.9 | [26] |
TRPO/SiO2-P | 1 | 298 | 1059.8 | 54.6 | [2] |
Ch-DB30C10 | 2 | 298 | 275 | 52 | This work |
Eluent Concentration | HNO3 | HCl | H2SO4 | ||||||
---|---|---|---|---|---|---|---|---|---|
0.5 M | 1 M | 5 M | 0.5 M | 1 M | 5 M | 0.5 M | 1 M | 5 M | |
Efficiency, % | 85.6 | 92.4 | 96.7 | 78.7 | 81.2 | 87.4 | 45.6 | 76.8 | 79.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciopec, M.; Grad, O.; Negrea, A.; Duţeanu, N.; Negrea, P.; Vodă, R.; Ianăşi, C. Highly Efficient Recovery of Ruthenium from Aqueous Solutions by Adsorption Using Dibenzo-30-Crown-10 Doped Chitosan. Polymers 2022, 14, 1551. https://doi.org/10.3390/polym14081551
Ciopec M, Grad O, Negrea A, Duţeanu N, Negrea P, Vodă R, Ianăşi C. Highly Efficient Recovery of Ruthenium from Aqueous Solutions by Adsorption Using Dibenzo-30-Crown-10 Doped Chitosan. Polymers. 2022; 14(8):1551. https://doi.org/10.3390/polym14081551
Chicago/Turabian StyleCiopec, Mihaela, Oana Grad, Adina Negrea, Narcis Duţeanu, Petru Negrea, Raluca Vodă, and Cătălin Ianăşi. 2022. "Highly Efficient Recovery of Ruthenium from Aqueous Solutions by Adsorption Using Dibenzo-30-Crown-10 Doped Chitosan" Polymers 14, no. 8: 1551. https://doi.org/10.3390/polym14081551
APA StyleCiopec, M., Grad, O., Negrea, A., Duţeanu, N., Negrea, P., Vodă, R., & Ianăşi, C. (2022). Highly Efficient Recovery of Ruthenium from Aqueous Solutions by Adsorption Using Dibenzo-30-Crown-10 Doped Chitosan. Polymers, 14(8), 1551. https://doi.org/10.3390/polym14081551