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Abstract: In this study, a series of partially chain-straightened propylene oligomers and functional
propylene–methyl acrylate (P-MA) co-oligomers were synthesized with 8-alkyl-iminopyridyl Pd(II)
catalysts. The molecular weight and polar monomer incorporation ratio could be tuned by us-
ing Pd(II) catalysts with various 8-alkyl-naphthyl substituents (8-alkyl: H, Me, and n-Bu). In
propylene oligomerization, all the 8-alkyl-iminopyridyl Pd(II) catalysts convert propylene to par-
tially chain-straightened (119–136/1000 C) oligomers with low molecular weights (0.3–1.5 kg/mol).
Among the catalysts, Pd1 with non-substituent (H) on the ligand showed the highest activity of
5.4 × 104 g/((mol of Pd) h), generating oligomers with the lowest molecular weight (Mn: 0.3 kg/mol).
Moreover, polar-functionalized propylene-MA co-oligomers with very high incorporation ratios
(22.8–36.5 mol %) could be obtained in the copolymerization using these 8-alkyl-iminopyridyl Pd(II)
catalysts. Additionally, Pd1 exhibited the best performance in propylene-MA copolymerization as it
displayed the highest MA incorporation ratio of up to 36.5 mol%. All the three catalysts are capable
of generating partially chain-straightened P-MA co-oligomers and the activities decrease gradually
while the molecular weight increases with the increasing steric hindrance of the alkyl substituent
(H < Me < n-Bu). Compared to Pd4 with the rigid 8-aryl substituent, the flexible 8-alkyl-iminopyridyl
Pd(II) catalysts (Pd1-3) not only showed much higher activities in the propylene oligomerization,
but also yielded P-MA co-oligomers with significantly higher incorporation ratios in the propylene
co-oligomerization.

Keywords: chain-straightened; propylene oligomers; co-oligomers; Pd(II) catalysts

1. Introduction

Since polypropylene was first synthesized in 1950s, this type of thermoplastic poly-
mer has become one of the most used plastic products worldwide [1,2]. The excellent
chemical and mechanical properties of polypropylene enable it to be used in packaging,
manufacturing, the automotive industry, and household appliances [3]. Regardless of its
widespread usage, the nonpolar properties of polypropylene limits its utilization. To im-
prove the polarity of polypropylene for adhesion, dye-ability and compatibility, functional
groups were always introduced into the material [4,5]. A post-modification technique was
commonly used in industry. However, a deterioration of the accompanying properties
always happened due to the processes occurring under harsh conditions, such as extreme
heat, irradiation with high energy, and excessive etching. Additionally, the uncontrollable
functional group distribution and side reactions would always diminish the material’s
quality [4,5]. Therefore, propylene and functional vinyl monomers copolymerization using
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transition metal catalysts is the most straightforward and economic strategy to generate
functional polypropylenes. Early-transition-metal catalysts exhibit highly efficient propy-
lene polymerization. Additionally, Ziegler-Natta catalysts, metallocene catalysts, and
other early-transition-metal catalysts were always easily deactivated by functional-group-
containing polar monomers, although several cases have shown they could be applied
in polar functional monomer and olefin copolymerization when the incorporated polar
monomers were protected or tied up by Lewis acid as a “masking reagent” [6–13]. Recently,
several cases showed a few cationic metallocene and (pyridylamido)Hf complexes could
directly copolymerize propylene and polar monomers bearing the special structure without
a “masking reagent” [14–17].

