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Abstract: Artificial neural network (ANN) is a representative technique for identifying relationships
that contain complex nonlinearities. However, few studies have analyzed the ANN’s ability to
represent nonlinear or linear relationships between input and output parameters in injection molding.
The melt temperature, mold temperature, injection speed, packing pressure, packing time, and
cooling time were chosen as input parameters, and the mass, diameter, and height of the injection
molded product as output parameters to construct an ANN model and its prediction performance
was compared with those of linear regression and second-order polynomial regression. Following the
preliminary experiment results, the learning data sets were divided into two groups, i.e., one showed
linear relation between the mass of the final product and the range of packing time (linear relation
group), and the other showed clear nonlinear relation (nonlinear relation group). The predicted
results of ANN were relatively better than those of linear regression and second-order polynomial for
both linear and nonlinear relation groups in our specific data sets of the present study.

Keywords: injection molding; artificial neural network (ANN); quality prediction; linear regression;
polynomial regression; nonlinearity

1. Introduction

Injection molding is a representative plastic molding technique that can rapidly pro-
duce products with complex shapes, which require precise dimensions, in large batches.
This technique is widely used in various fields, ranging from household goods to the
automotive industry or electronic and electrical industries [1,2]. It is the process of molding
a product by injecting a plastic resin melted at a high temperature into a space with a
specific shape within a mold at high speed and pressure. Thus, the rheological behavior
and state of the material during molding are affected by input process conditions, i.e.,
the melt and mold temperatures, injection speed, packing pressure, and packing time.
Those five variables ultimately affect the final product quality, i.e., mass or dimensions of
the final product. The fabrication of a product with the desired quality requires specific
combinations of input process conditions. If the input process conditions are unsuitable,
defects such as short shots or flash may occur. However, because the plastics used in the
injection molding process have highly complex thermo-viscoelastic behavior, it is difficult
to realize and maintain the desired quality [3]. In production sites where the injection
molding process is applied, a trial-and-error approach has been frequently used to explore
process conditions through references or guidebooks. It requires significant time and cost,
as well as involving high uncertainty because it depends heavily on the experience of
molding workers. To resolve these issues, the computer aided engineering (CAE) technique
has been applied as a very useful pretest tool that can model the relationship between
injection molding parameters and final quality and optimize the process [4–6]. However,
the injection molding simulation analysis utilizing the CAE consumes significant time
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when estimating the final dimensions, in addition to the many assumptions concerning
the material properties [3]. Furthermore, despite the increased accuracy of recent CAE
analysis, it is well known that there have been differences between the predicted and actual
values of output quality due to the inherent nonlinear and viscoelastic characteristics of
plastic resins.

Thus, there has been a consistent need for a new and improved method for optimally
manufacturing injection molded products with a targeted output, such as mass or specific
lengths. In response to this demand, there has recently been an increasing amount of
research applying artificial neural network (ANN) technology to model and optimize the
relationship between input variables, such as melt and mold temperatures, and output
variables, such as mass or specific length in the injection molding process [7–16]. The
ANN, currently the most promising language in the artificial intelligence (AI) field, is a
well-known and representative technique exhibiting powerful and practical performance
in identifying relationships that contain complex nonlinearities [3]. Ozcelik et al. [7]
constructed an ANN with a multi-input single-output (MISO) structure, in which five
multi-input parameters, i.e., melt temperature, mold temperature, packing pressure and
time, and cooling time, were set to perform an injection molding experiment. The warpage
of a molded product was measured at a specific location, which was chosen as the targeted
output (single output). They conducted and demonstrated the usefulness of the MISO
structure to predict the molding conditions for minimizing the amount of warpage at
specific locations. Yin et al. [8] set the same five input parameters and obtained the warpage
information of the automobile glove compartment cap through CAE results data rather
than actual experiments. Similar to Ozcelik et al. [7], they constructed an ANN by applying
the MISO structure and verified whether the amount of warpage was the minimum through
actual experimentation by predicting the process conditions that minimize warpage. Yang
et al. [9] set 10 process conditions as input parameters and built an ANN structure that
predicts the mass of the injection molded product as an output parameter with MISO. They
also conducted a study to determine the optimal set of process conditions for molding a
product with a targeted mass. Their prediction showed good results while the relationships
between input and output parameters were almost linear. Lee et al. [10] applied shape
information such as volume and area for multiple molds in addition to the usual six process
conditions as input parameters to predict the mass of a product for an arbitrary mold. The
ANN was built by using experimental data and CAE analysis data. Based on the ANN
model, they obtained good results by building a system for deriving the combination of
input parameters that can be applied to molds of arbitrary shapes. Gim et al. [11] measured
the cavity pressure and time using sensors. Then, five specific points, i.e., start point of
filling stage, switchover point, maximum point of cavity pressure, packing endpoint, and
cooling endpoint, were selected to extract pressure and time values and used as input
parameters. ANN structure that predicts the mass of the injection molded product (spiral)
as an output parameter with MISO. In addition, they conducted research on optimizing the
molding window through sensitive analysis and obtained good results. Recently, as in the
studies of Abdull et al. [12] and Heinisch et al. [13], research on multi-input multi-output
(MIMO) structured ANNs is being actively performed to predict multiple target qualities
from multiple process conditions. Table 1 lists studies in which ANNs are applied to the
injection molding process.
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Table 1. Previous research on ANNs applied to the injection molding process [7–17].

