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Abstract: In this study, the effect of single-walled carbon nanotubes (SWCNTs) on the cross-linking
of natural rubber (NR) using organic peroxides was investigated. NR-SWCNTs nanocomposites were
prepared in an open two-roller mill followed by vulcanization with the compression molding process.
Three different organic peroxides, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (T29), dicumyl
peroxide (DCP), and 2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-hexyne (T145), were used as vulcanizing
agents. SWCNTs promote a remarkable reduction in the vulcanization time and increase the degree
of cross-linking of vulcanized rubber when compared with neat or natural rubber–carbon-black
composites; the same tendency was obtained in the NR-SWCNTs vulcanized with sulfur. Additionally,
the mechanical performance of the NR-SWCNTs composites was significantly improved up to 75, 83,
27, and 10% for tensile strength, moduli, tear strength, and hardness. Raman spectroscopy studies
evidence the occurrence of reaction between nanotube walls and free radicals generated from using
organic peroxides during the vulcanization process. These results demonstrate that the incorporation
of SWCNTs in combination with the use of organic peroxides for the NR vulcanization represents
a potential alternative for the improvement of the physicochemical properties of NR composites.

Keywords: natural rubber; vulcanization; single-walled carbon nanotubes; organic peroxides;
nanocomposites; mechanical properties

1. Introduction

Natural rubber (NR) is an elastomer capable of recovering its shape from large defor-
mations quickly and forcibly [1]; additionally, it possesses many other unique properties
such as: (i) low elastic modulus and high percent of elongation before failure, (ii) very
low thermal conductivity, and (iii) exhibiting significant hysteresis under cyclic loading,
which contributes to its energy absorption capability. These unique properties have led
many industries to adopt NR for a wide range of products in an endless number of ap-
plications, from the simplest systems to the most complex, from home products to the
aerospace industry.

To improve its mechanical properties, NR needs to be formulated and vulcanized;
this process involves the transformation of a plastic rubber compound into a highly elastic
end-product with the formation of chemical cross-links between rubber chain segments
that build a 3D network within the rubber matrix. Vulcanization is performed by the
addition of cross-linking agents such as sulfur, fillers, lubricants, and stabilizers. Another
possibility is the use of organic peroxides as cross-linking promoters [2,3]. Worldwide,
sulfur is the most frequently used vulcanizing agent for NR due to its ability to form
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covalent sulfur bonds between the elastomeric chains, which give the sulfur vulcanizate
excellent elastic and dynamic properties, and high tensile and tear strength. However,
NR products vulcanized with sulfur exhibit some drawbacks such as their low heat-aging
resistance and poor thermo-oxidative stability [4,5]; additionally, once reaching their useful
life, it is well known that these materials cannot be burned due to their sulfur content, so if
not properly handled, they can create serious environmental problems [6].

In that sense, to avoid the use of sulfur as a cross-linking agent, organic peroxides
represent a relatively simpler alternative to vulcanize both unsaturated and saturated
rubbers. Thermal decomposition of the organic peroxides produces free radicals during
the vulcanization, which react with the double bonds present in the NR, resulting in cross-
linked polymer chains. C-C cross-links exhibit higher thermal stability than sulfur bonds;
therefore, NR compounds vulcanized with organic peroxides possess good heat-aging
resistance, high thermal stability, good electrical properties, and no staining of the end-
products. Despite the benefits, NR vulcanized with organic peroxides usually exhibits
lower elastic and dynamic properties such as tensile and tear strengths than NR vulcanized
with sulfur [3,5,7].

The addition of fillers to rubber compounding formulation has been used to improve
the physicochemical properties of NR compounds vulcanized with organic peroxides. In
most cases, the fillers act as a reinforcing material, interacting with the elastomer matrix.
The strong influence of relatively small amounts of filler particles as carbon black (CB)
on the mechanical properties of elastomers has been well known for decades and has
significantly contributed to the increasing use of elastomeric materials in many commercial
applications [8–10]; silica particles also have been extensively used for this purpose [11,12].
However, interactions among elastomeric systems can be further improved by increasing
the surface area to volume ratio; so, the use of smaller particles of fillers with high aspect
ratios is a common practice to enhance the composite moduli values, failure properties
(tensile and tear strength), and abrasion resistance. Based on this concept, several types
of nanoparticles have been used as fillers, such as nanoclays [13,14], nanofibers [15,16], or
carbon nanotubes (CNTs) [17–26]. Particularly, the incorporation of CNTs into rubbers has
been identified as one of the more suitable alternatives to substitute the traditional use of
CB particles [27], since they provide enhanced stiffness (i.e., enhance the initial stiffness
and retain the stiffness enhancement for large overall strain deformation behavior) while
also retaining the important attributes of [28,29].

