Design and Characterization of a Bioinspired Polyvinyl Alcohol Matrix with Structural Foam-Wall Microarchitectures for Potential Tissue Engineering Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polyvinyl Alcohol Matrix by Using a Biomimetic Airstream Pore-Foaming Process
2.3. Preparation of Collagen-Modified Polyvinyl Alcohol Composite Matrix
2.4. Characterization and Cell Morphologies on PVAM and Collagen-Modified PVACM
3. Results
3.1. Morphological Evaluations of Polyvinyl Alcohol Matrix
3.2. Thermal Stability Evaluations of Medical PVA Matrix
3.3. The Fully Open-Cell Microstructures with Air Cavities, Foam Walls, and Structural Pneumaticity Bioinspired by Avian Rachises
3.4. Thermal Evaluations of New Bioinspired PVA Matrix
3.5. Fourier-Transform Infrared Spectra of the New Biomimetic Design of Bioinspired Polyvinyl Alcohol Matrix
3.6. Cell Morphological Observation of a Designed Collagen-Modified Bioinspired Polyvinyl Alcohol Matrix with Open-Cell Foam-Wall Microarchitectures and High Interconnectivity for Potential Tissue Engineering Applications
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kasaj, A.; Reichert, C.; Götz, H.; Röhrig, B.; Smeets, R.; Willershausen, B. In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration. Head Face Med. 2008, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subhan, F.; Hussain, Z.; Tauseef, I.; Shehzad, A.; Wahid, F. A review on recent advances and applications of fish collagen. Crit. Rev. Food Sci. Nutr. 2020, 61, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Dattola, E.; Parrotta, E.I.; Scalise, S.; Perozziello, G.; Limongi, T.; Candeloro, P.; Coluccio, M.L.; Maletta, C.; Bruno, L.; Angelis, M.T.D.; et al. Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications. RSC Adv. 2019, 9, 4246–4257. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, Y.G.; Mateescu, M.A.; Averill-Bates, D.A.; Denizeau, F. Polyvinylalcohol three-dimensional matrices for improved long-term dynamic culture of hepatocytes. J. Biomed. Mater. Res. A 2003, 66, 562–570. [Google Scholar] [CrossRef]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. B 2012, 100, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Xie, W.; Achazi, K.; Cuellar-Camacho, J.L.; Melzig, M.F.; Chen, W.; Haag, R. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 2018, 77, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Kuo, S.M.; Tarng, Y.W.; Lin, K.C. Immediate application of negative pressure wound therapy following lower extremity fap reconstruction in sixteen patients. Sci. Rep. 2021, 11, 21158. [Google Scholar] [CrossRef]
- Hamidabadi, H.G.; Rezvani, Z.; Bojnordi, M.N.; Shirinzadeh, H.; Seifalian, A.M.; Joghataei, M.T.; Razaghpour, M.; Alibakhshi, A.; Yazdanpanah, A.; Salimi, M.; et al. Chitosan-intercalated montmorillonite/poly(vinyl alcohol) nanofibers as a platform to guide neuronlike differentiation of human dental pulp stem cells. ACS Appl. Mater. Interfaces 2017, 9, 11392–11404. [Google Scholar] [CrossRef]
- Peppas, N.A.; Stauffer, S.R.J. Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: A short review. J. Control. Release 1991, 16, 305–310. [Google Scholar] [CrossRef]
- Trimnell, D.; Shasha, B.S.; Otey, F.H.J. The effect of α-amylases upon the release of trifluralin encapsulated in starch. J. Control. Release 1985, 1, 183–190. [Google Scholar] [CrossRef]
- Chang, Y.I.; Cheng, W.Y.; Jang, L. A Novel Method of Making PVF Porous Foam Without Using the Pore Forming Agent. J. Appl. Polym. Sci. 2014, 132, 41270. [Google Scholar] [CrossRef]
- BeMiller, J.N.; Whistler, R.L. Starch: Chemistry and Technology, 3rd ed.; Academic Press: New York, NY, USA, 2009. [Google Scholar]
- Wilson, J.D.; Bechtel, D.B.; Todd, T.C.; Seib, P.A. Measurement of Wheat Starch Granule Size Distribution Using Image Analysis and Laser Diffraction Technology. Cereal Chem. 2006, 83, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Lan, W.; Xu, M.; Qin, M.; Cheng, Y.; Zhao, Y.; Huang, D.; Wei, X.; Guo, Y.; Chen, W. Physicochemical properties and biocompatibility of the bi-layer polyvinyl alcohol-based hydrogel for osteochondral tissue engineering. Mater. Des. 2021, 204, 109652. [Google Scholar] [CrossRef]