Author Product Input
Parameters

Output
Parameters

The Number
of Hidden

Layers

The Number of
Neurons per

Hidden Layers

Ozcelik, B et al.
[7]

Thin shell
part

(CAE)

5
(Mold Temp., Melt Temp.,

Packing pressure, Packing time,
Cooling time)

1
(Warpage) 2 hidden layers 9 (1st)–9 (2nd)

Yin, F et al.
[8]

Automobile
glove

component
(CAE)

5
(Mold Temp., Melt Temp.,

Packing pressure, Packing time,
Cooling time)

1
(Warpage) 2 hidden layers 20 (1st)–20 (2nd)

Yang, D. C. et al.
[9]

Cup
(experiment)

10
(Melt Temp., Mold Temp.,

Injection speed, V/P switchover
pressure, Packing pressure,

Packing time, Cooling time, Back
pressure, Plastification speed,

Suck back)

1
(Mass) 2 hidden layers 43 (1st)–40 (2nd)

Lee, C.H et al.
[10]

36 different
products

(CAE,
experiment)

9
(Overall volume, Cavity volume,

Overall surface area, Cavity
surface area, Filling time, Melt
Temp., Mold Temp., Packing

pressure, Packing time)

1
(Weight) 2 hidden layers 28 (1st)–28 (2nd)

Gim, J. et al.
[11]

Spiral
(experiment)

10
(Time and pressure value from

sensor)

1
(Part weight) 1 hidden layer 8

Abdul, R et al.
[12]

Tensile
specimens

(experiment)

3
(Injection speed, Holding time,

Cooling time)

2
(Length

shrinkage,
Width

shrinkage)

1 hidden layer 4 (1st)

Heinisch, J et al.
[13]

Plate
(CAE)

6
(Mold Temp., Melt Temp.,

Injection time, Packing pressure,
Packing time, Cooling time)

3
(Weight, length,

width)
1 hidden layer 5 (1st)

Ke, K. C. et al.
[14]

IC tray
(experiment)

1~11
(Combinations of 11 pressure

sensor signal)

3 points of
width 1 hidden layer 1~33 (1st)

Huang, Y. M. et al.
[15]

Circle plate
(CAE)

5
(Injection speed, Packing time,

Mold Temp., Melt Temp.)

3
(Injection
pressure,

Cooling time, Z
shrinkage)

2 hidden layers 7 (1st)–3 (2nd)

5
(Injection
pressure,

Cooling time,
X, Y, Z

shrinkage)

2 hidden layers 11 (1st)–7 (2nd)

Moayyedian, M.
et al.
[16]

Circle plate
(CAE)

4
(Filing time, Cooling time,

Packing time, Melt temperature)

3
(Short shot,

Shrinkage rate,
Warpage)

Not mentioned Not mentioned

Yang, D. C. et al.
[17]

LEGO
(experiment)

8
(Melt Temp., Mold Temp.,

Injection speed, Packing pressure,
Packing time, Cooling time, Back

pressure, Screw speed)

5
(Mass, Pressure

at the end of
fill, X, Y, Z

Length)

1 hidden layer 11 (1st)
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In Table 1, previous studies used various shapes ranging from simple to complex,
such as automobile glove components or IC trays. It can be seen that the injection molding
process shows good results by using a simple ANN model, even with a complex shape
or data structure. However, the linear range was applied in the relationship between
parameters on a case-by-case basis, and this may suggest the possibility that limited results
were obtained. In addition, it can be confirmed that most of the previous injection molding
studies applied by ANNs are relatively simple structures, including one or two hidden
layers or a small number of neurons. Concerning the nonlinearities, the performance
of the ANN model is closely related to the complexity of the model [18]. In general, as
the complexity increases, the number of hidden layers and neurons increases. The more
nonlinear and complex the relationship between input and output parameters expressed in
the ANN is, the greater the complexity required for the ANN model, and the problem may
not be solved with a small number of hidden layers and neurons. Thus, when the number
of hidden layers or neurons of the constructed ANN model is small, it can be considered a
simple physical system with relatively strong linearity in the relationship between input
and output parameters. Gim et al. [11], Abdul et al. [12], Heinisch et al. [13], Ke et al. [14],
and Yang et al. [17] used an ANN model with one hidden layer for analyzing their specific
data, while Ozcelik et al. [7], Yin et al. [8], Yang et al. [9], Lee et al. [10] and Huang et al. [15]
used a model with two hidden layers. This means that the relationship between input
and output parameters in the injection molding process can exhibit strong linearity. It
can be possible to derive better results through other regression methods such as linear or
polynomial. Therefore, to apply artificial neural networks to the injection molding process,
it is necessary to check and exclude these possibilities. However, in previous studies on
injection molding, confirmation and understanding of these problems were insufficient.
In this respect, there have been studies comparing the performance of ANN with other
regression analyses in the injection molding process. Heinisch et al. [13] set different
methods for generating injection molding data groups and built ANN and Polynomial
models to compare performance. After comparing the ANN and polynomial models,
Heinisch et al. [13] concluded that they could not generally provide a guide regarding
which method is better. These results are judged as the result of failing to represent the
characteristics of each model by comparing the ANN and regression models only in the
range where the relationship between parameters is linear.