NR filled with single-walled carbon nanotubes (SWCNTs) and cross-linked with sulfur
has been previously reported in the literature. López-Manchado et al. [17] reported the
incorporation of 10 phr of SWCNTs without modification or previous treatment in NR,
highlighting that SWCNTs reduced the energy required for cross-linking. Zhao et al. [18]
analyzed the use of SWCNTs as sensors in the vulcanization of NR by measuring the Raman
spectra. Anand et al. [19] found that the addition of very low loads of SWNTs (~2 phr) to
an NR matrix can provide effective reinforcement and improved electrical properties in NR
nanocomposites obtained by a latex-stage mixing method. The enhanced reinforcement
observed in NR-SWCNTs nanocomposites was attributed to the effective filler–rubber
interactions achieved from an adequate SWCNTs dispersion in the rubber matrix, resulting
in additional cross-links in the elastomeric network. Nevertheless, to our knowledge, the
effect of SWCNTs on the vulcanization process of NR systems from using organic peroxides
has yet to be reported in the literature. Therefore, we report the study of the vulcanization
process of NR using organic peroxides and their interaction with very low SWCNTs content
(<1 phr) as a reinforcing agent from the analysis of the mechanical properties and Raman
spectroscopy. These results are compared with NR composites obtained using sulfur as
a cross-linker and CB as filler.
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2. Materials and Methods
2.1. Materials

NR was purchased from Elastómeros y Polímeros Sintéticos S.A. de C.V. (Tlalnepantla
de Baz, Mexico). SWCNTs with an average diameter of 10 nm and lengths about 10–30 µm
were purchased from Bucky USA (Houston, TX, USA); they were used without any previous
purification. CB DARCO G60 particles were obtained from ICI America Inc. (Wilming-
ton, DE, USA). Stearic acid (95%), bis(benzothiazyl) disulfide (MBTS, 99%), phenyl beta
naphthyl amine (PBN, 97%), zinc oxide (97%), xylene (99%), and sulfur were purchased
from Sigma Aldrich (St. Louis, MO, USA) and used as received. Three organic peroxides
obtained from Akzo Nobel Chemicals (Dobbs Ferry, NY, USA) were used in this study:
1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (T29), dicumyl peroxide (91%) (DCP),
and 2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-hexyne (T145). The chemical structure and
some physical properties of the organic peroxides used in this work are shown in Figure 1
and Table 1, respectively.
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(c) T145.

Table 1. Physical properties of organic peroxides.

Property T29 DCP T145

Melting point (◦C) −20 39–41 88
Boiling point (◦C at 1 atm) 403.47 130 348.77

Density (g·cm−3) 0.895 1.56 1.26

2.2. Dispersion of SWCNTs in NR

To improve the dispersion of SWCNTs in NR, a masterbatch of SWCNTs was prepared.
Five grams of NR were dissolved in 40 mL of xylene; separately, 0.7 g of SWCNTs were
dispersed by ultrasonication in 50 mL of xylene using an ultrasonic bath, Model 3510
(Branson Ultrasonic Corporation, Brookfield, CT, USA) for 20 min at 6 W. Both dispersions
were mixed and sonicated for an additional 30 min. Then, the solvent was removed at
110 ◦C with continuous agitation. The SWCNTs masterbatch was used as a source of
SWCNTs for the nanocomposites prepared in this work.

2.3. Preparation of NR Composites with Sulfur

NR composites using sulfur as cross-linker and SWCNTs or CB as fillers were prepared
in an open two-roll mill Polymix 80T (Schwabenthan Maschinenfabrik, Berlin, Germany)
operated at a rotor speed ratio of 1:1.4. Table 2 shows the formulations used for the
preparation of NR composites vulcanized with sulfur. For the SWCNT-filled NR composites,
reagents were mixed in two steps. First, the previously prepared SWNCTs masterbatch was
initially mixed at 120 ◦C with stearic acid and zinc oxide for 10 min, after the temperature
was lowered to 70 ◦C and then, the remaining 95 g of NR and the specified amounts of
sulfur, MBTS, and PBN were added and mixed for 15 min. In the case of CB-filled NR
composites, NR, CB, and additives were milled all together at 70 ◦C for 15 min. The
resulting NR composites were identified as NR-S-SWCNTs or NR-S-CB. For comparison,
an NR composite without using fillers was prepared as a reference and named as NR-S.
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Table 2. Formulations used for sulfur vulcanized NR composites.

Component NR (phr) CB (phr) SWCNTs (phr)

NR 100 100 100
Zinc oxide 5 5 5

Stearic Acid 1 1 1
Sulfur 2.5 2.5 2.5
MBTS 1 1 1
PBN 1 1 1
CB - 0.7 -

SWCNTs - - 0.7

2.4. Preparation of NR Composites with Organic Peroxides

In the formulations with organic peroxides (T29, DCP, and T145), first, NR was added
to the open two-roller mill operated at a rotor speed ratio of 1:1.4. The milling process
was carried out isothermally at 70 ◦C for 10 min. Afterward, SWCNTs masterbatch or CB
particles were added to the mill, and seven min later, the organic peroxide was added to the
mixture and maintained for an additional five min. The NR composites vulcanized with
each organic peroxide and containing fillers were termed under the following notation:
NR-organic peroxide-filler; for example, NR-T29-SWCNTs. Similarly, an NR composite
without adding fillers (Neat) was also prepared in each case and used as a reference. The
composite formulations for the preparation of the NR composites vulcanized with organic
peroxides are described in Table 3.

Table 3. Formulations used for organic peroxide vulcanized NR composites.

