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Abstract: This work reports on an innovative dewetting process of silver thin films to realize percola-
tive nanoparticle arrays (NPAs) and demonstrates its application on highly sensitive pressure sensors.
The dewetting process, which is a simple and promising technique, synthesizes NPAs by breaking
the as-deposited metal film into randomly distributed islands. The NPA properties, such as the mean
particle size and the spacing between adjacent particles, can be easily tailored by controlling the
dewetting temperature, as well as the as-deposited metal-film thickness. The fabricated NPAs were
employed to develop gauge pressure sensors with high sensitivity. The proposed sensor consists of a
sealed reference-pressure cavity, a polyimide (PI) membrane patterned with an interdigital electrode
pair (IEP), and a silver NPA deposited on the IEP and the PI membrane. The operational principle
of the device is based on the NPA percolation effect with deformation-dependence. The fabricated
sensors exhibit rapid responses and excellent linearity at around 1 atm. The maximum sensitivity is
about 0.1 kPa−1. The advantages of the proposed devices include ultrahigh sensitivity, a reduced
thermal disturbance, and a decreased power consumption. A practical application of this pressure
sensor with high resolution was demonstrated by using it to measure the relative floor height of
a building.

Keywords: silver thin film; nanoparticle arrays; percolation; dewetting process; pressure sensor

1. Introduction

Miniaturized precision pressure sensors are vital for numerous applications in various
fields. In recent years, the development of high-resolution pressure sensors for measuring
ambient pressure has received great attention because of the rapid progress of wearable sys-
tems and mobile devices [1–7]. Various types of nanomaterials, including two-dimensional
layers [8–10], nanotubes [11–13], nanofibers [14–16], and nanoparticles (NPs) [17–19], were
proposed as the key materials for these pressure-sensing devices. In general, the sens-
ing principle is based on the electron tunneling transport between closely spaced NPs,
which gives rise to a sharp change in electronic conductance induced by the structure
deformation [20]. However, the sensitivities of these devices are usually moderate, and
some of the polymer-based approaches suffer from a high hysteresis effect [21]. Therefore,
in recent years, percolative nanoparticle arrays (NPAs), which exhibit high sensitivity, as
well as strain tolerance, have been proposed as piezoresistive transducing elements for
ultrasensitive pressure sensors. In general, a percolative NPA is formed by depositing
NPs arranged in a configuration so that the spacing between adjacent NPs is sufficiently
small that the electron transport between neighboring NPs is dominated by the electrons
tunneling and hopping across energy barriers.

Magnetron sputtering systems with gas aggregation cluster sources (GASs) are one
of the most popular tools for the fabrication of a wide variety of metallic NPAs. For
example, a device with strain-sensing elements with a high sensitivity realized by the GAS
sputtering technique was proposed [22]. The device sensitivity is about ten times higher
than that of devices with traditional metallic films. In addition, Du et al. [23] employed
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a similar sputtering process to realize a strain sensing device based on chromium NPAs
with a sensitivity this is about one hundred times higher than metallic- or semiconductor-
based strain sensors. In [20], an ultrahigh sensitive piezoresistive pressure sensor with
percolative dense metal NPs deposited on a flexible polyethylene terephthalate membrane
was proposed. The device exhibits a very high resolution of about 0.5 Pa.

These approaches employed a GAS to realize high-quality percolative NPAs for ex-
cellent strain-sensing devices. However, GAS sputtering systems are more complex than
typical sputtering tools. In addition, it is well known that a GAS is quite inefficient in terms
of target material utilization because the redeposition on the target surface is uncontrol-
lable [24]. In this work, we propose a simple technique to fabricate percolative NPAs for
a high-resolution pressure sensor by using a standard sputtering tool with an innovative
dewetting process [25,26]. The pressure sensor comprises of an NPA, an interdigital elec-
trode pair (IEP) on a flexible membrane, and a substrate with a cavity. The metal NPA
is fabricated by dewetting a thin metal film by using a standard sputter with a special
annealing step. The dewetting process, which is driven by the energy minimization of all
surfaces and interfaces in an as-deposited film, is a simple and promising technique for
realizing ordered NPAs. In addition, by controlling the annealing temperature, as well as
the as-deposited film thickness, the NPA properties, such as the mean particle size and the
spacing between the adjacent particles, can be tailored [27]. This dewetting process is quite
simple and repeatable [28]. Additionally, the size of the NPs and the distance between NPs
may be controlled independently [29]. The sensing principle of the NPA is based on the
percolation effect with deformation-dependence. The advantages of the proposed devices
include ultrahigh sensitivity, reduced thermal noises, and a reduced power consumption.
In summary, the aim of this work is to develop an innovative dewetting process of silver
thin films by using a standard sputtering tool to realize percolative nanoparticle arrays
(NPAs) and demonstrate its application on highly sensitive pressure sensors.