Thus, preliminary experiments were performed to distinguish the data sets into linear
and nonlinear groups. The range of packing time was chosen as an input parameter to
determine the nonlinearity with the mass of the final product, a representative output
parameter in preliminary experiments. In the data set of linear relation groups, the range
of packing time was selected as 3.0~18.0 s, and the range of packing time was chosen as
3.0~30.0 s, including the packing time over 18.0 s for the data set of nonlinear relation
group in the present study. Finally, in ANN modeling, linear and polynomial regressions
were used for both linear and nonlinear groups to evaluate their respective accuracies and
describe the strengths and weaknesses of each model.

2. Experiment
2.1. Material and Molding Equipment

In the present study, children’s tableware was selected as a target product, and a series
of experiments were performed to obtain injection molding data. The target product was
a bowl shape with a nominal diameter of 99.90 mm and a height of 50.80 mm, as shown
in Figure 1a, and a two-stage mold with one cavity was utilized, as shown in Figure 1b.
The hot runner system was applied to the mold, which is a direct system allowing the
hot runner nozzle to be in contact with the center of the product. Polypropylene (PP) of
LUPOL GP1007F (LG chemical) was used as the resin for product molding. The physical
properties of LUPOL GP1007F described by the manufacturer are shown in Table 2. The
150-ton injection molding machine (LGEII-150, LSMtron) was used for the injection molding
experiment. Table 3 shows the specifications of this injection molding machine.
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Figure 1. Images of (a) the rice bowl and (b) the mold.

Table 2. General properties of the polypropylene (PP) used in this study (LUPOL GP1007F, LG
Chemical Co., Ltd.).

Properties Standard Condition Unit Value

Physical
Specific gravity ASTM D792 - - 0.94

Melt flow rate ASTM D1238 230 ◦C,
2.16 kg g/10 min 13.0

Mechanical

Tensile strength
(3.2 mm) ASTM D638 50 mm/min kgf/cm2 270

Flexural strength
(6.4 mm) ASTM D790 10 mm/min kgf/cm2 360

Thermal Heat deflection
Temp. (6.4 mm) ASTM D648 4.6 kg ◦C 125

Table 3. Specifications of the injection molding machine (LGEII-150, LSMtron).

Item Value Unit

Clamping force 150 ton
Screw diameter 32.0 mm

Max. injection speed 1000 mm/s
Max. injection pressure 3500 bar

Max. injection stroke 120 mm

2.2. Experimental Conditions

Based on the recommended conditions provided by the resin manufacturer and the
database of Moldflow Insight 2021 (Autodesk), the melt temperature and mold temperature
ranges were set in three levels for the injection molding experiment, as shown in Table 4.
Furthermore, a series of preliminary experiments were performed to determine the process
window of packing pressure and the range of packing time through which a normal product
can be molded for the mold and product used in this study, and these were also applied
in three levels. From the results of preliminary experiments, the performance of the ANN
based on two groups of data sets was evaluated in the present study. The first group of data
sets showed a strong linear relationship with an R2 score higher than 0.99 between the range
of packing time (input parameter) and the mass of the molded product (output parameter).
The second group of data sets showed a representative nonlinear relationship between
them, as shown in Figure 2. The packing time of 6.0 s~18.0 s was applied to the data set
of the linear relation group, as shown in Table 3, while the packing time of 3.0 s~39.0 s,
including over 18.0 s, was applied to the data set of nonlinear relation group which will be
shown in Table 5 later. The injection speed and cooling time were derived through CAE
analysis using Moldflow Insight 2021, and the ranges of those process conditions were set
at three levels, as are other conditions.
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Table 4. Process conditions and levels for the experiment.

Conditions Level 1 Level 2 Level 3

Melt temperature (◦C) 200 220 240
Mold temperature (◦C) 40 50 60
Injection speed (mm/s) 40 70 100
Packing pressure (bar) 150 200 250

Packing time (s) 6.0 12.0 18.0
Cooling time (s) 38 48 58
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Figure 2. Results of the preliminary experiment to show linear and nonlinear relation between
packing time and mass.

Table 5. Injection molding conditions of linear relation group.

Exp.
No.