Component NR (phr) CB (phr) SWCNTs (phr)

NR 100 100 100
Organic peroxide 1 2.5 2.5 2.5

CB - 0.7 -
SWCNTs - - 0.7

1 Organic peroxides used were T29, DCP, or T145.

2.5. Vulcanization–Compression Molding Process

Vulcanization of sample plates was performed by compression molding; the NR
composites obtained by the milling process were placed in a 200 mm × 200 mm × 2 mm
steel mold at high temperature and compressed under 3 × 104 kg cm−2 of pressure using
a thermostated hydraulic press, Model 0230H-X4A (PHI, City of Industry, CA, USA).
Temperatures and vulcanization times were set according to the vulcanization agent as
described below. Once the desired vulcanization times (t.v.) were reached, the sample
plates were placed in a hydraulic press and compressed at 3 × 104 kg cm−2 at room
temperature controlled by running water through the platens, in order to allow cooling of
the NR composite plates.

2.6. Determination of Temperature and Time (t.v.) of Vulcanization of NR Composites

The effect of adding organic peroxides and fillers such as CB and SWCNTs on the
vulcanization of NR was evaluated. As previously mentioned, three organic peroxides: T29,
DCP, and T145, were selected as cross-linking promoters; for comparison, sulfur was also
considered as a cross-linking agent. Thermal decomposition of organic peroxides has been
observed when they are exposed to heat energy through the vulcanization process; organic
peroxides generate free radicals resulting in the cross-linking of unsaturated bonds during
the vulcanization of NR. The thermal decomposition process of most organic peroxides
follows first-order kinetics with a degradation rate constant kd [30]. The activation energy
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associated with the thermal decomposition together with the free radical half-life (t1/2)
were calculated according to the following equations:

kd = Ae−
Ea
RT (1)

t1/2 =
ln 2
kd

(2)

where kd is the decomposition rate constant, A is the Arrhenius pre-exponential factor, Ea
corresponds to the activation energy of thermal decomposition of the organic peroxide, R
is the universal gas constant, and T is the temperature at which the thermal decomposition
occurs, i.e., the vulcanization temperature.

The vulcanization temperatures were selected according to the processing conditions
suggested by the organic peroxide supplier, being 129, 160, and 173 ◦C for T29, DCP,
and T145, respectively. The theoretical vulcanization times for each organic peroxide
were calculated according to the reported decomposition rate constant [30] at the selected
temperature and using Equation (2). We assumed that the vulcanization times (t.v.) were
close to the peroxide half-life (t1/2) since the lifetimes of the free radicals were in the
order of milliseconds. To compare the theoretical vulcanization times, the experimental
vulcanization times (t.v.) of the NR composites were evaluated by oscillatory rheometric
measurements using an oscillatory rheometer, Model MCR 301 (Anton Parr, Ashland,
VA, USA).

2.7. Characterization Techniques
2.7.1. Electron Microscopy

Analysis by high-resolution transmission electron microscopy (HR-TEM) of SWCNTs
was performed in a FEI-TITAN 80–300 kV microscope operating at 120 kV. Microstructural
analysis of composites was conducted on the cryofractured surfaces of specimens using
a field-emission scanning electron microscope (FE-SEM) JSM 7401F (JEOL, Peabody, MA,
USA) under an acceleration voltage of 5 kV.

2.7.2. Mechanical Properties

For tensile strength determinations of the NR composites, dumbbell-shaped samples
were prepared from the sample sheets following the ASTM D-412 standard method. For
tearing measurements, the type C samples were prepared according to the ASTM D-
624 standard method. All test specimens were placed into a conditioning chamber at
25 ◦C ± 1 ◦C and 50% relative humidity for 24 h before testing. Tensile and tearing tests
were done in a universal testing machine, Model SFM-120 (United Testing Systems Inc.,
Fullerton, CA, USA) according to the specified ASTM standard method in each case.
Hardness measurements of the NR composites were determined with a Shore A durometer
according to the ASTM D-2240 standard method. The reported values of mechanical
properties for each sample were averages obtained from the measurements performed in
different specimens.

2.7.3. Raman Spectroscopy

With the purpose to examine the interactions between the free radicals generated
from the NR vulcanization with organic peroxides and SWCNTs, the NR composites were
evaluated by Raman spectroscopy. Measurements were performed in a Raman microscope
Model Xplora (Horiba Corp., Kyoto, Japan) equipped with a laser light source of 785 nm
and 10× objective. Raman spectra were obtained in the range 100–4000 cm−1 with an
acquisition time of 30 s.

2.8. Determination of Average Molecular Weight between Cross-Link Points (Mc)

To evaluate the degree of vulcanization of the NR composites, calculations of average
molecular weight between cross-link points (Mc) by using the solvent swelling method
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were performed. One gram of the vulcanized rubber was immersed in benzene for 24 h; sub-
sequently, the sample was extracted, dried, and weighted. The ratio between the volumetric
swelling and the degree of vulcanization is given by the Flory–Rehner equation [31]:

−
[
ln(1 − Vr) + Vr + χV2

r

]
=

ρVsV1/3
r

Mc
(3)

where Vr corresponds to the rubber volume fraction in the swollen rubber, χ is the
Flory–Huggins interaction parameter between rubber and solvent, ρ is the rubber density
without additives (g cm−3), Vs is the solvent molar volume (cm3 (g mol)−1), and Mc refers
to the average molecular weight between cross-link points (g (g mol)−1).