2. Materials and Methods
2.1. Design Strategy of Percolative Sensing Principle

This sub-section described the sensing principle of percolative NPAs and realized the
proposed dewetting process of the silver thin film. Figure 1a shows the schematic and the
exploded view of the proposed pressure sensor. The device consists of a sealed reference-
pressure cavity and a polyimide (PI) membrane patterned with an IEP. In addition, an array
of randomly distributed silver NPs deposited on the IEP and the PI membrane serves as
the key pressure-sensing element using the percolation phenomenon. Figure 1b,c are the
top view and the cross-sectional view of the device, respectively. The dimensions of the
device are also indicated in the sub-figure. The thickness of the IEP is 230 nm, and the
width of each IEP finger is 60 µm. The gap between IEP fingers is 45 µm.

The device’s operational principle is shown in Figure 2, where Pa is the ambient
pressure. Pc is the cavity pressure created during the cavity-sealing process and serves
as the reference pressure. The figure on the right side is a schematic view illustrating
the distance between silver NPs. As Pa is the same as Pc (Figure 2a), the PI membrane
is undeformed, and the average distance between NPs is l0. As Pa is smaller than Pc
(Figure 2b), the membrane deforms upward, which induces a tensile strain around the
central region of the top surface of the membrane [20]. Consequently, the average distance
between adjacent NPs increases (l1 > l0), resulting in the destruction of the percolation
pathways, which results in an increase in the NPA sheet resistance [22,30–32]. Figure 2c
is the schematic illustrating the behavior when Pa is larger than Pc. The mean distance
between silver NPs decreases (l2 < l0). Thus, the number of percolative pathways in the
whole sensing element increases, which in turn decreases the NPA sheet resistance. Hence,
the resistance change in the NPA, which can easily be measured with the IEP patterned on
the PI membrane, reflects the pressure difference between Pa and Pc. Based on the model
presented in [30], the ratio of the electrical conductivity (resistance) of the thin films can be
described by the following equation:
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where e is the electron charge (1.6 × 10−19 C), ε0 is the permittivity in air (8.854 × 10−12 F/m),
εr is the relative permittivity in air (1), k is the Boltzmann’s constant (1.38 × 10−23 J/K),
T is the ambient temperature (300 K), β is the electron coupling term (about 4 nm−1 [32]),
r represents the particle radius, and l0 represents the undeformed interparticle average
spacing (nm), and l represents the deformed interparticle average spacing (nm).

Equation (1) can be further simplified as Equation (2) since the second exponential
term is very close to unity [31].

R
R0

=
σ0

σ
= exp[−β(l0 − l)] = exp[β(∆l)] (2)

where ∆l = l − l0.
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Figure 1. (a) Schematic of the proposed pressure sensor. (b) The top view and (c) the cross-sectional
view of the device. (d) The picture of the fabricated devices.
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Figure 2. The device operational principle for three different conditions: (a) Pa = Pc, (b) Pa < Pc, and
(c) Pa > Pc.

