Improving Electromagnetic Interference Shielding While Retaining Mechanical Properties of Carbon Fiber-Based Composites by Introducing Carbon Nanofiber Sheet into Laminate Structure
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Preparation of Carbon Nanofiber Sheets
2.3. Preparation of Composites
2.4. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kubík, Z.; Skála, J. Shielding effectiveness simulation of small perforated shielding enclosures using FEM. Energies 2016, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Slepyan, G.Y.; Boag, A.; Mordachev, V.; Sinkevich, E.; Maksimenko, S.; Kuzhir, P.; Miano, G.; Portnoi, M.E.; Maffucci, A. Nanoscale electromagnetic compatibility: Quantum coupling and matching in nanocircuits. IEEE Trans. Electromagn. Compat. 2015, 57, 1645–1654. [Google Scholar] [CrossRef] [Green Version]
- Jagadeesh Chandra, R.B.; Shivamurthy, B.; Kulkarni, S.D.; Kumar, M.S. Hybrid polymer composites for EMI shielding application—A review. Mater. Res. Express 2019, 6, 082008. [Google Scholar] [CrossRef]
- Yao, Y.; Jin, S.; Zou, H.; Li, L.; Ma, X.; Lv, G.; Gao, F.; Lv, X.; Shu, Q. Polymer-based lightweight materials for electromagnetic interference shielding: A review. J. Mater. Sci. 2021, 56, 6549–6580. [Google Scholar] [CrossRef]
- Liang, C.; Gu, Z.; Zhang, Y.; Ma, Z.; Qiu, H.; Gu, J. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181. [Google Scholar] [CrossRef] [PubMed]
- Los, P.; Lukomska, A.; Jeziorska, R. Metal-polymer composites for electromagnetic interference shielding applications. Polimery 2016, 61, 663–669. [Google Scholar] [CrossRef]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319–373. [Google Scholar] [CrossRef]
- Hong, J.; Xu, P.; Xia, H.; Xu, Z.; Ni, Q.Q. Electromagnetic interference shielding anisotropy enhanced by CFRP laminated structures. Compos. Sci. Technol. 2021, 203, 108616. [Google Scholar] [CrossRef]
- Vaid, K.; Rathore, D.; Dwivedi, U.K. Electromagnetic interference of nickel ferrite and copper ferrite filled low-density polyethylene composite. J. Compos. Mater. 2020, 54, 4799–4806. [Google Scholar] [CrossRef]
- Bagwell, R.M.; McManaman, J.M.; Wetherhold, R.C. Short shaped copper fibers in an epoxy matrix: Their role in a multifunctional composite. Compos. Sci. Technol. 2006, 66, 522–530. [Google Scholar] [CrossRef]
- Arjmand, M.; Chizari, K.; Krause, B.; Pötschke, P.; Sundararaj, U. Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon 2016, 98, 358–372. [Google Scholar] [CrossRef]
- Munalli, D.; Dimitrakis, G.; Chronopoulos, D.; Greedy, S.; Long, A. Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Compos. Part B Eng. 2019, 173, 106906. [Google Scholar] [CrossRef]
- Di Sante, R. Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications. Sensors 2015, 15, 18666–18713. [Google Scholar] [CrossRef]
- Zhu, S.; Shi, R.; Qu, M.; Zhou, J.; Ye, C.; Zhang, L.; Cao, H.; Ge, D.; Chen, Q. Simultaneously improved mechanical and electromagnetic interference shielding properties of carbon fiber fabrics/epoxy composites via interface engineering. Compos. Sci. Technol. 2021, 207, 108696. [Google Scholar] [CrossRef]
- Hu, T.; Wang, J.; Wang, J.; Chen, R. Electromagnetic interference shielding properties of carbonyl iron powder-carbon fiber felt/epoxy resin composites with different layer angle. Mater. Lett. 2015, 142, 242–245. [Google Scholar] [CrossRef]
- Kim, K.W.; Han, W.; Kim, B.S.; Kim, B.J.; An, K.H. A study on EMI shielding enhancement behaviors of Ni-plated CFs-reinforced polymer matrix composites by post heat treatment. Appl. Surf. Sci. 2017, 415, 55–60. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, W.; Zhao, Q.; Fu, Y.Q. Electroless carbon fibers: A new route for improving mechanical property and wettability of composites. Surf. Coat. Technol. 2019, 358, 409–415. [Google Scholar] [CrossRef]
- Wu, S.; Han, X.; Xia, L.; Xiao, B.; Hou, Y.; Zhang, C.; Shi, B.; Huang, X.; Wen, G. The evolution of carbon fibers with Fe3+ doping and effects on the mechanical properties of Cf/BAS composites. Compos. Part B Eng. 2019, 163, 447–454. [Google Scholar] [CrossRef]
- Xu, W.; Xin, B.; Yang, X. Carbonization of electrospun polyacrylonitrile (PAN)/cellulose nanofibril (CNF) hybrid membranes and its mechanism. Cellulose 2020, 27, 3789–3804. [Google Scholar] [CrossRef]
- Hou, H.; Ge, J.J.; Zeng, J.; Li, Q.; Reneker, D.H.; Greiner, A.; Cheng, S.Z.D. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mater. 2005, 17, 967–973. [Google Scholar] [CrossRef]
