Direct Synthesis of Partially Chain-Straightened Propylene Oligomers and P-MA Co-Oligomers Using Axially Flexible Shielded Iminopyridyl Palladium Complexes
Abstract
:1. Introduction
2. Experimental Section
2.1. General Procedures and Materials
2.2. Procedures of Propylene (Co)Polymerization
2.2.1. Propylene Polymerization
2.2.2. Copolymerization of Propylene and MA
3. Results and Discussions
Propylene Polymerization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galli, P.; Vecellio, G. Technology: Driving force behind innovation and growth of polyolefins. Prog. Polym. Sci. 2001, 26, 1287. [Google Scholar] [CrossRef]
- Coates, G.W. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem. Rev. 2000, 100, 1223. [Google Scholar] [CrossRef] [PubMed]
- Stuerzel, M.; Mihan, S.; Muelhaupt, R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev. 2016, 116, 1398. [Google Scholar] [CrossRef] [PubMed]
- Boaen, N.K.; Hillmyer, M.A. Post-polymerization functionalization of polyolefins. Chem. Soc. Rev. 2005, 34, 267. [Google Scholar] [CrossRef]
- Nakamura, A.; Ito, S.; Nozaki, K. Coordination-insertion copolymerization of fundamental polar monomers. Chem. Rev. 2009, 109, 5215. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X.; Wang, L.; Chung, T.C.M.; Huang, T.; De Groot, W. Synthesis and characterization of well-controlled isotactic polypropylene ionomers containing ammonium ion groups. Macromolecules 2014, 47, 571. [Google Scholar] [CrossRef]
- Zhang, G.; Li, H.; Antensteiner, M.; Chung, T.C.M. Synthesis of functional polypropylene containing hindered phenol stabilizers and applications in metallized polymer film capacitors. Macromolecules 2015, 48, 2925. [Google Scholar] [CrossRef]
- Dong, J.Y.; Wang, Z.M.; Hong, H.; Chung, T.C. Synthesis of isotactic polypropylene containing a terminal Cl, OH, or NH2 group via metallocene-mediated polymerization/chain transfer reaction. Macromolecules 2002, 35, 9352. [Google Scholar] [CrossRef]
- Hagihara, H.; Tsuchihara, K.; Sugiyama, J.; Takeuchi, K.; Shiono, T. Copolymerization of propylene and polar allyl monomer with zirconocene/methylaluminoxane catalyst: Catalytic synthesis of amino-terminated isotactic polypropylene. Macromolecules 2004, 37, 5145. [Google Scholar] [CrossRef]
- Hagihara, H.; Ishihara, T.; Ban, H.T.; Shiono, T. Precise control of microstructure of functionalized polypropylene synthesized by the ansa-zirconocene/MAO catalysts. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 1738. [Google Scholar] [CrossRef]
- Hagihara, H.; Tsuchihara, K.; Sugiyama, J.; Takeuchi, K.; Shiono, T. Copolymerization of 3-buten-1-ol and propylene with an isospecific zirconocene/methylaluminoxane catalyst. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 5600. [Google Scholar] [CrossRef]
- Kaya, A.; Jakisch, L.; Komber, H.; Pompe, G.; Pionteck, J.; Voit, B.; Schulze, U. Synthesis of oxazoline functionalized polypropene using metallocene catalysts. Macromol. Rapid Commun. 2000, 21, 1267. [Google Scholar] [CrossRef]