3. Results and Discussion
3.1. Analysis of NR Vulcanization Process

To analyze the influence of the organic peroxides and fillers such SWCNTs and CB
on the vulcanization of the NR composites, curing curves for each NR formulation were
obtained. In order to illustrate this effect, the viscosity vs. time curves obtained for
NR-SWCNTs composites using DCP at 160 ◦C are depicted in Figure 2. As observed,
three zones can be distinguished in a typical vulcanization curve. The first one, at low
viscosity values, is defined as an induction zone where the free radicals are forming, and
the earlier reactions take place. The second zone corresponds to the curing stage, which
is characterized by an increase in the viscosity of the elastomer; during this time, most
of the cross-linking reactions occur. The vulcanization time (t.v.) is the time at which the
highest viscosity value is reached on the vulcanization curve. The third zone is defined
as an over-curing or maturation stage due to an excess of free radicals; in this region,
a decrease in viscosity can be observed since the applied torque, which can lead to a certain
degree of degradation of the NR. As shown, the curing curve of neat NR-DCP composite
exhibits a relatively extended induction zone maintaining viscosity values almost constant
by around 200 s; after, it suddenly reaches its highest viscosity value at 252 s. On the other
hand, when SWCNTs are added to the formulation, a significant decrease in induction
time is observed, producing that the curing peak of NR occurs at lower vulcanization time
and at lower viscosity values compared to the NR composites without fillers. As for the
NR-DCP-CB composite, the vulcanization curve shows a much more gradual tendency
toward the maximum point of curing, which is recorded at a higher t.v. value than the
NR-DCP-SWCNTs composite and at a lower viscosity value compared to the neat NR-DCP
and NR-DCP-SWCNT composites.
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The experimental vulcanization times (t.v.) were obtained from the analysis of the
curing curves of each NR formulation; results are listed in Table 4. As shown in this table,
good agreement is obtained between the calculated and the experimental t.v. values of the
neat NR formulations. When NR was filled with SWCNTs or CB, a reduction in the t.v.
value is observed in all cases. In this set of composites, a remarkable 50% reduction in t.v.
(from 600 to 300 s) was found when sulfur was used as the vulcanization promoter. Similar
results are found for the NR filled with SWCNT composites using organic peroxides as
cross-linking agents, recording a notable reduction in t.v. of up to 31.7% (for T29) and
22.4% (for DCP) compared to the neat NR composites; such a reduction in t.v. occurs in the
following order T29 > DCP > T145. We suggest that whenever SWCNTs are used as filler for
NR, it is necessary to consider the decrement in t.v. to avoid an over-cure when the NR is
processed. The reduction in t.v. could be considered as an acceleration of the vulcanization
reaction and be attributed to two possible effects: (i) the generation of free radicals due to
the thermal decomposition of the organic peroxide or accelerator (when sulfur is used—i.e.,
MTBS); here, the heat transfer can drive the extent of the radical generation. When the heat
is better transferred to the elastomer, an acceleration in the vulcanization reactions will
take place leading to the reduction in t.v. Based on this, we suppose that such behavior is
promoted by the high thermal conductivity of SWCNTs (2000 W (mK)−1) [32], which can
generate hot points between the nanotubes in the NR surroundings, and ii) the second effect
can be attributed to the chemical reaction involved during the vulcanization process; it is
well known that the SWCNTs can react with the free radicals [33]; thus, the heat generated
by this reaction can influence the reduction in t.v. For its part, the moderate acceleration for
the vulcanization reaction of the NR-CB composites which experience the same reduction
in t.v and tendency: T29 > DCP > T145, is probably due to the lower thermal conductivity
of CB (0.215 W (mK)−1) compared to the thermal conductivity of SWCNTs [34].

Table 4. Vulcanization times (t.v.) obtained for the vulcanization of NR composites.

Sample
t.v. (s) (% Time Reduction)

Sulfur (160 ◦C) T29 (129 ◦C) DCP (160 ◦C) T145 (173 ◦C)

Calculated 1 - 382 255 368
Neat 600 380 252 368
CB 480 (20) 312 (18.3) 240 (5.9) 360 (2.2)

SWCNTs 300 (50) 261 (31.7) 198 (22.4) 306 (16.8)
1 The half-life time of the organic peroxides (t1/2) calculated with the kd value at the processing temperatures.

3.2. Microstructural Analysis

To analyze the microstructure of SWCNTs used in this work, HR-TEM images were
obtained, as depicted in Figure 3. As observed, the original pristine SWCNTs show bundles
with diameters in the micron range due to strong interactions among SWCNTs by the
Van der Waals forces, and diameter size distribution close to 10 nm. On the other hand,
the micrographs of the cryofractured surface of the NR-SWCNTs composite cross-linked
with DCP, obtained at different magnifications (Figure 4), exhibit good dispersion state
of SWCNTs, which are well embedded within the NR matrix (Figure 4a). Additionally, it
is possible to observe individualized SWCNTs (Figure 4b) that show not only a physical
interaction, but also interaction with the rubber phase (Figure 4c). Regarding the dispersion
method used in our composites, we consider that it achieved an apparently good state of
dispersion of carbon nanostructures in the NR and bundles are not easily appreciated.
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3.3. Mechanical Properties of NR Composites Using Different Cross-Linking Agents
3.3.1. Tensile Properties