2.2. Device Fabrication and Dewetting Process

The main structure of the proposed device was fabricated using micromachining
techniques. The silver NPA on the electrode pairs was realized by applying the dewetting
process on a silver thin film [33]. In general, an as-deposited metallic thin film is not stable,
and therefore tends to agglomerate to form arrays of isolated islands when heated. Note
that both the dewetting process and the surface tension phenomenon can be described by
the Young–Laplace equation [25]. Therefore, forming tiny islands (nanoparticles) in the
dewetting phenomenon can be analogous to forming liquid droplets caused by surface
tension, which is achieved by the energy minimization of all surfaces. In addition, the
dewetting process could happen well below the metal melting temperature.

Figure 3 illustrates the micromachining process to fabricate the proposed pressure
sensing device. The IEP layer was patterned onto the PI film (Kapton® KJ, DuPont, Taipei,
Taiwan) using standard micromachining techniques (Figure 3a–g). First, a layer of an
AZ-P4620 photoresist film (10-µm) was spin-coated onto a glass wafer (Figure 3a). The
photoresist serves as a sacrificial layer. Then, a PI layer was deposited onto the sacrificial
layer (Figure 3b). A 30-nm chromium (Cr) layer, which served as an adhesion layer for
copper (Cu) layer deposition, was then deposited by a sputtering process. Subsequently,
a 300-nm Cu layer was sputtered onto the Cr layer (Figure 3c). Then, another layer of
AZ-P4620 photoresist was spin-coated (Figure 3d). This layer was patterned as the IEP
etching mask (Figure 3e). The IEP was formed by a wet etching process (Figure 3f) using a
copper etchant (CE-100, Transene Co., Danvers, MA, USA) and a chrome etchant (CR-7,
Transene Co., Danvers, MA, USA). Then, the etching mask (AZ-P4620 photoresist) was
removed by immersing the substrate in acetone (Figure 3g). Subsequently, a silver thin
film of 6 nm in thickness was deposited onto the IEP using a sputter [34] (Figure 3h). The
deposition rate was 3.5 Å·s−1. The whole area of the IEP was covered by the deposited
silver film. Then, by using the dewetting process, silver NPs were created on top of the
substrate (Figure 3i). The dewetting process is in fact an annealing process of the silver thin
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film at 200 ◦C for 60 min [35,36], and is performed in the chamber of the sputter without
breaking the vacuum. Note that, according to our experimental results, the PI membrane
starts to wrinkle as the annealing temperature for dewetting exceeds 230 ◦C. Once the
PI membrane wrinkles, it is considered to be damaged. After the dewetting process, the
membrane with the IEP was separated from the glass substrate by dissolving the first AZ-
P4620 photoresist film (the sacrificial layer) using acetone, as shown in Figure 3j. Finally, the
device was assembled by mounting the fabricated PI membrane onto a glass substrate with
a SU-8 cavity (Figure 3m,n) and heating it above the glass transition temperature of SU-8
(SU-8 2050, MicroChem Corporation, Westborough, MA, USA). Note that the SU-8 cavity
was formed by patterning a SU-8 layer using a standard lithography process (Figure 3k,l).
Figure 1d shows the picture of the fabricated devices.
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Figure 3. The fabrication process of the proposed device.

Figure 4 shows a series of scanning electron microscope (SEM) (FESEM, S-4800, Hi-
tachi, Ltd., Chiyoda, Tokyo, Japan) images illustrating the dewetting results with different
thicknesses of as-deposited silver films. Note that the deposition rate was measured by a
thin film deposition monitor (SQM-160, INFICON®®, Bad Ragaz, Switzerland) that uses a
quartz crystal sensor. The thickness resolution of the thin film deposition monitor is 0.037 Å,
and the maximum error is 7%. Due to dewetting, the as-deposited films continuously break
into randomly distributed islands. It was observed that relatively thin silver films (i.e., 3-nm
and 6-nm films, as shown in Figure 4a,b) result in discrete silver-isolated islands (NPs)
with almost round shapes, while relatively thick silver films (i.e., 7-nm, 9-nm, and 15-nm
films, as shown in Figure 4c–e) form islands with elongated (irregular) shapes or connected
islands. This is because the driving force for dewetting decreases as the original thickness
of the silver film increases. In addition, the dewetting phenomenon is not obvious (or does
not occur) for the film whose original thickness is relatively thick (i.e., 20-nm film, as shown
in Figure 4f).
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Figure 4. The SEM images of the dewetted results of the silver films with an original thickness of
(a) 3 nm, (b) 6 nm, (c) 7 nm, (d) 9 nm, (e) 15 nm, and (f) 20 nm.