- Wilen, C.E.; Nasman, J.H. Polar activation in copolymerization of propylene and 6-tert-butyl-[2-(1,1-dimethylhept-6-enyl)]-4-methylphenol over a racemic [1,1′-(dimethylsilylene)bis(η5-4,5,6,7-tetrahydro-1-indenyl)]zirconium dichloride/methylalumoxane catalyst system. Macromolecules 1994, 27, 4051. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Shi, X.; Liu, J.; Chen, C.; Li, Y. Syntheses of well-defined functional isotactic polypropylenes via efficient copolymerization of propylene with ω-halo-α-alkenes by post-metallocene hafnium catalyst. Macromolecules 2014, 47, 552. [Google Scholar] [CrossRef]
- Wang, X.; Long, Y.; Wang, Y.; Li, Y. Insights into propylene/ω-halo-α-alkenes copolymerization promoted by rac-Et(Ind)2ZrCl2 and (pyridyl-amido)hafnium catalysts. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 3421. [Google Scholar] [CrossRef]
- Shang, R.; Gao, H.; Luo, F.; Li, Y.; Wang, B.; Ma, Z.; Pan, L.; Li, Y. Functional isotactic polypropylenes via efficient direct copolymerizations of propylene with various amino-functionalized α-olefins. Macromolecules 2019, 52, 9280. [Google Scholar] [CrossRef]
- Huang, M.; Chen, J.; Wang, B.; Huang, W.; Chen, H.; Gao, Y.; Marks, T.J. Polar isotactic and syndiotactic polypropylenes by organozirconium-catalyzed masking-reagent-free propylene and amino-olefin copolymerization. Angew. Chem. Int. Ed. 2020, 59, 20522. [Google Scholar] [CrossRef]
- Ittel, S.D.; Johnson, L.K.; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 2000, 100, 1169. [Google Scholar] [CrossRef]
- Mu, H.; Zhou, G.; Hu, X.; Jian, Z. Recent advances in nickel mediated copolymerization of olefin with polar monomers. Coord. Chem. Rev. 2021, 435, 213802. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Hu, X.; Wang, C.; Jian, Z. Advances on controlled chain walking and suppression of chain transfer in catalytic olefin polymerization. ACS Catal. 2022, 12, 14304. [Google Scholar] [CrossRef]
- Johnson, L.K.; Killian, C.M.; Brookhart, M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J. Am. Chem. Soc. 1995, 117, 6414. [Google Scholar] [CrossRef]
- Liao, Y.; Cai, Q.; Dai, S. Synthesis of high molecular weight polyethylene and E-MA copolymers using iminopyridine Ni(II) and Pd(II) complexes containing a flexible backbone and rigid axial substituents. Chin. J. Polym. Sci. 2022. [Google Scholar] [CrossRef]
- Lu, Z.; Liao, Y.; Fan, W.; Dai, S. Efficient suppression of chain transfer reaction in ethylene coordination polymerization with dibenzosuberyl substituents. Polym. Chem. 2022, 13, 4090. [Google Scholar] [CrossRef]
- Lu, W.; Liao, Y.; Dai, S. Facile access to ultra-highly branched polyethylenes using hybrid “sandwich” Ni(II) and Pd(II) catalysts. J. Catal. 2022, 411, 54. [Google Scholar] [CrossRef]
- Lu, W.; Wang, H.; Fan, W.; Dai, S. Exploring the relationship between polyethylene microstructure and spatial structure of α-diimine Pd(II) catalysts via a hybrid steric strategy. Inorg. Chem. 2022, 61, 6799. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing thermal stability and living fashion in α-diimine-nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules 2017, 50, 2675. [Google Scholar] [CrossRef]