The mechanical performance of NR is highly dependent on (i) the shape and dispersion
of the filler throughout the material, (ii) the dispersion of the cross-linking agent in the
polymer chains that promotes the cross-linking, and (iii) the nature and degree of the
resulting cross-linking network. Composite plates were prepared and vulcanized by
compression molding using the vulcanization temperatures and t.v., listed in Table 4, with
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the purpose to evaluate the effect of CB, SWCNTs, and the cross-linking reaction on the
mechanical properties of the NR composites with different vulcanizing agents. Figure 5
illustrates the tensile stress–strain curves obtained from the NR composites vulcanized with
sulfur, organic peroxides, and CB or SWCNTs as fillers. Table 5 summarizes the values of
tensile strength, strain at break, and modulus (at 100 and 300% strain) measured for each NR
formulation. As observed in Figure 5a, tensile stress–strain curves for the NR composites
vulcanized with sulfur exhibit the highest values of tensile strength and strain at breakage
(up to 800%) in comparison with the tensile curves of the NR composites vulcanized with
organic peroxides (Figure 5b–d). When SWCNTs are added to NR formulations, significant
increases in tensile strength, 71, 75, and 40%, are observed when comparing with the neat
NR composites vulcanized with sulfur, T29, and DCP, respectively. However, in all the cases
the reinforcing effect produced by SWCNTs leads to a decrease in the strain at breakage up
to 37% (for example, in the NR-DCP-SWCNTs composite) besides changes in the behavior
of the curves showing steeper slopes, which are clearly attributed to the stiffening of the NR
matrix. Despite this, the increase in tensile strength suggests an adequate dispersion and
distribution of SWCNTs and good interfacial adhesion between SWCNTs and the elastomer
matrix, as shown in the SEM images [20].

As for the NR-CB composites, the presence of CB particles does not produce increases
in tensile strength of the NR composites vulcanized with different agents; nevertheless,
decreases in the strain at breakage and steeper slopes in the curves compared to the
NR composites without fillers can be observed, although, to a lesser extent than with
SWCNTs, it is also related to the increase in the mechanical stiffness of the NR composites,
as described below.
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Table 5. Values of tensile properties obtained for NR composites.

Sample ID Tensile Strength
(MPa)

Strain at Breakage
(%)

Modulus (MPa)

100% 300%

NR-S 14.77 800 0.87 2.50
NR-S-CB 10.39 600 0.95 2.84

NR-S-SWCNTs 25.23 790 1.10 4.05

NR-T29 4.52 651 0.36 1.14
NR-T29-CB 2.82 687 0.34 1.07

NR-T29-SWCNTs 7.90 564 0.66 1.61

NR-DCP 7.25 600 0.86 2.56
NR-DCP-CB 8.77 516 0.83 2.78

NR-DCP-SWCNTs 10.14 495 0.88 2.98

NR-T145 5.52 592 0.52 1.50
NR-T145-CB 5.06 406 0.63 2.88

NR-T145-SWCNTs 3.44 372 0.65 2.50

Figure 6 shows the comparison between the relative increments in modulus at 100
and 300% strain for all the NR composites samples with different vulcanization agents
and incorporating CB or SWCNTs. Relative increments in modulus for each set of samples
were calculated based on the modulus value obtained in the neat NR composite (NR-S,
NR-T29, NR-DCP, or NR-T145). Remarkable increases in modulus for the NR-SWCNTs
composites are observed when compared with the neat NR or NR-CB composites. For
the NR-S composites with SWCNTs, increments of 26% (at 100% strain) and 62% (at 300%
strain) compared to the neat NR-S sample are found. On the other hand, moduli of the
NR composites vulcanized with organic peroxides also show significant increments after
SWCNTs incorporation; for example, the NR-T29 composites increase 83% and 41% at
100% and 300% strain, respectively, and the NR-T145 composites recorded 25% and 67%
enhancement at the same conditions. However, when DCP was used as a cross-linker,
a moderate increment in modulus value for SWCNTs is observed, showing a maximum
increment of 16% when compared with the neat formulation; nonetheless, it should be
noted that the values measured for modulus at 100 and 300% strain for the NR-DCP
composites (see Table 5) are very close to those obtained for the NR-S composites.
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Figure 6. Relative increments in modulus at (a) 100 and (b) 300% strain for the NR composites
vulcanized with different cross-linking agents and incorporating CB or SWCNTs as fillers.

For NR composites containing CB as filler, increments in modulus for most of the
samples are less significant than those observed in the NR composites with SWCNTs.
Particularly, in the NR composites vulcanized with organic peroxides (T29 and DCP), the
CB addition causes a detrimental effect in modulus at 100% strain, unlike the tendency
observed in the NR-T145 composites, where the CB particles produce a notable increase in
stiffness for the NR formulations.
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3.3.2. Tear Strength and Hardness

The tear strength and hardness were additionally evaluated for these materials. The
values obtained for the NR composites vulcanized with different cross-linking agents and
in the presence of CB or SWCNTs are shown in Table 6. In general, the vulcanization using
sulfur produces NR composites with higher tear strength in comparison with the use of
organic peroxides. From SWCNTs addition to the neat NR formulations, increments in the tear
strength from 4 to up to 27% for most of the composites are observed; however, the effect of
reinforcement brought from the SWCNTs incorporation is less significant than that observed
in tensile strength and modulus. As for the NR-CB composites, except for the NR-T29-CB
composite, the tear strength diminishes when compared with the neat NR composites.