- Wu, Z.; Kong, B.; Liu, R.; Sun, W.; Mi, S. Engineering of corneal tissue through an aligned PVA/collagen composite nanofibrous electrospun scaffold. Nanomaterials 2018, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Barbon, S.; Contran, M.; Stocco, E.; Todros, S.; Macchi, V.; Caro, R.D.; Porzionato, A. Enhanced Biomechanical Properties of Polyvinyl Alcohol-Based Hybrid Scaffolds for Cartilage Tissue Engineering. Processes 2021, 9, 730. [Google Scholar] [CrossRef]
- Iqbal, B.; Muhammad, N.; Rahim, A.; Iqbal, F.; Sharif, F.; Safi, S.Z.; Khan, A.S.; Gonfa, G.; Uroos, M.; Rehman, I.U. Development of collagen/PVA composites patches for osteochondral defects using a green processing of ionic liquid. Int. J. Polym. Mater. 2019, 68, 590–596. [Google Scholar] [CrossRef]
- Choi, S.M.; Singh, D.; Kumar, A.; Oh, T.H.; Cho, Y.W.; Han, S.S. Porous three-dimensional PVA/gelatin sponge for skin tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 384–389. [Google Scholar] [CrossRef]
- Kamoun, E.A.; Kenawy, E.R.; Chen, S.X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217–233. [Google Scholar] [CrossRef]
- Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog. Polym. Sci. 2011, 36, 1254–1276. [Google Scholar] [CrossRef]
- Min, Q.; Tian, D.; Zhang, Y.; Wang, C.; Wan, Y.; Wu, J. Strong and Elastic Chitosan/Silk Fibroin Hydrogels Incorporated with Growth-Factor-Loaded Microspheres for Cartilage Tissue Engineering. Biomimetics 2022, 7, 41. [Google Scholar] [CrossRef]
- Reddy, R.; Reddy, N. Biomimetic approaches for tissue engineering. J. Biomater. Sci. Polym. Ed. 2018, 29, 1667–1685. [Google Scholar] [CrossRef]
- Ngadimin, K.D.; Stokes, A.; Gentile, P.; Ferreira, A.M. Biomimetic hydrogels designed for cartilage tissue engineering. Biomater. Sci. 2021, 9, 4246–4259. [Google Scholar] [CrossRef]
- Niu, W.; Xiao, Q.; Wang, X.; Zhu, J.; Li, J.; Liang, X.; Peng, Y.; Wu, C.; Lu, R.; Pan, Y.; et al. A Biomimetic Drug Delivery System by Integrating Grapefruit Extracellular Vesicles and Doxorubicin-Loaded Heparin-Based Nanoparticles for Glioma Therapy. Nano Lett. 2021, 21, 1484–1492. [Google Scholar] [CrossRef]
- Ziai, Y.; Petronella, F.; Rinoldi, C. Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications. NPG Asia Mater 2022, 14, 18. [Google Scholar] [CrossRef]
- Pan, Y.; Peng, C.; Wang, W.; Shi, K.; Liua, Z.; Ji, X. Preparation and absorption behavior to organic pollutants of macroporous hydrophobic polyvinyl alcohol–formaldehyde sponges. RSC Adv. 2014, 4, 35620. [Google Scholar] [CrossRef]
- Aldemir, D.B.; Claeyssens, F. Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds. Front. Bioeng. Biotechnol. 2020, 8, 875. [Google Scholar] [CrossRef]
- Bak, T.Y.; Kook, M.S.; Jung, S.C.; Kim, B.H. Biological effect of gas plasma treatment on CO2 gas foaming/salt leaching fabricated porous polycaprolactone scaffolds in bone tissue engineering. J. Nanomater. 2014, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dikici, S.; Claeyssens, F.; MacNeil, S. Bioengineering vascular networks to study angiogenesis and vascularization of physiologically relevant tissue models in Vitro. ACS Biomater. Sci. Eng. 2020, 6, 3513–3528. [Google Scholar] [CrossRef] [PubMed]
- Dikici, A.; Dikici, B.S.; Karaman, O.; Oflaz, H. The effect of zinc oxide doping on mechanical and biological properties of 3D printed calcium sulfate based scaffolds. Biocybern. Biomed. Eng. 2017, 37, 733–741. [Google Scholar] [CrossRef]
- Richez, A.; Deleuze, H.; Vedrenne, P.; Collier, R. Preparation of ultra-low-density microcellular materials. J. Appl. Polym. Sci. 2005, 96, 2053–2063. [Google Scholar] [CrossRef]
- Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Despa, F.; Orgill, D.P.; Neuwalder, J.; Lee, R.C. The relative thermal stability of tissue macromolecules and cellular structure in burn injury. Burns 2005, 31, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Rynkowska, E.; Fatyeyeva, K.; Marais, S.; Kujawa, J.; Kujawski, W. Chemically and Thermally Crosslinked PVA-Based Membranes: Effect on Swelling and Transport Behavior. Polymers 2019, 11, 1799. [Google Scholar] [CrossRef] [Green Version]