- Zhong, S.; Tan, Y.; Zhong, L.; Gao, J.; Liao, H.; Jiang, L.; Gao, H.; Wu, Q. Precision Synthesis of Ethylene and Polar Monomer Copolymers by Palladium-Catalyzed Living Coordination Copolymerization. Macromolecules 2017, 50, 5661. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Li, B.; Jian, Z. Horizontally and vertically concerted steric strategy in α-diimine nickel promoted ethylene (Co)polymerization. Chin. J. Chem. 2021, 39, 2829. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.; Kou, S.; Jian, Z. A concerted double-layer steric strategy enables an ultra-highly active nickel catalyst to access ultrahigh molecular weight polyethylenes. J. Catal. 2020, 390, 30. [Google Scholar] [CrossRef]
- Rhinehart, J.L.; Brown, L.A.; Long, B.K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc. 2013, 135, 16316. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Harth, E. Distorted sandwich α-diimine Pd(II) catalyst: Linear polyethylene and synthesis of ethylene/acrylate elastomers. Angew. Chem., Int. Ed. 2021, 60, 24107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Nadres, E.T.; Brookhart, M.; Daugulis, O. Synthesis of highly branched polyethylene using “sandwich” (8-p-tolyl naphthyl α-diimine)nickel(II) catalysts. Organometallics 2013, 32, 5136. [Google Scholar] [CrossRef]
- Li, S.; Dai, S. 8-Arylnaphthyl substituent retarding chain transfer in insertion polymerization with unsymmetrical α-diimine systems. Polym. Chem. 2020, 11, 7199. [Google Scholar] [CrossRef]
- Lu, Z.; Chang, G.; Jing, K.; Dai, S. A dual steric enhancement strategy in α-diimine nickel and palladium catalysts for ethylene polymerization and copolymerization. Organometallics 2022, 41, 124. [Google Scholar] [CrossRef]
- Guo, L.; Sun, W.; Li, S.; Xu, G.; Dai, S. Bulky yet flexible substituents in insertion polymerization with α-diimine nickel and palladium systems. Polym. Chem. 2019, 10, 4866. [Google Scholar] [CrossRef]
- Dai, S.; Li, S.; Xu, G.; Wu, C.; Liao, Y.; Guo, L. Flexible cycloalkyl substituents in insertion polymerization with α-diimine nickel and palladium species. Polym. Chem. 2020, 11, 1393. [Google Scholar] [CrossRef]
- Gates, D.P.; Svejda, S.A.; Oñate, E.; Killian, C.M.; Johnson, L.K.; White, P.S.; Brookhart, M. Synthesis of branched polyethylene using (α-diimine)nickel(II) catalysts: Influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules 2000, 33, 2320. [Google Scholar] [CrossRef]
- Gong, Y.; Li, S.; Gong, Q.; Zhang, S.; Liu, B.; Dai, S. Systematic investigations of ligand steric effects on α-diimine nickel catalyzed olefin polymerization and copolymerization. Organometallics 2019, 38, 2919. [Google Scholar] [CrossRef]
- Wiedemann, T.; Voit, G.; Tchernook, A.; Roesle, P.; Go, I.; Mecking, S. Monofunctional hyperbranched ethylene oligomers. J. Am. Chem. Soc. 2014, 136, 2078. [Google Scholar] [CrossRef]
- Wang, H.; Duan, G.; Fan, H.; Dai, S. Second coordination sphere effect of benzothiophene substituents on chain transfer and chain walking in ethylene insertion polymerization. Polymer 2022, 245, 124707. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Lian, K.; Sun, W.; Zhu, H.; Du, Q.; Liu, Z.; Chen, X.; Dai, S. Electronic effects of the backbone on bis(imino)pyridyliron(II)-catalyzed ethylene polymerization. Eur. J. Inorg. Chem. 2018, 2018, 4887. [Google Scholar] [CrossRef]
- Wu, X.; Xu, G.; Lu, W.; Li, Z.-Y.; Dai, S. Ethylene (Co)oligomerization in alkane solvents facilitated by rigid-flexible double-layer steric strategy. Eur. Polym. J. 2022, 177, 111459. [Google Scholar] [CrossRef]