Melt
Temperature

(◦C)

Mold
Temperature

(◦C)

Injection
Speed
(mm/s)

Packing
Pressure

(bar)

Packing
Time

(s)

Cooling
Time

(s)
Note

1 200 40 40.0 150 6.0 38 L27
2 200 40 40.0 150 12.0 48 L27
3 200 40 40.0 150 18.0 58 L27
4 200 50 70.0 200 6.0 38 L27
5 200 50 70.0 200 12.0 48 L27
6 200 50 70.0 200 18.0 58 L27
7 200 60 100.0 250 6.0 38 L27
8 200 60 100.0 250 12.0 48 L27
9 200 60 100.0 250 18.0 58 L27
10 220 40 70.0 250 6.0 48 L27
11 220 40 70.0 250 12.0 58 L27
12 220 40 70.0 250 18.0 38 L27
13 220 50 100.0 150 6.0 48 L27
14 220 50 100.0 150 12.0 58 L27
15 220 50 100.0 150 18.0 38 L27
16 220 60 40.0 200 6.0 48 L27
17 220 60 40.0 200 12.0 58 L27
18 220 60 40.0 200 18.0 38 L27
19 240 40 100.0 200 6.0 58 L27
20 240 40 100.0 200 12.0 38 L27
21 240 40 100.0 200 18.0 48 L27
22 240 40 40.0 250 6.0 58 L27
23 240 50 40.0 250 12.0 38 L27
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Table 5. Cont.

Exp.
No.

Melt
Temperature

(◦C)

Mold
Temperature

(◦C)

Injection
Speed
(mm/s)

Packing
Pressure

(bar)

Packing
Time

(s)

Cooling
Time

(s)
Note

24 240 50 40.0 250 18.0 48 L27
25 240 60 70.0 150 6.0 58 L27
26 240 60 70.0 150 12.0 38 L27
27 240 60 70.0 150 18.0 48 L27
28 214 55 82.7 204 16.3 52 Random
29 204 44 43.4 202 13.9 41 Random
30 203 46 93.6 205 13.7 45 Random
31 202 54 83.4 213 6.6 48 Random
32 206 43 61.6 221 6.9 39 Random
33 212 44 53.3 240 17.0 52 Random
34 212 51 90.8 224 6.1 48 Random
35 200 52 50.0 215 17.6 39 Random
36 229 51 46.2 153 11.7 45 Random
37 228 49 53.2 217 12.3 58 Random
38 222 51 63.7 167 8.7 51 Random
39 219 50 41.4 156 16.3 52 Random
40 228 46 96.5 154 16.7 57 Random
41 228 46 62.5 191 10.9 46 Random
42 219 42 98.4 237 17.9 41 Random
43 220 43 55.8 241 14.8 44 Random
44 233 42 50.8 198 13.5 55 Random
45 238 53 41.6 221 17.2 40 Random
46 234 48 68.2 222 8.8 41 Random
47 233 44 84.9 171 6.7 55 Random
48 234 43 56.9 176 11.1 48 Random
49 239 49 41.2 234 8.6 52 Random
50 240 49 76.1 241 6.4 51 Random

Table 5 lists 50 process conditions of above mentioned “linear relation group”. Based
on the levels presented in Table 3, 27 combinations (experiment #1~#27) were created by
the orthogonal array of L27, and 23 combinations (experiment #28~#50) were randomly
generated within the corresponding range.

Table 6 shows the process conditions; the packing time of 3.0 s ~ 39.0 s was taken as
the preliminary experiments to find the nonlinear characteristics between input and output
parameters. For the conditions in Table 6, three different melt temperatures were applied for
each data set. The melt temperature of 200 ◦C was applied to the experiments of #51~#63,
where only the packing time varied from 3.0 s to 39.0 s with an interval of 3.0 s, while the
other process conditions were kept constant. For the other two sets of experiments, the
melt temperature of 220 ◦C and 240 ◦C were applied to experiments #64~#76 and #77~#89,
respectively. The clear nonlinear relationship shown in Figure 2 is the results of these 3 sets
of experiments shown in Table 6. The mass and the other two output parameters, i.e., the
diameter and height of the final product, were measured and tested for nonlinear analysis
of ANN in the present study.
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Table 6. Injection molding conditions of nonlinear relation group.

Exp. No.
Melt

Temperature
(◦C)

Mold
Temperature

(◦C)

Injection
Speed
(mm/s)

Packing
Pressure

(bar)

Packing
Time

(s)

Cooling
Time

(s)
Note

51–63 200 50 70 200 3.0–39.0
(interval: 3) 38 Non-linear

case

64–76 220 50 70 200 3.0–39.0
(interval: 3) 38 Non-linear

case

77–89 240 50 70 200 3.0–39.0
(interval: 3) 38 Non-linear

case

2.3. Measurement of Product Qualities

To build an ANN prediction model, the mass, nominal diameter, and height of the
injection molded product shown in Figure 1 were measured and considered as output
parameters for each injection molding condition shown in Tables 4 and 5. The mass of the
injection molded product was measured by a CUX420H (CAS), a digital weighing scale, and
the diameter of the product was determined by the average value of measurements at a total
of six points shown in Figure 3a using the Datastar200 (RAM OPTICAL INSTRUMENT), a
non-contact optical measuring instrument. The height of the product was determined by
the average value of measurements at four points using the Mitutoyo Digimatic Height
Gage, as shown in Figure 3b.
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3. Building the Model to Predict the Product Qualities
3.1. Artificial Neural Network

The ANN model mimics the process of the human brain recognizing and solving
problems. As in the neural network constituting the human brain, this model has a
computational processing structure in which neurons are arranged in each computation
layer of the ANN. Figure 4 shows how this ANN structure is connected between input
and output parameters. The ANN is an algorithm in which the structure is largely divided
into input, hidden, and output layers, and the corresponding neurons are placed on each
layer. In addition, a different number of neurons arranged on each layer can be set for each
layer [19,20].
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Figure 4. Schematic of the structure of the artificial neural network (ANN).

