Imaging Intracellular Drug/siRNA Co-Delivery by Self-Assembly Cross-Linked Polyethylenimine with Fluorescent Core-Shell Silica Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.2.1. Preparation of Disulfide Cross-Linked PEI (dsPEI)
2.2.2. Synthesis of RuBpy Doped Silica (RS) Cores
2.2.3. Synthesis of Mesoporous Core-Shell Silica Nanoparticles (RS@MS)
2.3. Characterization and Methods
2.4. Tests
2.4.1. Loading, Capping and Release Experiments
2.4.2. Cell Culture and Cytotoxicity Assay
2.4.3. siRNA Adsorption
2.4.4. Western Blot Analysis
2.4.5. In Vitro Cellular Uptake
2.4.6. Hemolysis Assay
3. Results and Discussion
3.1. Construction and Characterization of RS@MS:dsPEI Nanoparticles
3.2. In Vitro Dox Release of RS@MS:dsPEI Nanoparticles
3.3. Cell Cytotoxicity
3.4. siRNA Binding Capacity and Drug/siRNA Co-Delivery In Vitro
3.5. Hemocompatibility of RS@MS(Dox):dsPEI Nanoparticles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, X.-Y.; Song, L.-Q.; Pan, W.; Zhong, H.; Li, N.; Tang, B. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano 2020, 14, 11017–11028. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.-W.; Ding, L.; Yao, H.-L.; Chen, Y.; Shi, J.-L. A metal-organic framework (MOF) fenton nanoagent-enabled nanocatalytic cancer therapy in synergy with autophagy inhibition. Adv. Mater. 2020, 32, 1907152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-R.; Su, S.-S.; Hu, K.-L.; Shao, L.-H.; Deng, X.-W.; Sheng, W.; Wu, Y. Smart micelle@polydopamine core-shell nanoparticles for highly effective chemo-photothermal combination therapy. Nanoscale 2015, 7, 19722–19731. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, F.; Guo, M.-Y.; Qi, W.-X.; Sun, F.-X.; Wang, A.-F.; Guo, Y.-J.; Zhu, G.-S. pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc. 2011, 133, 8778–8781. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-H.; Li, N.; Pan, W.; Yu, Z.-Z.; Yang, L.-M.; Tang, B. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 2123–2129. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-H.; Liu, Y.; Li, P.; Nie, Z.; Li, J.-H. Applications of graphene and its derivatives in intracellular biosensing and bioimaging. Analyst 2016, 141, 4541–4553. [Google Scholar] [CrossRef]
- Wu, H.-C.; Kuo, W.-T. Redox/pH-responsive 2-in-1 chimeric nanoparticles for the Co-delivery of doxorubicin and siRNA. Polymers 2020, 13, 4362. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P.L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 2010, 110, 2620–2640. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Lu, D.-Q.; Liang, H.; Xie, S.-T.; Luo, C.; Hu, M.-M.; Xu, L.-J.; Zhang, X.-B.; Tan, W.-H. Fluorescence resonance energy transfer-based DNA tetrahedron nanotweezer for highly reliable detection of tumor-related mRNA in living cells. ACS Nano 2017, 11, 4060–4066. [Google Scholar] [CrossRef] [Green Version]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763. [Google Scholar] [CrossRef]
- Li, R.; Wei, F.-D.; Wu, X.-Q.; Zhou, P.; Chen, Q.-T.; Cen, Y.; Xu, G.-H.; Cheng, X.; Zhang, A.-X.; Hu, Q. PEI modified orange emissive carbon dots with excitation-independent fluorescence emission for cellular imaging and siRNA delivery. Carbon 2021, 177, 403–411. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Y.; Zhang, C.-Y. Toward Biocompatible Semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669–11717. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Ai, X.-Z.; An, G.-H.; Yang, P.-P.; Zhao, Y.-L. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016, 10, 4410–4420. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef]