Figure 5 shows the diameter distributions of the particles (i.e., isolated islands or
irregular/connected islands) after dewetting. These results indicate that, as the thickness
of the silver film (before dewetting) increases, the average diameter of the particles (af-
ter dewetting) increases, while the particle diameter’s standard deviation also increases
significantly. Obviously, a 6-nm-thick silver film yields an NPA with the highest particle
density and the best distributional uniformity. We use an image processing program ImageJ
(National Institute of Health, Bethesda, MD, USA) to estimate particle diameters, as well as
analyze the diameter distribution of particles from high resolution SEM images.
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Figure 6 shows the sheet resistance of dewetted silver films vs. the original thicknesses
of the silver films prior to dewetting. Each curve presents the results with the same
annealing temperature. Note that the sheet resistance was measured by using a four-point
probe system (KSR-4, Everbeing Int’l Corp., Hsinchu, Taiwan) with a source meter (Keithley
2400, Keithley Instruments, Inc., Cleveland, OH, USA). For each curve (i.e., at a specific
annealing temperature), the sheet resistance displays a dramatic drop of six orders of
magnitude when the silver film thickness increases. Further increases in the film thickness
result in a gradual reduction in the decrease in sheet resistance. This behavior of a sharp
resistance change can be described by the SEM images in Figure 4. As shown in Figure 4, the
silver films with relatively thin original thicknesses (i.e., the films with original thicknesses
of 3 nm, 6 nm, and 7 nm) result in uniformly isolated nanoparticles after the dewetting
process. Therefore, the sheet resistances of these nanoparticle arrays are quite high, as
indicated in Figure 6. Furthermore, the silver films with relatively thick original thicknesses
(i.e., the films with original thicknesses of 9-nm, 15-nm, and larger) form islands with
elongated and connected particles after dewetting. Since a large portion of the dewetted
particles are electrically connected, the sheet resistances of these dewetted films are very
small. This phenomenon aligns well with the percolation effect [37] and can be employed
to implement highly sensitive strain sensing elements in response to the tunneling effect
due to the distance change between adjacent isolated particles caused by deformation.
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3. Results and Discussion

The measurement setup for characterizing the fabricated sensors is shown in Figure 7a.
The setup consists of a fixed-volume chamber (2500 cc) and a variable-volume chamber
(about 120 cc) that is actually a glass syringe installed on a computer-controlled syringe
pump. The variable-volume chamber is connected to a fixed-volume chamber, and the
whole system is completely sealed. Therefore, the total internal volume of the chamber
system is the sum of the volumes of the fixed-volume chamber and the variable-volume
chamber. In addition, four electrical feed-throughs are installed on the fixed-volume cham-
ber for connecting the sensors with external instruments. A capacitance manometer (626C,
MKS Instruments, Andover, MA, USA) is also connected to the fixed-volume chamber to
measure the internal pressure of the chamber. Figure 7b shows the schematic of how to
change the internal pressure of the chamber. As the syringe pump slowly pushes (pulls)
the plunger of the syringe, the total volume of the system decreases (increases), and thus
the internal pressure of the system increases (decreases). The fabricated sensor is connected
electrically to an LCR meter (6440A, Wayne Kerr Electronics Co., Woburn, MA, USA) that is
located outside of the fixed-volume chamber through a vacuum-compatible feed-through.
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Figure 8a,b show the relationship between the measured resistance change vs. the pres-
sure variation for the fabricated pressure-sensing devices with different design parameters
listed in Table 1. More than 10 samples were manufactured for each device configuration
(i.e., devices A, B, C, D, E and F). The cavity diameters of the devices in Figure 8a,b are
7.5 mm and 6.0 mm, respectively. In addition, the three curves shown in each figure result
from devices with different PI membrane thicknesses. Each data point on these curves is the
average result of 10 measurements. The error bars of each data point indicate the measured
maximum and minimum values. The figures show that, as the ambient pressure is greater
than the cavity reference pressure (i.e., ∆P > 0), a compressive strain is induced on the top
surface of the membrane, resulting in a decrease in resistance. Similarly, a negative pressure
difference (i.e., ∆P < 0), which induces a tensile strain, causes an increase in resistance.
The slopes of these curves correspond to the sensor sensitivities. In addition, each curve
consists of two lines with slightly different slopes, S1 and S2. The slope S1 is associated
with the condition shown in Figure 2b, and the slope S2 is associated with Figure 2c. These
measured results also indicate that the sensor with a thinner membrane exhibits a higher
sensitivity because substantially more membrane deformation can be induced at the same
applied pressure. In addition, devices with larger cavity diameters (when the size of the IEP
is the same) are more sensitive due to the smaller effective stiffness of their membranes [38].
A brief modeling of this behavior can be found in the Supplementary Materials. Among
these devices, the maximum sensitivity is about 0.1 kPa−1.