- Obanni, M.; Bemiller, J.N. Properties of Some Starch Blends. Cereal Chem. 1997, 74, 431–436. [Google Scholar] [CrossRef]
- Jacobs, H. Influence of annealing on the pasting properties of starches from varying botanical sources. Cereal Chem. 1995, 72, 480–487. [Google Scholar]
- Ratnayake, W.S.; Otani, C.; Jackson, D.S. DSC enthalpic transitions during starch gelatinization in excess water, dilute sodium chloride, and dilute sucrose solutions. J. Sci. Food Agric. 2009, 89, 2156–2164. [Google Scholar] [CrossRef]
- Beninca, C.; Colman, T.A.D.; Lacerda, L.G.; Filho, M.A.S.C.; Demiate, I.M.; Bannach, G.; Schnitzler, E. Thermal, rheological, and structural behaviors of natural and modified cassava starch granules, with sodium hypochlorite solutions. J. Anal. Calorim. 2013, 111, 2217–2222. [Google Scholar] [CrossRef]
- Hamdan, S.; Hashim, D.M.A.; Ahmad, M.; Embong, S. Compatibility studies of polypropylene (PP)-sago starch (SS) blends using DMTA. J. Polym. Res. 2000, 7, 237–244. [Google Scholar] [CrossRef]
- Lingham-Soliar, T. Feather structure, biomechanics and biomimetics: The incredible lightness of being. J. Ornithol. 2014, 155, 323–336. [Google Scholar] [CrossRef]
- Bonser, R.H.C. The mechanical performance of medullary foam from feathers. J. Mater. Sci. Lett. 2001, 20, 941–942. [Google Scholar] [CrossRef]
- Tao, T.X.; Wu, Z.C.; Wang, X.Q.; Li, M.S.; Zhang, J.H. Synthesis and spectra of compleses involving polyvinyl alcohol fiber ligands. Acta Polym. Sin. 2006, 3, 387–390. [Google Scholar] [CrossRef]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef] [PubMed]
- Dankar, I.; Haddarah, A.; Omar, F.E.L.; Sepulcre, F. Influence of storage under unfavourable conditions on the caking properties and fungal contamination of potato starch and wheat flour. Food Chem. 2018, 260, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.H.D.; Chalimah, S.; Primadona, I.; Hanantyo, M.H.G. Physical and chemical properties of corn, cassava, and potato starchs. Earth Environ. Sci. 2018, 160, 012003. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zeng, H.; Zeng, Z.; Zeng, Y.; Xie, T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater. Sci. Eng. 2021, 7, 5363–5396. [Google Scholar] [CrossRef]
- Sahana, T.G.; Rekha, P.D. Biopolymers: Applications in wound healing and skin tissue Engineering. Mol. Biol. Rep. 2018, 45, 2857–2867. [Google Scholar] [CrossRef]
- Jain, E.; Damania, A.; Shakya, A.K. Fabrication of macroporous cryogels as potential hepatocyte carriers for bioartificial liver support. Colloids Surf. B Biointerfaces 2015, 136, 761–771. [Google Scholar] [CrossRef]
- Jiang, X.; Christopherson, G.T.; Mao, H.Q. The effect of nanofibre surface amine density and conjugate structure on the adhesion and proliferation of human haematopoietic progenitor cells. Interface Focus 2011, 1, 725–733. [Google Scholar] [CrossRef]
- Xu, S.; Gu, M.; Wu, K.; Li, G. Unraveling the interaction mechanism between collagen and alcohols with different chain lengths and hydroxyl positions. Colloids Surf. B Biointerfaces 2021, 199, 111559. [Google Scholar] [CrossRef]
- Lai, G.; Du, Z.; Li, G. The rheological behavior of collagen dispersion/poly(vinyl alcohol) blends. Korea-Aust. Rheol. J. 2007, 19, 81–88. [Google Scholar]
- Zhou, T.; Zheng, K.; Sui, B.; Boccaccini, A.R.; Sun, J. In vitro evaluation of poly (vinyl alcohol)/collagen blended hydrogels for regulating human periodontal ligament fibroblasts and gingival fibroblasts. Int. J. Biol. Macromol. 2020, 163, 1938–1946. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.; Xu, M.; Zhang, X.; Zhao, L.; Huang, D.; Wei, X.; Chen, W. Biomimetic polyvinyl alcohol/type II collagen hydrogels for cartilage tissue engineering. Journal of Biomaterials Science. Polym. Ed. 2020, 31, 1–22. [Google Scholar]