- Yang, S.; Chen, D.-Y.; Li, N.-J.; Xu, Q.-F.; Li, H.; Gu, F.; Xie, J.-P.; Lu, J.-M. Hollow Mesoporous silica nanocarriers with multifunctional capping agents for in vivo cancer imaging and therapy. Small 2016, 12, 360–370. [Google Scholar] [CrossRef]
- Caltagirone, C.; Bettoschi, A.; Garau, A.; Montis, R. Silica-based nanoparticles: A versatile tool for the development of efficient imaging agents. Chem. Soc. Rev. 2015, 44, 4645–4671. [Google Scholar] [CrossRef]
- Yuan, P.-Y.; Yang, F.; Liew, S.S.; Yan, J.-C.; Dong, X.; Wang, J.-F.; Du, S.-B.; Mao, X.; Gao, L.-Q.; Yao, S.Q. Intracellular Co-delivery of native antibody and siRNA for combination therapy by using biodegradable silica nanocapsules. Biomaterials 2022, 281, 121376. [Google Scholar] [CrossRef]
- Vandghanooni, S.; Barar, J.; Eskandani, M.; Omidi, Y. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. TrAC-Trends Analyt. Chem. 2020, 123, 115759. [Google Scholar] [CrossRef]
- Zhang, X.-B.; Kong, R.-M.; Tan, Q.-Q.; Qu, F.-L. A label-free fluorescence turn-on assay for glutathione detection by using MnO2 nanosheets assisted aggregation-induced emission-silica nanospheres. Talanta 2017, 169, 1–7. [Google Scholar] [CrossRef]
- Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug Delivery. Angew. Chem. Int. Ed. 2007, 46, 7548–7558. [Google Scholar] [CrossRef]
- Zhang, R.-R.; Li, L.; Feng, J.; Tong, L.-L.; Wang, Q.; Tang, B. Versatile triggered release of multiple molecules from cyclodextrin-modified gold-gated mesoporous silica nanocontainers. ACS Appl. Mater. Interfaces 2014, 6, 9932–9936. [Google Scholar] [CrossRef]
- Tan, Q.-Q.; Zhang, R.-R.; Kong, R.-M.; Kong, W.-S.; Zhao, W.-Z.; Qu, F.-L. Detection of glutathione based on MnO2 nanosheet-gated mesoporous silica nanoparticles and target induced release of glucose measured with a portable glucose meter. Microchim. Acta 2018, 185, 44. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.-X.; Niu, X.-X.; Ma, K.-X.; Huang, P.; Grothe, J.; Kaskel, S.; Zhu, Y.-F. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 2017, 13, 1602225. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, H.-L.; Wang, L.-P. PH-sensitive, polymer functionalized, nonporous silica nanoparticles for quercetin controlled release. Polymers 2019, 11, 2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.-Y.; Zhang, X.-H.; Pan, W.; Liu, B.; Yu, L.-H.; Wang, H.; Li, N.; Tang, B. Ratiometric fluorescent quantification of the size-dependent cellular toxicity of silica nanoparticles. Anal. Chem. 2019, 91, 6088–6096. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Z.; Xie, Y.; Kilchrist, K.V.; Li, J.; Duvall, C.L.; Oupicky, D. Endosomolytic and tumor-penetrating mesoporous silica nanoparticles for siRNA/miRNA combination cancer therapy. ACS Appl. Mater. Interfaces 2020, 12, 4308–4322. [Google Scholar] [CrossRef]
- Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem. Soc. Rev. 2014, 43, 4243–4268. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Duan, J.-L.; Liu, Y.; Kuang, Y.; Duan, J.-L.; Liao, T.; Xu, Z.-Q.; Jiang, B.-B.; Li, C. Multi-stimuli responsive hollow MnO2-based drug delivery system for magnetic resonance imaging and combined chemo-chemodynamic cancer therapy. Acta Biomater. 2021, 126, 445–462. [Google Scholar] [CrossRef]