The back propagation algorithm is the most common learning method for training
ANNs because the calculation and construction of this model are simple. The term “back
propagation” refers to errors propagating in the opposite direction of the ANN’s progres-
sion. Errors are defined as the difference between output values of ANN and the actual
values in the data set. The errors are used to calculate the changes in previous neurons in
a backward direction. Thus, the back propagation algorithm requires input and output
values of the training data, a method called supervised learning.

In the present study, an ANN with a MIMO structure was utilized to establish the
relationship between multiple input parameters and multiple output parameters, as shown
in Figure 5. Furthermore, the multi-task learning technique was applied to the typical
MIMO structure shown in Figure 4 by assigning the task-specific layer for each output
parameter [21,22]. Moreover, by placing the task-specific layer, which consists of one or
more layers, for each output parameter, the root mean square error (RMSE) for each output
parameter was individually calculated to minimize the summation of the RMSEs of all
output parameters. The conventional MIMO method is known to be difficult to reflect the
characteristics of each parameter accurately because the output parameters are related to
each other, and all characteristics are learned dependently [22], so this study strived to
resolve this issue by using the multi-task learning technique, as described well in other
studies [23,24].
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3.2. The Search for Optimal Hyper-Parameters

In training a machine learning model using an ANN, parameters that the user must
set are called hyper-parameters. Because the initial setting of these parameters determines
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the efficiency and performance of the ANN, it is important to set the appropriate hyper-
parameters according to the purpose of the ANN. Thus, the hyper-band technique [25]
was used to determine the range of hyper-parameters, as shown in Table 7. This method is
widely used because it requires significantly less time for optimization than conventional
techniques, such as the grid search method, random search method, and Bayesian search
method. It further showcases the excellent performance of the derived results.

Table 7. Ranges of hyper-parameters obtained by hyper-band technique [25].

Hyper-Parameters Range Note

Seed number 0–50 Step size was 1

Batch size 16, 32, 64, . . .
Increased in multiples of 2

until it could cover the
number of learning data

Optimizer Adams [26] Fixed
Learning rate 0.0001–0.01 [26] Step size was 0.0001

Beta 1 0.1–1.0 [26] Step size was 0.1
Bata 2 0.9, 0.99, 0.999, 0.999 [26] -

Number of hidden layers 1–5 (shared layers)
1 (task-specific layer)

Step size was 1
(task-specific layer was fixed

as one layer)
Number of neurons 3–18 Step size was 1

Initializer He normal (hidden layer)
Xavier normal (output layer) -

Activation function Elu (hidden layer)
Linear (output layer) -

Drop number 0.0–0.4 Step size was 0.1
Coefficient of batch

normalization 0.001, 0.01, 0.1 -

4. Results
4.1. Injection Molding Experiment

All the measurement results concerning the mass, diameter, and height of the final
injection molded product are presented in Table A1 (Appendix A) for the case of the
linear relationship between parameters with a packing time ranging from 6.0 s to 18.0 s.
Table A2 (Appendix A) shows the injection molding experiments, in which the maximum
value of the packing time was extended to 39.0 s among the injection molding conditions.
According to the experimental data shown in Figure 6, when applying the packing time of
3.0~39.0 s, clear nonlinearity can be found in all the results of three output parameters, i.e.,
mass, diameter, and height. In particular, Figure 6a shows clear nonlinearity between the
mass of the final injection molded product and packing time, as shown in the preliminary
experiment in Figure 2. When the melt temperature was 200 ◦C, the linear and nonlinear
sections were divided by the boundary with a packing time of 18.0 s.
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ity (packing time: 3.0~39.0 s): (a) mass, (b) diameter, and (c) height.

Even though the linear relation was well suited to only one of the output parameters,
i.e., the mass of the final product as shown in Figure 2, the packing time of 18.0 s was
taken as a useful criterion. For convenience, the ANN model was constructed, and its
performance was evaluated by dividing the experiments (or data sets) into two groups
depending on the above-mentioned criterion, i.e., the packing time of 18.0 s in the present
study. As shown in Tables A1 and A2, the data groups were divided into a group with a
packing time in the range of 3.0~18.0 s (linear relation group) and a group with an extended
packing time ranging from 3.0 to 39.0 s (nonlinear relation group).