- Chen, J.; Yan, Z.; Li, Z.; Dai, S. Direct synthesis of chain-end toluene functionalized hyperbranched ethylene oligomers. Polymers 2022, 14, 3049. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Chang, G.; Yan, Z.; Dai, S. Ethylene (Co)oligomerization using iminopyridyl Ni(II) and Pd(II) complexes bearing benzocycloalkyl moieties to access hyperbranched ethylene oligomers and ethylene-MA co-oligomers. Front. Chem. 2022, 10, 961426. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Xu, G.; Wang, H.; Dai, S. Direct synthesis of hyperbranched ethylene oligomers and ethylene-MA co-oligomers using iminopyridyl systems with weak neighboring group interactions. J. Polym. Sci. 2022, 60, 1944. [Google Scholar] [CrossRef]
- Yan, Z.; Bi, H.; Ding, B.; Wang, H.; Xu, G.; Dai, S. A rigid-flexible double-layer steric strategy for ethylene (Co)oligomerization with pyridine-imine Ni(II) and Pd(II) complexes. New J. Chem. 2022, 46, 8669. [Google Scholar] [CrossRef]
- Fan, H.; Chang, G.; Bi, H.; Gui, X.; Wang, H.; Xu, G.; Dai, S. Facile Synthesis of hyperbranched ethylene oligomers and ethylene/methyl acrylate co-oligomers with different microscopic chain architectures. ACS Polym. Au 2022, 2, 88. [Google Scholar] [CrossRef]
- Li, S.; Lu, Z.; Fan, W.; Dai, S. Efficient incorporation of a polar comonomer for direct synthesis of hyperbranched polar functional ethylene oligomers. New J. Chem. 2021, 45, 4024. [Google Scholar] [CrossRef]
- Ge, Y.; Li, S.; Wang, H.; Dai, S. Synthesis of branched polyethylene and ethylene-MA copolymers using unsymmetrical iminopyridyl nickel and palladium complexes. Organometallics 2021, 40, 3033. [Google Scholar] [CrossRef]
- Ge, Y.; Cai, Q.; Wang, Y.; Gao, J.; Chi, Y.; Dai, S. Synthesis of high-molecular-weight branched polyethylene using a hybrid “sandwich” pyridine-imine Ni(II) catalyst. Front. Chem. 2022, 10, 886888. [Google Scholar] [CrossRef]
- Peng, H.; Li, S.; Li, G.; Dai, S.; Ji, M.; Liu, Z.; Guo, L. Rotation-restricted strategy to synthesize high molecular weight polyethylene using iminopyridyl nickel and palladium catalyst. Appl. Organomet. Chem. 2021, 35, e6140. [Google Scholar] [CrossRef]
- Li, S.; Dai, S. Highly efficient incorporation of polar comonomers in copolymerizations with ethylene using iminopyridyl palladium system. J. Catal. 2021, 393, 51. [Google Scholar] [CrossRef]
- Dai, S.; Li, S. Effect of aryl orientation on olefin polymerization in iminopyridyl catalytic system. Polymer 2020, 200, 122607. [Google Scholar] [CrossRef]
- Ge, Y.; Lu, Z.; Dai, S. Flexible axial shielding strategy for the synthesis of high-molecular-weight polyethylene and polar functionalized polyethylene with pyridine-imine Ni(II) and Pd(II) complexes. Organometallics 2022, 41, 2042. [Google Scholar] [CrossRef]
- Luckham, S.L.J.; Nozaki, K. Toward the copolymerization of propylene with polar comonomers. Acc. Chem. Res. 2021, 54, 344. [Google Scholar] [CrossRef]
- Johnson, L.K.; Mecking, S.; Brookhart, M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J. Am. Chem. Soc. 1996, 118, 267. [Google Scholar] [CrossRef]
