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experimental tests. The methods presented here are applied to carbon-fiber-reinforced composites,
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1. Introduction

The creep phenomenon that can occur in viscoelastic materials is defined as mani-
festing in three hypostases: primary, secondary, and tertiary. The creep phenomenon is
defined as a deformation in time of the studied material, if it is loaded with a known
force [1] (Figure 1). Creep phenomena usually manifest at high temperatures. However,
there are situations in which the creep can appear at lower temperatures, for example, at
room temperature, for some types of materials.
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1. Introduction 
The creep phenomenon that can occur in viscoelastic materials is defined as mani-

festing in three hypostases: primary, secondary, and tertiary. The creep phenomenon is 
defined as a deformation in time of the studied material, if it is loaded with a known 
force [1] (Figure 1). Creep phenomena usually manifest at high temperatures. However, 
there are situations in which the creep can appear at lower temperatures, for example, at 
room temperature, for some types of materials. 

 
Figure 1. Usual creep behavior of a material (adapted from [2]). 

Of course, this phenomenon, which manifests in the elongation of the material over 
time, can become dangerous in the operation of a machine. Figure 1 shows the three in-
tervals of creep behavior. Current applications refer mostly to the first two stages of 
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Figure 1. Usual creep behavior of a material (adapted from [2]).

Of course, this phenomenon, which manifests in the elongation of the material over
time, can become dangerous in the operation of a machine. Figure 1 shows the three
intervals of creep behavior. Current applications refer mostly to the first two stages of
creep, when the deformation rate is relatively high. In the primary creep stage, a high
rate is observed at the beginning, which slows down over time. The aspect of the creep
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curve depends on the material, load, and time. In the secondary creep stage, there is a
relatively constant rate. A high rate of deformation characterizes the third creep stage. The
time interval in which this high increase is observed is short and is associated with the
destruction of the material. In engineering practice, it is not necessary to reach this stage; as
a result, the study of behavior in this area has not attracted much attention. Designers must
know the rate of deformation. This can be determined using measurements or by using
a verified calculus model. The paper presents such models, which are useful for design
activities [2,3]. Creep behavior is interesting for engineers and studies on this phenomenon
are numerous [4–6].

The technology of advanced composites has developed to the point where these
materials are being increasingly utilized in the commercial, military, and aerospace in-
dustries, among others. Composite materials are ideal for structural applications where
high strength-to-weight and stiffness-to-weight ratios, improved fatigue resistance, and
improved dimensional stability are required. Reinforced fiber polymers date back to the
early years of the last century. There are two major steps in the manufacturing of polymer-
based laminated composites, namely layup and curing. In the layup stage, continuous
filaments are arranged in unidirectional laminae or are interwoven. The fibers are often
impregnated with resinous material, such as polyester resin, which later serves as the
matrix material. The next step, thermal curing, involves the drying or polymerization of
the resinous matrix material and is accomplished in suitable autoclaves. The aim is to form
a permanent bond between the fibers and the matrix, as well as between the laminae, in
order to obtain lightweight, stiff panels [2].

The materials used in engineering have different purposes and are manufactured
according to different technologies; as a result, they have a variety of properties. The
creep diagrams of these materials can be very different, even under the same loading and
temperature conditions. The simplest way to construct a creep diagram is to perform
experimental measurements. However, such an approach is expensive and time consuming.
Loads with different constant loads must be considered, and tests must be performed at
different temperatures.

In [7], a scheme for accelerated characterization is proposed to analyze the viscoelastic
response of general laminated composites. The use of this scheme allows a small number
of experimental measurements to be performed. The measurements allow for short-term
tests at high temperature, to predict the long-term response [8–10].

It would be much more advantageous for designers to have useful creep models which
could be used to obtain creep diagrams by calculation.

To study the nonlinear viscoelastic behavior of a unidirectional composite, the well-
known FEM method is applied. The symmetry properties of the composite allow for
the simplification of such an analysis. A good correlation with the FEM micromechanics
models developed in [11] is obtained. The method can also be used to study a composite
with a complex topology [12–14]. Such a description also offers the possibility of studying
the material in a wide range of boundary conditions. Thus, the thermal effects and the
expansion due to humidity were included through the initial conditions. In [15], the above
equations were used for unidirectional composites reinforced with graphite and glass.

The works [16–18] improve the classic models used in the case of nonlinear behav-
ior. An empirical model was developed to achieve this. A method that can be easily
implemented using a numerical procedure was thus obtained.

Based on the previously presented studies [16–18], a nonlinear viscoelastic model was
developed in [19,20]. The developed model and the experimental measurements taken for
test specimens allowed for an orthotropic material. The presented procedure can also be
applied to study the long-term nonlinear viscoelastic response of laminates.