Table 1. Dimensions of the fabricated sensors.

PI Membrane Thickness Cavity Diameter

Device A 7.5 µm 7.5 mm

Device B 12.5 µm 7.5 mm

Device C 25 µm 7.5 mm

Device D 7.5 µm 6.0 mm

Device E 12.5 µm 6.0 mm

Device F 25 µm 6.0 mm
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We can further estimate the variations of the average spacing (i.e., ∆l) using Equation (2).
According to Figure 8a, device A has the largest value of the maximum resistance variation
(i.e., 10%). Therefore, we take device A as an example to evaluate the associated ∆l. Note
that ∆l = ∆lup = l1 − l0 if the membrane deforms upward, and ∆l = ∆ldown = l2 − l0 if
the membrane deforms downward. Based on Equation (2), ∆lup is 0.024 nm, and ∆ldown is
−0.026 nm. In addition, by using ImageJ to analyze the SEM picture shown in Figure 4b (the
NPA employed to implement the proposed sensors), l0 is estimated as 9.36 nm. Therefore,
l1 is approximately 9.384 nm and l2 is 9.334 nm for device A.

Figure 9 shows the transient responses of device A (shown in Table 1) under cyclic
pressure loadings. For each cycle, the NPA’s resistance rapidly changes in line with
the applied pressure. A decrease in NPA resistance corresponds to a decrease in the
mean distance between NPAs as the applied pressure increases. The return of the NPA’s
resistance to its original level corresponds to the release of the applied pressure. One
practical application of the fabricated sensors with ultrahigh resolution was demonstrated
by using it to measure the altitude of the floors of a building. Figure 10a shows the sensor
responses to the relative height of each floor. During the measurement period, the sensors
move with an elevator that starts on the 1st floor, makes a stop on each floor, and finally
reaches the 7th floor. Each data point is the average value of 10 measurements. The ambient
pressure for each floor was also measured using a capacitance manometer (626C, MKS
Instruments, Andover, MA, USA). Again, the results indicate that the sensitivity was higher
for the device with a thinner membrane. Figure 10b shows the transient responses of the
sensors as the elevator moves up and makes a stop on each floor for about 10 s. Each curve
was measured during an elevator ride (from the 1st floor to the 7th floor). The transient
curves closely follow the motion of the elevator.
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4. Conclusions

In summary, we report on an innovative dewetting process of silver thin films to realize
percolative nanoparticle arrays (NPAs). In addition, highly sensitive pressure sensors were
also realized using the NPAs. The experimental results show that a sharp resistance change
caused by the percolation effect of the silver thin film can be utilized to implement highly
sensitive sensing devices. A series of SEM images illustrating the dewetting behaviors at
different conditions were demonstrated. The characterization of the fabricated sensors with
different dimensions was presented. The devices exhibit good linear responses at around
1 atm, with a maximum sensitivity of about 0.1 kPa−1. The measured transient responses
of the devices under different cyclic pressure loadings were quite repeatable without signal
recession. It was also demonstrated that the proposed sensor is capable of measuring the
relative floor height of a building due to its excellent sensitivity.
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