In the last three decades, the development of late-transition-metal catalysts in olefin
polymerization has been witnessed owing to their great capability of olefin–polar monomer
copolymerization. Compared to early-transition metals, late-transition metal (palladium
and nickel) complexes have higher polar functional group tolerance [18–20]. Since Brookhart
et al. initially reported α-diimine bearing Ni(II) and Pd(II) complexes could be utilized
in olefin (co)polymerization in the 1990s, a series of ligands with imine structures have
been developed [21–36]. The polyolefin characters including molecular weight, polymer
dispersity index (PDI), and microstructure not only depend on the polymerization condi-
tions, but the coordinated complex ligands [37–41]. Among the α-diimine-based analogs,
iminopyridyl-based Ni(II) and Pd(II) complexes have been noticed. The obtained oligomers
using Ni(II) and Pd(II) catalysts bearing the iminopyridyl ligands have been reported
in most ethylene (co)polymerizations [42–48]. When the ligands with an iminopyridyl
structure are applied in propylene polymerization, the unilateral axial block provided by
the imine motif would partially shield the metal ion center and result in the low molecular
weight of the polymer [42–48]. Recently, we introduced a 1,5-di(dibenzosuberyl)amine
structure into the iminopyridyl catalysts. The generated Ni(II)/Pd(II) complexes were
apt to retard the chain transfer in polymerization. Therefore, the high-molecular-weight
(co)polymers were produced [49–52]. We also found the Ni(II) and Pd(II) complexes bear-
ing iminopyridyl ligands with dibenzhydryl and 8-alkyl/aryl-naphthyl substituents could
induce ethylene (co)polymerization to form high-molecular-weight (co)polymers [52–54].
Moreover, these imine-based catalysts exhibited significant advantages in the copolymer-
ization of propylene with polar comonomers and generated functionalized polypropylene
materials (Chart 1) [55–58]. In this work, we describe the catalytic performance of propy-
lene (co)polymerization using iminopyridyl Pd(II) catalysts (Chart 1h) composed of various
8-alkylnaphthyl substituents.

Polymers 2022, 14, x FOR PEER REVIEW 3 of 10 
 

 

 
Chart 1. The α-diimine (a-d) and iminopyridyl (e-h) palladium complexes used for pro-
pylene (co)polymerization and this work (h). 

2. Experimental Section 
2.1. General Procedures and Materials  

All the reactions and polymerizations were carried out using standard Schlenk 
techniques or a glovebox under a dry nitrogen atmosphere. Anhydrous n-hexane, tolu-
ene, dichloromethane (DCM) and methyl acrylate were purchased from Ennegy Chemi-
cals (Shanghai, China) and Sinopharm (Shanghai, China). All the solvents and mono-
mers are dried with CaH2. The propylene gas was obtained from Nanjing Special Gas 
Co. (Nanjing, China) and applied in reaction without purification. The complexes Pd1−4 
were synthesized according to the methods reported before. [52,54] The deuterated sol-
vents were dried and distilled with CaH2. Nuclear magnetic resonance (NMR) spectra 
(1H: 600 MHz, 13C: 150 MHz) were recorded on a JNM-ECZ600R NMR instrument (Nip-
pon Electronic Company, Tokyo, Japan) at ambient temperature unless otherwise stated. 
The chemical shifts observed in the 1H and 13C NMR spectra were referenced to the re-
sidual resonance of deuterated solvents (the coupling constants are reported in Hz, 
CDCl3: 1H, 7.26 ppm, 13C, 77.16 ppm). The molecular weight and molecular-weight dis-
tribution of polypropylene (PP), propylene oligomers, and propylene–MA co-oligomers 
(P–MA) were determined by size exclusion chromatography (SEC) analyses, which were 
carried out with two linear Styragel SEC columns containing Tosoh equipment (Tosoh 
Corporation, Tokyo, Japan) and eluted with THF. The system was calibrated with the 
polystyrene standards and operated at 40 °C at a flow rate of 0.35 mL/min with THF.  

2.2. Procedures of Propylene (Co)Polymerization 
2.2.1. Propylene Polymerization  

A 350 mL thick-walled pressure vessel together with a magnetic stirrer was charged 
with 40 mL DCM in the glovebox. The pressure vessel was connected to a Schlenk line 
bearing high pressure. A solution of Pd1−4 (10 μmol) with NaBArF (20 μmol, 2.0 equiv.) 
in 2 mL of CH2Cl2 was introduced to the vessel via a syringe at room temperature. The 
reactor was pressurized and maintained at 4 atm propylene pressure with rapid stirring. 
The mixture was stirred for 3 h at the reaction temperature. After cooling down, the re-
actor was quenched in air. Then, the synthesized polymer was obtained via evaporation 
under vacuum until the weight remained constant.  

Chart 1. The α-diimine (a–d) and iminopyridyl (e–h) palladium complexes used for propylene
(co)polymerization and this work (h).