- Puttawibul, P.; Benjakul, S.; Meesane, J. Freeze-thawed hybridized preparation with biomimetic self-assembly for a polyvinyl alcohol/collagen hydrogel created for meniscus tissue engineering. J. Biomim. Biomater. Biomed. Eng. 2014, 21, 17–33. [Google Scholar] [CrossRef]
- Asran, A.S.; Henning, S.; Michler, G.H. Polyvinyl alcohol–collagen–hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level. Polymer 2010, 51, 868–876. [Google Scholar] [CrossRef]
- Bual, R.P.; Ijima, H. Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes. Regen Ther. 2019, 11, 258–268. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, H.J.; Choi, D. Cell sources, liver support systems and liver tissue engineering: Alternatives to liver transplantation. Int. J. Stem Cells 2015, 8, 36–47. [Google Scholar] [CrossRef]
- Lee, J.S.; Cho, S.W. Liver tissue engineering: Recent advances in the development of a bio-artificial liver. Biotechnol. Bioproc. E 2012, 17, 427–438. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Q.; Lv, S.; Lu, J.; Jiang, S.; Regenstein, J.M.; Lin, L. Comparison of collagen and gelatin extracted from the skins of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). Food Biosci. 2016, 13, 41–48. [Google Scholar] [CrossRef]
- Karimi, A.; Navidbakhsh, M.; Beigzadeh, B. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge. Tissue Cell 2014, 46, 97–102. [Google Scholar] [CrossRef]
- Stampella, A.; Papi, A.; Rizzitelli, G. Synthesis and characterization of a novel poly(vinyl alcohol) 3D platform for the evaluation of hepatocytes response to drug administration. J. Mater. Chem. B 2013, 2, 1–37. [Google Scholar] [CrossRef]
- Majhy, B.; Priyadarshini, P.; Sen, A.K. Effect of surface energy and roughness on cell adhesion and growth–facile surface modification for enhanced cell culture. RSC Adv. 2021, 11, 15467–15476. [Google Scholar] [CrossRef]
- Moscato, S.; Ronca, F.; Campani, D.; Danti, S. Poly(vinyl alcohol)/gelatin hydrogels cultured with HepG2 Cells as a 3D model of hepatocellular carcinoma: A morphological study. J. Funct. Biomater. 2015, 6, 16–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
To (a), °C | Tp (a), °C | Tc (a), °C | |
---|---|---|---|
PVAM-S1 | 45 (b) | 75 (b) | 120 (b) |
PVAM-S2 | 40 (b) | 75 (b) | 120 (b) |
PVAM-S3 | 40 (b) | 56, 65, 115 (b) | 150 (b) |
PVAM-S4 | 40 (b) | 68, 95 (b) | 130 (b) |
Potato starch | 60.8 [36] (58.6 [37]) (66.1 [38]) (c) | 66.6 [36] (63.0 [37]) (72.2 [38]) (c) | 75.7 [36] (72.2 [37]) (79.5 [38]) (c) |
Wheat starch | 56.5 [36] (51.5 [37]) (62.3 [38]) (c) | 61.8 [36] (56.2 [37]) (68.2 [38]) (c) | 70.7 [36] (61.6 [37]) (75.5 [38]) (c) |
Rice starch | 60.4 [36] (59.7 [37]) (c) | 68.3 [36] (67.8, 75.3 [37]) (c) | 79.0 [36] (82.6 [37]) (c) |
Corn starch | 62.9 [36] (c) | 71.2, 80.0 [36] (c) | 81.8 [36] (c) |
Pea starch | 53.5 [37] (c) | 59.8 [37] (c) | 66.9 [37] (c) |
Maize starch | 71.9 [38] (c) | 76.7 [38] (c) | 81.7 [38] (c) |
Tapioca starch | 63.1 [38] (c) | 69.9 [38] (c) | 85.9 [38] (c) |
Cassava starch | 55.8 [38] (c) | 65.1 [38] (c) | 76.4 [38] (c) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-C. Design and Characterization of a Bioinspired Polyvinyl Alcohol Matrix with Structural Foam-Wall Microarchitectures for Potential Tissue Engineering Applications. Polymers 2022, 14, 1585. https://doi.org/10.3390/polym14081585
Huang C-C. Design and Characterization of a Bioinspired Polyvinyl Alcohol Matrix with Structural Foam-Wall Microarchitectures for Potential Tissue Engineering Applications. Polymers. 2022; 14(8):1585. https://doi.org/10.3390/polym14081585
Chicago/Turabian StyleHuang, Ching-Cheng. 2022. "Design and Characterization of a Bioinspired Polyvinyl Alcohol Matrix with Structural Foam-Wall Microarchitectures for Potential Tissue Engineering Applications" Polymers 14, no. 8: 1585. https://doi.org/10.3390/polym14081585
APA StyleHuang, C. -C. (2022). Design and Characterization of a Bioinspired Polyvinyl Alcohol Matrix with Structural Foam-Wall Microarchitectures for Potential Tissue Engineering Applications. Polymers, 14(8), 1585. https://doi.org/10.3390/polym14081585