Table 6. Values of tear strength, hardness, and Mc obtained for NR composites.

Sample ID Tear Strength
(N m−1) Hardness Mc

g (g mol)−1

NR-S 68.6 30.4 7353
NR-S-CB 61.2 31.6 7353

NR-S-SWCNTs 71.4 33.6 9434

NR-T29 6.3 17.2 64,831
NR-T29-CB 7.7 16.5 101,555

NR-T29-SWCNTs 8.0 18.2 17,752

NR-DCP 51.5 35.4 8571
NR-DCP-CB 38.2 37.6 108,042

NR-DCP-SWCNTs 55.1 37.4 7353

NR-T145 36.2 23.3 19,584
NR-T145-CB 15.3 21.2 48,723

NR-T145-SWCNTs 23.4 24 29,215

Regarding the hardness measurements, it can be observed that the NR-DCP composites
exhibit the highest values of hardness among all the samples analyzed in the present work.
Similar to the tear strength values, the SWCNTs addition to either the sulfur or organic
peroxides formulations modestly increases the hardness in a range of 3 to 10% compared to
the neat NR composites. In the case of the NR-CB composites, the increases in hardness are
lower than those found for the NR-SWCNTs composites. Considering that the differences
between the hardness values obtained for the neat NR and NR with fillers for a given
cross-linked agent are relatively small, it would be difficult to establish any behavioral
tendency for the produced NR composites.

3.4. Evaluation of the Degree of Vulcanization of NR Composites

One typical method to evaluate the degree of vulcanization in elastomers is the de-
termination of the average molecular weight of the rubber segments between neighboring
cross-links, Mc, [31,35]; a lower value of Mc implies higher vulcanization and improvement in
the mechanical properties. In that sense, the Mc values for the NR composites vulcanized with
different cross-linking agents and adding CB or SWCNTs were calculated and included in
Table 6. As observed, the Mc values obtained for the NR composites vulcanized with organic
peroxides are higher than those of the NR-S composites; such behavior can be attributed
to dissimilarities in the type and number of bonds formed during the cross-linking process.
Specifically, the addition of SWCNTs to NR formulated with T29 and DCP leads to an impor-
tant reduction in the Mc values in comparison with those of the neat NR formulations and
the NR-CB composites; this is indicative of a major degree of cross-linking derived from the
existence of multiple interactions between SWCNTs and free radicals generated during the
vulcanization process. Based on the above, it is possible to confirm that the use of SWCNT at
contents <1 phr can increase the degree of vulcanization of NR mainly when organic peroxides
are used as cross-linking agents, thus leading to the enhancement of mechanical properties of
the developed NR composites, as previously discussed.
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It is interesting to consider that the type of bonds formed during the cross-linking
process depends on the curing agents. In the case of sulfur, mono- (C-S-C), di- (C-S2-C), and
polysulfidic (C-Sx-C) bonds can be formed [4,36,37]. It is well known that the longer the
bond that links the rubber molecules, then higher will be the mobility between polymeric
chains, and thus, the final rubber compound will be more flexible. In contrast, organic
peroxides generate exclusively C-C bonds less flexible than C-Sx-C chemical bonds. As
a result, one expects that the tensile failure strain will be higher in materials with C-Sx-C
bonds and lower in materials vulcanized with exclusive C-C bonds. This can explain the
lower values of tensile strength obtained in the NR composites vulcanized with organic
peroxides. Furthermore, it is well accepted that the interactions between nanotubes and
rubber molecules occur through entanglements and classical nonbonded interactions [38];
however, the reduction observed in the vulcanization time of the NR-SWCNTs composites
in conjunction with the increments in moduli, tensile strength, and reduction in the strain at
breakage (Table 5) lead us to suppose that an interaction between the NR and the SWCNTs
certainly occurred. A key condition for such an interaction to occur is an efficient dispersion
of SWCNTs in the rubber matrix, which was accomplished by the previous SWCNTs
dispersion in the masterbatch and the subsequent milling process with the components
of the formulation. In that sense, we suggest a grafting reaction between the rubber
macroradicals generated during the vulcanization process with the surface of SWCNTs.
The free radicals generated at the NR segments may interact with the walls of the nanotube
resulting in a reduction in the mobility of the NR chains, thus producing a more rigid
polymer network. Scheme 1 shows a possible vulcanization reaction mechanism of NR
using the studied organic peroxides, including the possible reaction between the free
radicals generated due to the thermal decomposition of the organic peroxide with the
SWCNT surface.
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Additionally, the differences found in mechanical properties for the peroxides used
are related to the cross-linking densities obtained in each case. This can be explained by the
different reaction mechanisms that occurred, which are mainly based on the type and the
free radical half-life (t1/2). In general, organic peroxides first undergo homolytic cleavage
to form primary radicals, which can be fragmented into secondary radicals, as shown in
Scheme 1, modifying the chemistry of the generated radicals. Such is the case of DCP,
where its homolytic cleavage leads to the formation of primary cumyloxy radicals, which
can experience a beta scission to form secondary methyl radicals and acetophenone [39–41].
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Methyl radicals are smaller and less sterically hindered, so that they are more accessible to
reactive functional centers on rubber chains; in addition, they have a lower half-life, which
changes the physical properties of vulcanizates and promotes a major degree of cross-
linking, lower values of Mc and, in consequence, better mechanical properties, as shown
Tables 5 and 6. Apparently, this mechanism is favored when SWCNTs are employed in the
formulations, resulting in lower values of Mc due to the multiple interactions among the
sp2 carbon bonds of SWCNTs and free radicals generated during the vulcanization process
(Scheme 1), which produce a more closed network with a larger number of cross-link points.