- Zhang, R.-R.; Wu, C.-L.; Tong, L.-L.; Tang, B.; Xu, Q.-H. Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents. Langmuir 2009, 25, 10153–10158. [Google Scholar] [CrossRef]
- Bagwe, R.P.; Hilliard, L.R.; Tan, W.-H. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357–4362. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.-R.; Li, L.; Tong, L.-L.; Tang, B. Enhanced luminescence of photosensitizes-based mesoporous silica nanocomposites via energy transfer from conjugated polymer. Nanotechnology 2013, 24, 015604. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Q.; Su, J.; Wu, F.; Lu, P.; Yuan, L.-F.; Yuan, W.-E.; Sheng, J.; Jin, T. Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery. Int. J. Nanomedicine 2012, 7, 693–704. [Google Scholar] [PubMed] [Green Version]
- Xia, T.; Kovochich, M.; Liong, M.; Meng, H.; Kabehie, S.; George, S.; Zink, J.I.; Nel, A.E. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 2009, 3, 3273–3286. [Google Scholar] [CrossRef] [PubMed]
- Buchman, Y.K.; Lellouche, E.; Zigdon, S.; Bechor, M.; Michaeli, S.; Lellouche, J.P. Silica nanoparticles and polyethyleneimine (PEI)-mediated functionalization: A new method of PEI covalent attachment for siRNA delivery applications. Bioconjug. Chem. 2013, 24, 2076–2087. [Google Scholar] [CrossRef]
- Qiu, L.; Zhao, Y.-B.; Li, B.-J.; Wang, Z.-H.; Cao, L.-Q.; Sun, L. Triple-stimuli (protease/redox/pH) sensitive porous silica nanocarriers for drug delivery. Sens. Actuators B Chem. 2017, 240, 1066–1074. [Google Scholar] [CrossRef]
- Chung, T.H.; Wu, S.-H.; Yao, M.; Lu, C.-W.; Lin, Y.-S.; Hung, Y.; Mou, C.Y.; Chen, Y.-C.; Huang, D.-M. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 2007, 28, 2959–2966. [Google Scholar] [CrossRef]
- Shen, J.-N.; Yin, Q.; Chen, L.-L.; Zhang, Z.-W.; Li, Y.-P. Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials 2012, 33, 8613–8624. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Teng, Z.-G.; Ni, Q.-Q.; Tao, J.; Cao, X.-F.; Wen, Y.-T.; Wu, L.-Q.; Fang, C.; Wan, B.; Zhang, X.-W.; et al. Orderly curled silica nanosheets with a small size and macromolecular loading pores: Synthesis and delivery of macromolecules to eradicate drug-resistant cancer. ACS Appl. Mater. Interfaces 2020, 12, 57810–57820. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Wei, S.; Shao, L.; Tong, L.; Wu, Y. Imaging Intracellular Drug/siRNA Co-Delivery by Self-Assembly Cross-Linked Polyethylenimine with Fluorescent Core-Shell Silica Nanoparticles. Polymers 2022, 14, 1813. https://doi.org/10.3390/polym14091813
Zhang R, Wei S, Shao L, Tong L, Wu Y. Imaging Intracellular Drug/siRNA Co-Delivery by Self-Assembly Cross-Linked Polyethylenimine with Fluorescent Core-Shell Silica Nanoparticles. Polymers. 2022; 14(9):1813. https://doi.org/10.3390/polym14091813
Chicago/Turabian StyleZhang, Ruirui, Shuang Wei, Leihou Shao, Lili Tong, and Yan Wu. 2022. "Imaging Intracellular Drug/siRNA Co-Delivery by Self-Assembly Cross-Linked Polyethylenimine with Fluorescent Core-Shell Silica Nanoparticles" Polymers 14, no. 9: 1813. https://doi.org/10.3390/polym14091813
APA StyleZhang, R., Wei, S., Shao, L., Tong, L., & Wu, Y. (2022). Imaging Intracellular Drug/siRNA Co-Delivery by Self-Assembly Cross-Linked Polyethylenimine with Fluorescent Core-Shell Silica Nanoparticles. Polymers, 14(9), 1813. https://doi.org/10.3390/polym14091813