- Fan, H.; Liao, Y.; Dai, S. Propylene polymerization and copolymerization with polar monomers facilitated by flexible cycloalkyl substituents in α-diimine systems. Polymer 2022, 254, 125076. [Google Scholar]
- Lu, Z.; Wang, H.; Li, S.; Dai, S. Direct synthesis of various polar functionalized polypropylene materials with tunable molecular weights and high incorporation ratios. Polym. Chem. 2021, 12, 5495. [Google Scholar] [CrossRef]
- McCord, E.F.; McLain, S.J.; Nelson, L.T.J.; Arthur, S.D.; Coughlin, E.B.; Ittel, S.D.; Johnson, L.K.; Tempel, D.; Killian, C.M.; Brookhart, M. 13C and 2D NMR analysis of propylene polymers made with α-diimine late metal catalysts. Macromolecules 2001, 34, 362. [Google Scholar] [CrossRef]
- Svejda, S.A.; Johnson, L.K.; Brookhart, M. Low-temperature spectroscopic observation of chain growth and migratory insertion barriers in (α-diimine)Ni(II) olefin polymerization catalysts. J. Am. Chem. Soc. 1999, 121, 10634. [Google Scholar] [CrossRef]
Ent. | Precat. | T/°C | Yield/g | Act. b | Mnc | Mw/Mnc | B d | [CH3]/[CH2] e | %1,3 f |
---|---|---|---|---|---|---|---|---|---|
1 | Pd1 | 30 | 0.97 | 3.23 | 0.6 | 2.00 | 119 | 0.22 | 54 |
2 | Pd1 | 50 | 1.62 | 5.40 | 0.3 | 1.27 | 125 | 0.23 | 53 |
3 | Pd2 | 30 | 0.65 | 2.17 | 1.0 | 1.51 | 136 | 0.26 | 49 |
4 | Pd2 | 50 | 1.10 | 3.67 | 0.9 | 1.53 | 129 | 0.24 | 51 |
5 | Pd3 | 30 | 0.73 | 2.43 | 1.5 | 1.78 | 121 | 0.22 | 54 |
6 | Pd3 | 50 | 1.29 | 4.30 | 1.4 | 1.59 | 130 | 0.24 | 51 |
7 | Pd4 | 30 | 0.11 | 0.37 | 13.6 | 2.43 | 120 | 0.22 | 54 |
8 | Pd4 | 50 | 0.26 | 0.87 | 10.0 | 1.57 | 124 | 0.23 | 53 |
Ent. | Precat. | [MA] | Yield (g) | Act. b | XMAc(%) | Mnd | Mw/Mnd | B e |
---|---|---|---|---|---|---|---|---|
1 | Pd1 | 1 | 0.44 | 1.83 | 34.3 | 0.3 | 1.28 | 119 |
2 | Pd1 | 2 | 0.37 | 1.54 | 36.5 | 0.3 | 1.28 | 152 |
3 | Pd2 | 1 | 0.34 | 1.42 | 22.8 | 0.5 | 1.37 | 108 |
4 | Pd2 | 2 | 0.22 | 0.92 | 25.1 | 0.5 | 1.21 | 154 |
5 | Pd3 | 1 | 0.11 | 0.46 | 25.3 | 0.6 | 1.32 | 126 |
6 | Pd3 | 2 | 0.09 | 0.38 | 33.8 | 0.5 | 1.20 | 142 |
7 | Pd4 | 1 | 0.17 | 0.71 | 13.8 | 0.5 | 1.21 | 105 |
8 | Pd4 | 2 | 0.13 | 0.54 | 23.0 | 0.5 | 1.16 | 151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Fan, H.; Zhu, C.; Zou, W.; Dai, S. Direct Synthesis of Partially Chain-Straightened Propylene Oligomers and P-MA Co-Oligomers Using Axially Flexible Shielded Iminopyridyl Palladium Complexes. Polymers 2023, 15, 111. https://doi.org/10.3390/polym15010111
Sun H, Fan H, Zhu C, Zou W, Dai S. Direct Synthesis of Partially Chain-Straightened Propylene Oligomers and P-MA Co-Oligomers Using Axially Flexible Shielded Iminopyridyl Palladium Complexes. Polymers. 2023; 15(1):111. https://doi.org/10.3390/polym15010111
Chicago/Turabian StyleSun, Huayin, Huijun Fan, Chuangao Zhu, Wenping Zou, and Shengyu Dai. 2023. "Direct Synthesis of Partially Chain-Straightened Propylene Oligomers and P-MA Co-Oligomers Using Axially Flexible Shielded Iminopyridyl Palladium Complexes" Polymers 15, no. 1: 111. https://doi.org/10.3390/polym15010111
APA StyleSun, H., Fan, H., Zhu, C., Zou, W., & Dai, S. (2023). Direct Synthesis of Partially Chain-Straightened Propylene Oligomers and P-MA Co-Oligomers Using Axially Flexible Shielded Iminopyridyl Palladium Complexes. Polymers, 15(1), 111. https://doi.org/10.3390/polym15010111