- Qanati, M.V.; Rasooli, A.; Rezvani, M. Main structural and mechanical properties of electrospun PAN-based carbon nanofibers as a function of carbonization maximum temperature. Polym. Bull. 2021, 79, 331–355. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, L.; Yang, F.; Geng, L. The synthesis of polyacrylonitrile/carbon nanotube microspheres by aqueous deposition polymerization under ultrasonication. Carbon 2010, 48, 688–695. [Google Scholar] [CrossRef]
- Ali, A.B.; Slawig, D.; Schlosser, A.; Koch, J.; Bigall, N.C.; Renz, F.; Tegenkamp, C.; Sindelar, R. Polyacrylonitrile (PAN) based electrospun carbon nanofibers (ECNFs): Probing the synergistic effects of creep assisted stabilization and CNTs addition on graphitization and low dimensional electrical transport. Carbon 2021, 172, 283–295. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009, 47, 1738–1746. [Google Scholar] [CrossRef]
- Bi, S.; Zhang, L.; Mu, C.; Lee, H.Y.; Cheah, J.W.; Chua, E.K.; See, K.Y.; Liu, M.; Hu, X. A comparative study on electromagnetic interference shielding behaviors of chemically reduced and thermally reduced graphene aerogels. J. Colloid Interface Sci. 2017, 492, 112–118. [Google Scholar] [CrossRef]
- Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 2005, 5, 2131–2134. [Google Scholar] [CrossRef]
- Peng, M.; Qin, F. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 2021, 130, 225108. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, M.; Bi, S.; Yang, L.; Roy, S.; Tang, X.Z.; Mu, C.; Hu, X. Polydopamine decoration on 3D graphene foam and its electromagnetic interference shielding properties. J. Colloid Interface Sci. 2017, 493, 327–333. [Google Scholar] [CrossRef]
- Umashankar, M.; Renukappa, N.M.; Shivakumar, K.; Rajan, J.S. Electromagnetic shielding effectiveness of Nylon-66 nanofiber interleaved carbon epoxy composites. IEEE Trans. Electromagn. Compat. 2019, 61, 1025–1032. [Google Scholar] [CrossRef]
- He, M.; Xu, P.; Zhang, Y.; Liu, K.; Yang, X. Phthalocyanine nanowires@GO/carbon fiber composites with enhanced interfacial properties and electromagnetic interference shielding performance. Chem. Eng. J. 2020, 388, 124255. [Google Scholar] [CrossRef]
- Rohini, R.; Verma, K.; Bose, S. Interfacial architecture constructed using functionalized MWNT resulting in enhanced EMI shielding in epoxy/carbon fiber composites. ACS Omega 2018, 3, 3974–3982. [Google Scholar] [CrossRef]
- Qiu, B.; Zhang, X.; Xia, S.; Sun, T.; Ling, Y.; Zhou, S.; Guang, H.; Chen, Y.; Xu, Z.; Liang, M.; et al. Magnetic graphene oxide/carbon fiber composites with improved interfacial properties and electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106811. [Google Scholar] [CrossRef]
Sample | Functional Fillers (Content) | Thickness (mm) | EMI SE (dB) | ILSS (MPa) | Ref. |
---|---|---|---|---|---|
CF/Epoxy | Nylon-66 nanofiber (0.25 wt%) | 4.4 | 62.7 | / | [29] |
CF/Epoxy | Carbonyl iron powders (/) | 4.0 | 53.9 | / | [15] |
CF/Epoxy | Ni-PDA coating (15.4 wt%) | 1.0 | 31 | 61.2 | [14] |
CF/Epoxy | TAPc NWs@GO (0.5 wt%) | 2.0 | 26 | / | [30] |
CF/Epoxy | B-MWNTs (1.0 wt%) | 0.5 | 65 | / | [31] |
CF/Epoxy | Fe3O4@GO (/) | / | 46.3 | 70.9 | [32] |
CF/BMI | CNFs (0.37 wt%) | 2.2 | 23.9 | 88.3 | Our work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Zhuang, Y.; Li, C.; Shen, X.; Zhang, L. Improving Electromagnetic Interference Shielding While Retaining Mechanical Properties of Carbon Fiber-Based Composites by Introducing Carbon Nanofiber Sheet into Laminate Structure. Polymers 2022, 14, 1658. https://doi.org/10.3390/polym14091658
Ma Y, Zhuang Y, Li C, Shen X, Zhang L. Improving Electromagnetic Interference Shielding While Retaining Mechanical Properties of Carbon Fiber-Based Composites by Introducing Carbon Nanofiber Sheet into Laminate Structure. Polymers. 2022; 14(9):1658. https://doi.org/10.3390/polym14091658
Chicago/Turabian StyleMa, Yingjian, Yangpeng Zhuang, Chunwei Li, Xing Shen, and Liying Zhang. 2022. "Improving Electromagnetic Interference Shielding While Retaining Mechanical Properties of Carbon Fiber-Based Composites by Introducing Carbon Nanofiber Sheet into Laminate Structure" Polymers 14, no. 9: 1658. https://doi.org/10.3390/polym14091658
APA StyleMa, Y., Zhuang, Y., Li, C., Shen, X., & Zhang, L. (2022). Improving Electromagnetic Interference Shielding While Retaining Mechanical Properties of Carbon Fiber-Based Composites by Introducing Carbon Nanofiber Sheet into Laminate Structure. Polymers, 14(9), 1658. https://doi.org/10.3390/polym14091658