4.2. The Prediction Models Learned by the Linear Relationship Group (Packing Time ≤ 18.0 s)

In Tables A1 and A2, a dataset with a packing time between 3.0 and 18.0 s was selected
to form a linear relation group as mentioned above, and based on this, an ANN model
was constructed. Fifty combinations from Table A1 and 18 combinations from Table A2
were selected to create a “linear relation group” with 68 combinations. Among the selected
combination data, 54 combination datasets were used as training data for the ANN model.
Seven of the remaining combination data (# 28, 33, 38, 43, 48, 55, 77) were used as validation
data sets for the ANN model during training. The other seven combination data were used
as test data to evaluate the prediction performance of the final ANN model. When the
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values of hyper-parameters in Table 8 searched by hyper-band technique were selected, the
minimum RMSE value of output parameters could be obtained for the final ANN structure.

Table 8. Optimized hyper-parameters for the linear relationship group.

Hyper-Parameters Value

Seed number 16
Batch size 16
Optimizer Adams

Learning rate 0.0069
Beta 1 0.6
Beta 2 0.9

Number of hidden layers 3 (shared layers)
1 (specific-task layer)

Number of neurons

17–13–13 (shared layers)
13 (specific-task layers for mass)

9 (specific-task layers for diameter)
8 (specific-task layers for height)

Initializer He normal (hidden layers)
Xavier normal (output layer)

Activation function Elu

Drop number

0.0–0.2–0.2 (shared layers)
0.0 (specific-task layers for mass)

0.3 (specific-task layers for diameter)
0.3 (specific-task layers for height)

Coefficient of batch normalization 0.001 (mass), 0.01 (diameter), 0.001 (height)

The performance of this ANN model was compared to those of a linear regression
and a second-order polynomial regression model that used the same training data set
calculated by the library (scikit-learn) in the Python package. As a final step, the test
data set consisted of experiments #29, 34, 39, 44, 49, 56, and 78 that were applied to the
constructed prediction models, and the experimental and prediction results are compared
and summarized in Table 9. As seen in Table 9, the RMSE values for mass, diameter, and
height of the ANN model were generally lower than those of the linear regression and
second-order polynomial regression. We can conclude that the prediction performance of
the final ANN model obtained for the linear relation group was relatively better than that
of the linear regression and second-order polynomial regression models.

Table 9. Root mean square errors (RMSEs) of normalized test data for prediction models learned by
the linear relation group (packing time was 3.0–18.0 s).

Prediction Model
RMSE

Mass Diameter Height

ANN 1.279 × 10−2 6.283 × 10−2 2.467 × 10−2

Linear regression 1.440 × 10−2 8.834 × 10−2 4.860 × 10−2

Polynomial
regression of degree 2 1.317 × 10−2 1.360 × 10−1 3.362 × 10−2

Figure 7 shows the predicted results of three models obtained from the test data
and experimental results with error bars calculated by applying ISO20457:2018 (Plastics
molded parts—Tolerances and acceptance conditions); the dimensional quality standard
for injection-molded products, as well as the mass quality standard for general PP. The
calculated standard error equivalent to ISO20457:2018 of the injection molded product used
in this study was ±0.009 mm [27] for both diameter and height, and ±0.5% [28] was applied
as the standard error of the mass for PP molded product. According to Figure 7, both
ANN and linear regression satisfied all the quality standards for the mass, diameter, and
height of the present injection molded product. In contrast, in the case of the second-order
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polynomial regression, several combinations of experimental cases (#39, 44) failed to meet
the quality standard for diameter, as shown in Figure 7b.
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To find the relationship between the input and output parameters in a different way,
the predicted results of three models were graphically shown for the data sets in Table A2
as a function of the packing time. Here, the previous test data set (#29, 34, 39, 44, 49, 56,
and 78) was substituted for the data set in the linear range for packing time (#51~56, 64~69,
77~82). Figure 8a–c, which were performed at 200 ◦C, 220 ◦C, and 240 ◦C, respectively,
show the prediction and experimental results of the final mass as a function of the packing
time for the linear range of 3.0~18.0 s and extra range over 18.0 s.
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As seen in Table 10, the RMSE values for the mass of all the three models, i.e., the
ANN model, the linear regression, and second-order polynomial regression, are very
low. Interestingly, the lowest RMSE was found for the case of second-order polynomial
regression. The predicted and experimental data for the mass over 18.0 s are illustrated for
reference. Similar to the results from the test data set given in Table 9, the ANN model has
the minimum and lowest RMSE among those three models for the diameter and height
shown in Table 10. Figures 9 and 10 show the prediction and experimental results for
diameter and height as a function of the packing time. From the results of the data set in
the linear range for packing time (#51~56, 64~69, 77~82), the prediction performance of
the final ANN model was excellent by comparing with that of the linear regression and
second-order polynomial regression models.
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Table 10. Root mean square errors (RMSEs) of normalized Table A2 (packing time was 3.0~18.0 s) for
prediction models learned by the linear relation group (packing time was 3.0~18.0 s).