Considering the other two peroxides (T29 and T145), a similar mechanism can occur;
however, the mechanical properties observed in these composites were lower than those
for DCP composites. These results can be attributed to the occurrence of reactions when
adding peroxide radicals to the double bonds of unsaturated rubber chains or abstraction
of reactive allylic hydrogen atoms [41]. Both mechanisms can proceed concurrently and be
highly competitive, leading to the formation of multiple chain bonds, which can generate
clusters that decrease the resulting mechanical properties.

3.5. Raman Spectroscopy of NR-SWCNTs Composites

Raman spectroscopy has been used as an efficient method to study the effect of SWCNTs
on NR in composites [17,18]. Figure 7 shows the Raman spectrum of the pristine SWCNTs
employed as filler in the NR composites. As observed, the characteristic absorption bands
of SWCNTs comprise the radial breathing mode (RBM) at low frequencies in the range
100–250 cm−1, the tangential G-band at 1585 cm−1, and several weak features such as the
D-band at 1310 cm−1 related to defects in the nanotube structure [42,43] and the M-band
near 1750 cm−1 (an overtone of the out-of-plane infrared-active mode in graphite) [44].
The presence of such absorption bands matches the semiconductor nature of SWCNTs.
Additional evidence of the semiconductor nature of the SWCNTs employed in the present
work is the distortion of the line shape of the G-band (inset in Figure 7) attributed to the
G+ and G− features. The first feature (G+) is associated with carbon atom vibrations along
the nanotube axis (longitudinal optic phonon mode, which appears at 1585 cm−1) and the
second G− feature (at 1556 cm−1), which is sensitive to charge transfer from dopant additions
to SWCNTs [43,45]. The G’-band is considered a second-order feature and gives information
about the electronic structure of the semiconductor or metallic nature of SWCNTs.
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Figure 7. Raman spectrum of pristine SWCNTs (semiconducting). The inset shows the deconvolution
of the G-band into gaussian components performed to show the weak double resonance features on
G-band associated with the M-band. Here, the blue solid line corresponds to experimental data, the
dashed line to the curve fitting, and the red and green solid lines indicate the computed fitting curves.
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Figure 8 displays the G- and G’-band Raman spectra of the NR-SWCNTs composites
formulated with different cross-linking agents compared with the Raman spectrum of
the pristine SWCNTs. As shown in Figure 8a, the intensity of the G-band for pristine
SWCNTs monotonically decreases when reacting with the different cross-linking promoters;
such tendency seems to be more evident in the NR-SWCNTs composites vulcanized with
organic peroxides. Another important observation is that the G− feature of SWCNTs
completely disappears once the vulcanization process with each cross-linker occurs, which
can reflect the hardening of the C–C bonds as the electronic density decreases [46], probably
due to the reaction between the free radicals formed during the vulcanization process
with organic peroxides and the wall surface of the SWCNTs. Additional data to support
such assertions can be obtained by analyzing the D-band (Figure 7); the absorption at
1310 cm−1 corresponds to disordered graphite structures. The D-band is activated through
the first-order excitation process of sp2 carbons by the presence of in-plane-substituted
heteroatoms, vacancies, and grain boundaries, and provides unique information on the
chirality and diameter dependence [43]. This second-order feature can be used for materials
characterization to probe and monitor structural modifications of the nanotube sidewalls
that come from the introduction of defects and the attachment of different chemical species.
It has been accepted that the sample purity or the modification degree of the nanotube
sidewall can be obtained by calculating the D/G band intensity ratio (ID/IG) from the
Raman spectra of SWCNT composites [47]; thus, the intensity ratios of the NR-SWCNTs
composites with different vulcanization agents were calculated and listed in Table 7. For
the vulcanized composites, increments in the ID/IG ratio due to increases in the D-band
intensity are obtained. This result indicates a sidewall modification in the SWCNTs due
to the reaction with the free radicals generated during the vulcanization process; such
an interaction introduces defects and probably attaches reactive chemical species to the
nanotube walls.