Polymers 2023, 15, 111 3 of 9

2. Experimental Section
2.1. General Procedures and Materials

All the reactions and polymerizations were carried out using standard Schlenk tech-
niques or a glovebox under a dry nitrogen atmosphere. Anhydrous n-hexane, toluene,
dichloromethane (DCM) and methyl acrylate were purchased from Ennegy Chemicals
(Shanghai, China) and Sinopharm (Shanghai, China). All the solvents and monomers are
dried with CaH2. The propylene gas was obtained from Nanjing Special Gas Co. (Nanjing,
China) and applied in reaction without purification. The complexes Pd1-4 were synthe-
sized according to the methods reported before [52,54]. The deuterated solvents were
dried and distilled with CaH2. Nuclear magnetic resonance (NMR) spectra (1H: 600 MHz,
13C: 150 MHz) were recorded on a JNM-ECZ600R NMR instrument (Nippon Electronic
Company, Tokyo, Japan) at ambient temperature unless otherwise stated. The chemical
shifts observed in the 1H and 13C NMR spectra were referenced to the residual resonance of
deuterated solvents (the coupling constants are reported in Hz, CDCl3: 1H, 7.26 ppm, 13C,
77.16 ppm). The molecular weight and molecular-weight distribution of polypropylene
(PP), propylene oligomers, and propylene–MA co-oligomers (P–MA) were determined by
size exclusion chromatography (SEC) analyses, which were carried out with two linear
Styragel SEC columns containing Tosoh equipment (Tosoh Corporation, Tokyo, Japan) and
eluted with THF. The system was calibrated with the polystyrene standards and operated
at 40 ◦C at a flow rate of 0.35 mL/min with THF.

2.2. Procedures of Propylene (Co)Polymerization
2.2.1. Propylene Polymerization

A 350 mL thick-walled pressure vessel together with a magnetic stirrer was charged
with 40 mL DCM in the glovebox. The pressure vessel was connected to a Schlenk line
bearing high pressure. A solution of Pd1-4 (10 µmol) with NaBArF (20 µmol, 2.0 equiv.)
in 2 mL of CH2Cl2 was introduced to the vessel via a syringe at room temperature. The
reactor was pressurized and maintained at 4 atm propylene pressure with rapid stirring.
The mixture was stirred for 3 h at the reaction temperature. After cooling down, the reactor
was quenched in air. Then, the synthesized polymer was obtained via evaporation under
vacuum until the weight remained constant.

2.2.2. Copolymerization of Propylene and MA

A 350 mL thick-walled pressure vessel with a stirring bar was charged with an ap-
propriate amount of DCM, MA, and NaBArF in the glovebox. The pressure vessel was
connected to a Schlenk line bearing high pressure. The Pd catalysts (20 µmol) in 2 mL
CH2Cl2 were syringed into the well-stirred solution with the total reaction volume kept
at 20 mL. The reactor was pressurized with propylene and maintained at 4 atm pressure.
The copolymerization was terminated by passing through a pad of silica after continu-
ous stirring for 12 h. Then, the formed copolymers were obtained under vacuum to an
unchanged weight. XMA% = 3/(Iall − 3)×100%. Iall: total H integral; IOCH3 = 3: OCH3
hydrogen integral (ca. 3.5–5.0 ppm).