Prediction Model
RMSE

Mass Diameter Height

ANN 1.871 × 10−2 3.090 × 10−2 3.925 × 10−2

Linear regression 8.240 × 10−2 7.821 × 10−2

Polynomial
regression of degree 2 9.294 × 10−3 7.101 × 10−2 5.218 × 10−2
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4.3. The Prediction Model Learned by the Non-Linear Relationship Group

A total of 89 combination datasets shown in Tables A1 and A2 were selected, and
71 combinations were used as training data for the ANN model. 9 of the remaining
combinations data (# 28, 33, 38, 43, 48, 58, 70, 73 and 88) were used as validation data for
the ANN model during training. The other 9 combination datasets (#29, 34, 39, 44, 49,
59, 71,74, and 89) were used as test data to evaluate the performance of the ANN model.
When the hyper-parameter values in Table 11 searched by the hyper-band technique were
selected, the minimum RMSE value of output parameters could be obtained for the final
ANN structure in the same way as in the linear relation group.

Table 12 compares the RMSE values for the prediction results by applying the test
data that were not used to construct the model. The RMSE values of the ANN model for
all three output parameters were lower than those of the other models. From the results
obtained for this nonlinear relation group, the prediction performance of the final ANN
model was much better than that of the linear regression and second-order polynomial
regression models.
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Table 11. Optimized hyper-parameters for the nonlinear relationship group (packing time was
3.0~39.0 s).

Hyper-Parameters Value

Seed number 35
Batch size 16
Optimizer Adams

Learning rate 0.0073
Beta 1 0.5
Beta 2 0.9

Number of hidden layers 2 (shared layers)
1 (specific-task layer)

Number of neurons

6–5 (shared layers)
4 (specific-task layers for mass)

3 (specific-task layers for diameter)
4 (specific-task layers for height)

Initializer He normal (hidden layers)
Xavier normal (output layer)

Activation function Elu

Drop number

0.0–0.0 (shared layers)
0.2 (specific-task layers for mass)

0.1 (specific-task layers for diameter)
0.0 (specific-task layers for height)

Coefficient of batch normalization 0.001 (mass), 0.01 (diameter), 0.001 (height)

Table 12. Root mean square errors (RMSEs) of normalized test data for prediction models learned by
the nonlinear relation group (packing time was 3.0–39.0 s).

Prediction Model
RMSE

Mass Diameter Height

ANN 1.966 × 10−2 5.453 × 10−2 2.917 × 10−2

Linear regression 8.427 × 10−2 1.283 × 10−1 9.514 × 10−2

Polynomial
regression of degree 2 2.702 × 10−2 9.848 × 10−2 4.436 × 10−2

Figure 11 shows the predicted results of three models obtained from the test data and
experimental results with error bars, as shown in Figure 7 for the linear relation group.
All the predicted values of the ANN satisfied the standard specifications. In contrast, the
predicted values of the linear regression tended to deviate from the quality standard, and
there was a significant deviation or error from the experimental value. The predicted values
of the second-order polynomial regarding the mass, diameter, and height of the injection
molded product tended to be located within the quality standard. In contrast, only two
combination datasets (#39, 44 in Figure 11b) deviated from the quality standard.
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In the analysis of the nonlinear group, the predicted results of three models were
graphically shown for the data sets in Table A2 as a function of the packing time up to
39.0 s. The previous test data set (#29, 34, 39, 44, 49, 59, 71,74, and 89) was substituted
for the data set, including all the packing times (#51~89). Figure 12a–c, performed at
200 ◦C, 220 ◦C, and 240 ◦C, respectively, show the prediction and experimental results
of the final mass as a function of the packing time for the linear range of 3.0~39.0 s. As
seen in Table 13, the RMSE values of the mass for the ANN model of 1.709 × 10−2, and
second-order polynomial regression of 2.105 × 10−2, are low enough to give an excellent
prediction. As can be seen in the figures, the performance of the linear regression model is
very poor and the RMSE value is very high. Similar to the results obtained from the test
data set given in Table 12, the ANN model has the minimum and lowest RMSE among the
three models for the diameter and height shown in Table 13. Figures 13 and 14 show the
prediction and experimental results for diameter and height as a function of the packing
time. From the results of the data set in the nonlinear range for packing time (#51~89) of
3.0 s~39.0 s, the prediction performance of the final ANN model was the best among the
three models. While there is a nonlinear relationship between input and output parameters,
ANN is the best choice from our limited data sets.
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Table 13. Root mean square errors (RMSEs) of normalized Table A2 (packing time was 3.0~39.0 s) for
prediction models learned by the nonlinear group (packing time was 3.0~39.0 s).

Prediction Model
RMSE

Mass Diameter Height

ANN 1.709 × 10−2 2.871 × 10−2 2.578 × 10−2

Linear regression 1.096 × 10−1 1.193 × 10−1 1.084 × 10−1

Polynomial
regression of degree 2 2.105 × 10−2 4.273 × 10−2 5.081 × 10−2
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5. Conclusions

Based on the results of the preliminary experiment, the data sets used in the present
study were divided into two groups. One showed the linear relation between the mass
of the final product and the range of packing time (linear relation group), and the other
showed clear nonlinear relation (nonlinear relation group). For convenience, the linear
relation group was specified to have the packing time less than or equal to 18.0 s. In other
words, the range of the packing time was 3.0 s~18.0 s. The nonlinear relation group includes
the data sets having a packing time up to 39.0 s, i.e., the input range of the packing time
was 3.0 s~18.0 s.