Polymers 2023, 15, x FOR PEER REVIEW 14 of 18 
 

 

Figure 8 displays the G- and G’-band Raman spectra of the NR-SWCNTs composites 
formulated with different cross-linking agents compared with the Raman spectrum of the 
pristine SWCNTs. As shown in Figure 8a, the intensity of the G-band for pristine SWCNTs 
monotonically decreases when reacting with the different cross-linking promoters; such 
tendency seems to be more evident in the NR-SWCNTs composites vulcanized with or-
ganic peroxides. Another important observation is that the 𝐺ି feature of SWCNTs com-
pletely disappears once the vulcanization process with each cross-linker occurs, which 
can reflect the hardening of the C–C bonds as the electronic density decreases [46], prob-
ably due to the reaction between the free radicals formed during the vulcanization process 
with organic peroxides and the wall surface of the SWCNTs. Additional data to support 
such assertions can be obtained by analyzing the D-band (Figure 7); the absorption at 1310 
cm−1 corresponds to disordered graphite structures. The D-band is activated through the 
first-order excitation process of sp2 carbons by the presence of in-plane-substituted het-
eroatoms, vacancies, and grain boundaries, and provides unique information on the chi-
rality and diameter dependence [43]. This second-order feature can be used for materials 
characterization to probe and monitor structural modifications of the nanotube sidewalls 
that come from the introduction of defects and the attachment of different chemical spe-
cies. It has been accepted that the sample purity or the modification degree of the nano-
tube sidewall can be obtained by calculating the D/G band intensity ratio (ID/IG) from the 
Raman spectra of SWCNT composites [47]; thus, the intensity ratios of the NR-SWCNTs 
composites with different vulcanization agents were calculated and listed in Table 7. For 
the vulcanized composites, increments in the ID/IG ratio due to increases in the D-band 
intensity are obtained. This result indicates a sidewall modification in the SWCNTs due 
to the reaction with the free radicals generated during the vulcanization process; such an 
interaction introduces defects and probably attaches reactive chemical species to the nano-
tube walls. 

 
Figure 8. Raman spectra of (a) G-, and (b) G’-band of the NR-SWCNTs composites using different 
cross-linking agents. 

  

Figure 8. Raman spectra of (a) G-, and (b) G’-band of the NR-SWCNTs composites using different
cross-linking agents.



Polymers 2023, 15, 126 15 of 17

Table 7. ID/IG ratio of the NR-SWCNTs composites with different vulcanization agents.

NR-SWCNTs Composites ID/IG Ratio Frequency, δ
[δG’

NR−SWCNTs
−δG’

SWCNTs
] (cm−1)

SWCNTs (pristine) 0.2452 0
NR-S-SWCNTs 0.3778 5

NR-T29-SWCNTs 0.3648 13
NR-DCP-SWCNTs 0.3195 16
NR-T145-SWCNTs 0.3520 17

Additionally, Figure 8b shows a comparison of the G’-band Raman spectra of the
pristine SWCNTs and the NR-SWCNTs composites. In most of the NR-SWCNTs composites
vulcanized using either sulfur or organic peroxides, the G’-band exhibits decrements in
intensity and notable shifts toward higher-frequency compared to the pristine SWCNTs.
Shifts in the G’ absorption band for the vulcanized materials were calculated from the
difference in frequency recorded for the NR-SWCNTs composites and the pristine SWCNTs
(2561 cm−1) and included in Table 7. As can be observed, the NR-SWCNTs composites
vulcanized with organic peroxides show positive shifts from 13 up to 17 cm−1 concerning
the original G’-band frequency, which indicates an interaction between the free radicals
generated during the NR vulcanization and the sidewalls of the SWCNTs. According to
Zhao et al. [18], the extent of the G’-band shift can be correlated to the degree of vulcan-
ization in elastomer composites. Based on this and from the mechanical properties and
cross-linking degree obtained in our NR composites, we can confirm that the addition of
a small content of SWCNTs (0.7 phr) to NR formulations favorably promotes the vulcan-
ization of NR, mainly when organic peroxides are used as cross-linking agents; this is due
to the multiple interactions between SWCNTs and the free radicals generated during the
vulcanization process, which leads to considerable enhancement in physical properties of
the developed NR-SWCNTs composites.

4. Conclusions

The effect of SWCNTs on the vulcanization process of the NR using organic peroxides
was analyzed. NR composites filled with SWCNTs show a notable reduction in the t.v.
values when compared with the neat NR composites and the NR-CB composites; this is
associated with the presence of free radicals generated by thermal decomposition. We
suggest that the concentration of the free radicals was increased by the high thermal
conductivity of the SWCNTs. The mechanical properties of the NR composites vulcanized
with different cross-linking agents exhibit increases in tensile strength, moduli, tear strength,
and hardness of up to 75, 83, 27, and 10%, respectively, when the SWCNTs are used as
filler in the NR composites. The lower values of strain at breakage for the NR-SWCNTs
composites obtained through the vulcanization with organic peroxides suggest that the C-C
bonds formed during the process promote the formation of more rigid polymer networks.
The evaluation of the degree of vulcanization by the calculations of Mc values confirms the
improvement in the vulcanization for the NR-SWCNTs composites, mainly when organic
peroxides are used as cross-linking agents. The analysis by Raman spectroscopy indicates
the interactions between nanotube walls, free radicals, and reactive chemical species during
the vulcanization process, which introduce defects that increase the disorder (D-band)
and reduce the semiconductor character (G-band) of the SWCNTs. From the experimental
findings obtained for the NR composites developed in the present work, it is possible to
confirm that the incorporation of SWCNTs at a relatively low content (0.7 phr) in conjunction
with the use of organic peroxides for the NR vulcanization represents a potential alternative
to the traditional methods used for the improvement of the physicochemical properties of
NR composites.
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