3. Results and Discussions
Propylene Polymerization

All of the Pd(II) complexes (Pd1-4) (Chart 2) were active in propylene polymerization
after in situ dechlorination with 2.0 equiv. sodium tetrakis(3,5-bis(trifluoromethyl)phenyl)-
borate(NaBArF). The polymerization results are summarized in Table 1. All the 8-alkylnaphthyl
Pd(II) complexes showed moderate catalytic activities (21.7–54 kg mol−1 h−1), and highly
branched propylene oligomers (119–136/1000 C) with various molecular weights
(0.3–1.5 kg mol−1) were obtained at given conditions (Table 1, Figure 1). Compared to
Pd4 with the rigid 8-arylnaphthyl structure, Pd1-3 complexes bearing the 8-alkylnaphthyl
structure with higher flexibility exhibited up to ten times higher activities with signifi-
cantly lower molecular weights. This result is close to the ethylene polymerization results,
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in which palladium complexes bearing the 8-alkyl group also exhibited activities that
were orders of magnitude higher [54]. The axial steric hindrance provided by the flexible
substituents would probably facilitate the coordination and insertion of the propylene
molecule [35,36,57]. The further comparison of Pd1, Pd2 and Pd3 revealed the higher
molecular weight of propylene oligomers could be obtained using the complexes bearing
the longer the alkyl group chain (entries 5–6 vs. 3–4 vs. 1–2, Table 1). This may be due to
the axial steric effect. A more effective axial steric hindrance provided by longer alkyl sub-
stitutes would retard the chain transfer reaction more effectively in polymerization [38,54].
In addition, the activities of all the complexes, Pd14, increased 1.6–2.7 times when the
polymerization temperature increased, while the molecular weight decreased (entries 1–8,
Table 2). The significantly reduced energy barrier of propylene insertion into the active
palladium species with these alkyl groups, and the increased ratio of chain transfer rate to
chain growth rate are responsible for the results observed above.
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Table 1. Effect of Catalysts and Temperatures on Propylene Polymerization. a.

Ent. Precat. T/◦C Yield/g Act. b Mn
c Mw/Mn

c B d [CH3]/[CH2] e %1,3 f

1 Pd1 30 0.97 3.23 0.6 2.00 119 0.22 54
2 Pd1 50 1.62 5.40 0.3 1.27 125 0.23 53
3 Pd2 30 0.65 2.17 1.0 1.51 136 0.26 49
4 Pd2 50 1.10 3.67 0.9 1.53 129 0.24 51
5 Pd3 30 0.73 2.43 1.5 1.78 121 0.22 54
6 Pd3 50 1.29 4.30 1.4 1.59 130 0.24 51
7 Pd4 30 0.11 0.37 13.6 2.43 120 0.22 54
8 Pd4 50 0.26 0.87 10.0 1.57 124 0.23 53

a Reaction conditions: Pd catalyst (10 µmol), NaBArF (2.0 equiv.), propylene (4 atm), CH2Cl2 (40 mL), poly-
merization time (3 h). b Activity = 104 g/((mol of Pd) h). c Mn is in units of kg mol−1. Determined by
SEC in THF at 40 ◦C vs. polystyrene standards. d B = Number of branches per 1000 C, as determined by 1H
NMR spectroscopy. e Determined by 1H NMR spectroscopy. f 1,3-enchainment, calculated from the equation:
%1,3-enchainment = [(1 − R)/(1 + 2R)] × 100, where R = [CH3]/[CH2].
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Table 2. Propylene-MA copolymerization. a.

Ent. Precat. [MA] Yield (g) Act. b XMA
c(%) Mn

d Mw/Mn
d B e

1 Pd1 1 0.44 1.83 34.3 0.3 1.28 119
2 Pd1 2 0.37 1.54 36.5 0.3 1.28 152
3 Pd2 1 0.34 1.42 22.8 0.5 1.37 108
4 Pd2 2 0.22 0.92 25.1 0.5 1.21 154
5 Pd3 1 0.11 0.46 25.3 0.6 1.32 126
6 Pd3 2 0.09 0.38 33.8 0.5 1.20 142
7 Pd4 1 0.17 0.71 13.8 0.5 1.21 105
8 Pd4 2 0.13 0.54 23.0 0.5 1.16 151

a General conditions: Pd catalysts (20 µmol), NaBArF (2.0 equiv.), propylene (4 atm), polymerization time (12 h), the
total volume of CH2Cl2 and MA (20 mL), polymerization temperature (40 ◦C), b Activity = 103 g/((mol of Pd) h),
c XMA = Incorporation of MA, d Mn is in units of kg mol–1. Determined by SEC in THF at 40 ◦C vs. polystyrene
standards, e B = Number of branches per 1000 C, as determined by 1H NMR spectroscopy. The branches ending
with functional groups are added to the total branches.