ANN, linear regression, and second-order polynomial regression models were con-
structed for the linear and nonlinear groups, respectively. Furthermore, the performance of
each predictive model and their ability to represent the relationships between parameters
were compared. For the linear relation group, the prediction performance of the ANN
model was relatively better than that of the linear regression and second-order polynomial
regression models. However, all three models showed low RMSE, while the relation be-
tween the mass and the packing time showed high linearity. For the nonlinear relation
group, the predicted results of the ANN model constructed in the present study were much
better than that of the linear regression and second-order polynomial regression models.
The ANN model might be the best method for predicting data concerning the relationship
between input and output parameters, i.e., the range of input parameters including the
nonlinear zone.

From the analysis of our specific data sets in the present study, ANN might be a
better choice than linear or second-order polynomial regression if the data set has the
characteristic of both linear and nonlinear. The results of this study might be a useful
reference for future studies applying the ANN to the injection molding industry.
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Appendix A

Table A1. Product qualities for injection molding conditions with linearity.

No. Mass (g) Diameter
(mm)

Height
(mm) Note No. Mass (g) Diameter

(mm) Height (mm) Note

1 54.05 99.77 50.48 L27 26 54.08 99.85 50.50 Random
2 55.89 99.88 50.72 L27 27 55.29 99.93 50.68 Random
3 56.96 99.88 50.82 L27 28 56.16 99.91 50.78 Random
4 54.33 99.73 50.59 L27 29 56.22 99.92 50.79 Random
5 55.72 99.90 50.73 L27 30 56.05 99.93 50.78 Random
6 57.17 99.95 50.88 L27 31 54.11 99.79 50.51 Random
7 54.13 99.74 50.52 L27 32 54.44 99.83 50.56 Random
8 55.69 99.92 50.77 L27 33 57.07 100.00 50.92 Random
9 57.15 100.00 50.92 L27 34 53.96 99.73 50.49 Random

10 54.24 99.69 50.57 L27 35 57.06 99.93 50.90 Random
11 55.99 99.94 50.82 L27 36 54.68 99.84 50.59 Random
12 57.31 100.02 50.95 L27 37 55.49 99.86 50.74 Random
13 53.22 99.76 50.43 L27 38 54.07 99.79 50.51 Random
14 54.86 99.90 50.61 L27 39 56.02 99.99 50.75 Random
15 55.97 99.91 50.74 L27 40 56.04 99.96 50.78 Random
16 53.75 99.77 50.45 L27 41 54.92 99.89 50.65 Random
17 55.25 99.88 50.67 L27 42 56.93 100.01 50.92 Random
18 56.22 99.89 50.77 L27 43 56.53 100.02 50.85 Random
19 53.38 99.64 50.45 L27 44 55.58 99.96 50.75 Random
20 54.87 99.92 50.67 L27 45 56.12 100.02 50.81 Random
21 56.30 100.02 50.86 L27 46 54.31 99.81 50.56 Random
22 53.89 99.71 50.51 L27 47 53.52 99.79 50.43 Random
23 55.22 99.94 50.73 L27 48 54.73 99.94 50.61 Random
24 56.60 100.05 50.92 L27 49 54.47 99.80 50.61 Random
25 52.64 99.66 50.26 L27 50 53.80 99.78 50.52 Random

Table A2. Product qualities for injection molding conditions with nonlinearity according to packing time.

No. Mass (g) Diameter (mm) Height (mm) No. Mass (g) Diameter (mm) Height (mm)

51 53.46 99.71 50.33 71 57.30 99.99 50.85
52 54.33 99.73 50.59 72 57.32 100.00 50.85
53 55.08 99.80 50.68 73 57.38 100.00 50.86
54 55.74 99.91 50.68 74 57.41 100.00 50.87
55 56.37 99.95 50.76 75 57.44 100.01 50.85
56 56.97 99.97 50.82 76 57.48 100.02 50.87
57 57.27 99.97 50.82 77 52.56 99.61 50.36
58 57.34 99.98 50.83 78 53.46 99.65 50.52
59 57.35 99.98 50.86 79 54.22 99.70 50.67
60 57.38 99.99 50.81 80 54.89 99.77 50.70
61 57.40 100.00 50.79 81 55.51 99.88 50.75
62 57.46 100.00 50.81 82 56.13 99.89 50.74
63 57.46 99.99 50.84 83 56.72 99.95 50.81
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Table A2. Cont.

No. Mass (g) Diameter (mm) Height (mm) No. Mass (g) Diameter (mm) Height (mm)

64 53.03 99.64 50.34 84 57.14 99.95 50.81
65 53.92 99.68 50.59 85 57.31 99.98 50.84
66 54.68 99.76 50.67 86 57.35 99.98 50.86
67 55.45 99.85 50.70 87 57.39 99.99 50.85
68 56.08 99.92 50.74 88 57.42 99.98 50.87
69 56.64 99.96 50.83 89 57.48 99.99 50.85
70 57.16 99.99 50.83
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