Most interestingly, a chain walking phenomenon was also found in iminopyridyl
palladium-catalyzed propylene polymerization (Figure 2). In contrast to the chain-walking-
lead branch formation in ethylene polymerization, chain walking drives partial chain
straightening in propylene polymerization (Figure 3). Theoretically, being derived from the
methyl group containing monomer, polypropylene has a branching density of 333/1000 C.
All the obtained propylene oligomers or polypropylenes in this study are 119–136/1000 C,
which are significantly lower than 333/1000 C. This indicates that a remarkable chain
straightening occurs during the polymerization. The calculated value of 1,3 chain straight-
ening is around 0.49–0.54 (Table 1) for all the obtained propylene oligomers or polypropy-
lenes, which indicates almost half of the propylene molecules experience 1,3 chain straight-
ening. The chain walking in polymerization would facilitate the propylene insertion
(Figures S1–S13). The driving force for chain walking is mainly due to the reduction in the
steric hindrance during the insertion of propylene molecules in the polymerization pro-
cess [59]. The 13C NMR spectrum analysis of a propylene oligomer yield with Pd3 at 30 ◦C
is shown in Figure 3 [59,60]. Branch structures observed include methyl, 2-methylpropyl+,
2-methyl(CH2)n+, and 2,4-dimethylpentyl+. The adjacent-methyl and isolated-methyl
branches are also observed.
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Figure 3. 13C NMR spectrum analysis of the partially chain-straightened propylene oligomer obtained
by using Pd3 at 30 ◦C (Table 1, entry 5). Branches are labeled as xBy, where y is the branch length and
x is the carbon, starting from the methyl end with 1. The methine groups for the different branch
lengths are labeled with brBy. The asterisk represents the situation when the methyl groups are in
adjacent positions to each other.

The performance of the iminopyridyl Pd(II) complexes in propylene-MA copolymer-
ization was also explored (Table 2). In this study, polar-functionalized propylene-MA
co-oligomers with relatively high values of incorporation ratios (up to 36.5 mol %) were
obtained (Table 2). The Pd(II) catalysts showed low activities (level of 103 g mol−1 h−1),
which were remarkably lower than those in propylene homo-polymerization. As expected,
the higher MA concentration resulted in higher MA incorporation, but reduced activities.
Compared to propylene homo-polymerization, the molecular weight was dramatically de-
creased when MA was supplied. However, the molecular weight was not further decreased
with the extra MA supplement (Table 2, entries 1, 3, 5, 7 vs. 2, 4, 6, 8). The substantial
reduction in molecular weights implied the insertion of excess polar monomers might
greatly suppress the growth of the polymer chain and facilitate chain transfer during
polymerization (Figures S14–S19) [49,52]. The propylene-MA co-oligomers obtained with
Pd2-4 containing substituted alkyl/aryl group tended to produce co-oligomers with higher
molecular weights compared to Pd1 (entries 1–2 vs. 3–8, Table 2). It demonstrates the
steric effect is crucial for polymer chain propagation over chain transfer, which is similar
to the propylene homo-polymerization result. The propylene-MA co-oligomer obtained
with the 8-alkylnaphthyl Pd1-3 tended to generate co-oligomers with higher incorporation
ratios compared to 8-arylnaphthyl Pd4 (entries 1–6 vs. 7–8, Table 2), which suggests the
complexes with flexible alkyl substituents have the advantage of MA insertion.

4. Conclusions

In conclusion, we described propylene (co)polymerization using a series of 8-alkyl-
1-naphthyl iminopyridyl Pd(II) catalysts. Compared to the exhibition of 8-arylnaphthyl
Pd4 in propylene polymerization, all the 8-alkylnaphthyl Pd1-3 catalysts showed up to
ten times higher activities, but generated propylene oligomers with significantly lower
molecular weights. In the corresponding Pd(II)-catalyzed propylene-MA copolymerization,
the 8-alkylnaphthyl Pd1-3 catalysts displayed higher MA incorporation ratios with similar
molecular weights to 8-arylnaphthyl Pd4. Most notably, all the produced polypropylenes
and propylene (co)oligomers are partial chain straightening, with almost half of the inserted
propylene monomers undergoing 1,3 chain straightening. These propylene oligomers and
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propylene-MA co-oligomers could possibly be utilized as functional additives in surface
modifiers or lubricants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15010111/s1, Figures S1–S13: 1H and 13C NMR of some
representative propylene oligomers and P-MA co-oligomers; Figures S14–S19: SEC of some represen-
tative propylene oligomers and P-MA co-oligomers.
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