Other research [21] has shown that a law moisture concentration (at about 1%) can be
a critical limit for carbon epoxy laminates. When this limit is exceeded, the viscoelastic rate
of deformation occurs faster.
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The study of a material made of an epoxy resin reinforced with unidirectional aramid
fibers by tests and measurements at high temperatures is presented in [22]. An appropriate
mathematical model for this study proved to be the “power law” which can describe
behavior in both the linear and nonlinear domains, so that it can model viscoelastic behavior.
To study the behavior in the nonlinear field, some nonlinear viscoelastic coefficients are
introduced (these coefficients depend both on the stresses to which the materials are
subjected and on the temperature). This method of analysis was proven to concur with the
nonlinear model presented in [12].

In [23–26], a variational principle is used in which the time variable also appears,
using a relatively simple mathematical description. In [27], the heat-induced stress field in
the components of a polymer composite at low temperatures is studied (one application
is considered for spacecraft). The geometry of the composite microstructure proves to be
important in terms of the field of stresses and the deformation of this type of material under
the conditions described above.

In [28], all the engineering constants that define one orthotropic and one transverse
isotropic composite are determined. For a transverse isotropic material, the results [29–32]
provide us with the upper and lower limits of engineering constants. In [33], the Mori–
Tanaka method presented in [34] is extended.

Paper [35] shows the non-linear viscoelastic/viscoplastic behaviors of graphite/bis-
maleimide. Paper [12] presents a nonlinear formulation used to study materials at tem-
peratures above 93 ◦C. A micromechanical analysis for the study of the behavior of a
fiber-reinforced composite is described in [36,37]. These studies show good concordance
with the findings presented in [11]. Biphasic materials and their mechanical properties
have been extensively studied in numerous papers published in recent years [38–49]. New
results are presented in [50–54].

In this review, the authors present more factors related to the analysis of the creep
behavior of a composite material reinforced with fibers. The model’s proposed offer results
and a creep curve in the case of different loads. The results presented in this review are
mainly based on the results obtained in [55–59].

The creep calculation of composite materials represents an important step in the
process of designing a new material. A series of methods are therefore developed to achieve
this objective. The problem remains an important one in the context of unprecedented
advances in the development of new materials, with increasing numbers of properties that
are useful in various applications. To the knowledge of the authors, the systematization
and unitary presentation of these methods has not yet been achieved. This study thus
makes a significant contribution to the field. The methods based on the homogenization
theory are presented in Sections 2–4, and those based on the FEM theory are presented
in Section 5.

2. The Micromechanical Model in Homogenization Theory
2.1. Model and Constitutive Law

The method of the micromechanical model aims to obtain the overall mechanical
parameters of a composite based on models that use the parameters of the individual
constituents of the composite and the interaction that exists between them. Consider a
unidirectional composite with randomly distributed fibers in the matrix material. In the
models used, it is normal to take into account a periodicity in the distribution of fibers. In
this way, the existing periodicities allow us to simplify the analysis. Figure 2 presents such
a model. The following assumptions can be formulated:

• The fibers are continuous and circular, and oriented in the X1 direction. They are
positioned regularly in a rectangular array in the transversal X2–X3 plane;

• The fibers are linearly elastic and anisotropic. The matrix is isotropic and nonlin-
early viscoelastic;

• No cracks or holes appear or develop, and the contact fiber matrix is mechanical.



Polymers 2023, 15, 194 4 of 31

Polymers 2023, 15, x FOR PEER REVIEW 4 of 33 
 

 

• The fibers are linearly elastic and anisotropic. The matrix is isotropic and nonline-
arly viscoelastic; 

• No cracks or holes appear or develop, and the contact fiber matrix is mechanical. 

 
Figure 2. A micromechanical model of a one-dimensional fiber material. 

Using the proposed model, it is possible to determine the response of the material if 
only a single repeating unit cell (RUC) is studied—see Figure 3. As such, the complexity 
of the problem can be significantly reduced. For this analysis, it is sufficient to study only 
a quarter of a fiber, as in Figure 3b. The main hypothesis of the theory is that the RUCs 
are very small, reported to be equal to the dimensions of the studied material. 

  
(a) (b) 

Figure 3. (a) A cell of the microstructure. (b) The representative unit cell (RUC). 

The RUC refers to a local coordinate system (X1, )(
2
λx , )(

3
λx ) (Figure 4). The dis-

placement in each subcell is defined through the following formulas [27,28]: 

.3,2,1;)()(
3

)()(
2

)()( =++= ixxuu ii
o
ii

λλλλλλ ζξ  (1)

Here, o
iu  is the displacement component of the origin and “ λ “ represents both the 

fiber (when f=λ ) and the matrix (when m=λ ). 

Figure 2. A micromechanical model of a one-dimensional fiber material.

Using the proposed model, it is possible to determine the response of the material if
only a single repeating unit cell (RUC) is studied—see Figure 3. As such, the complexity of
the problem can be significantly reduced. For this analysis, it is sufficient to study only a
quarter of a fiber, as in Figure 3b. The main hypothesis of the theory is that the RUCs are
very small, reported to be equal to the dimensions of the studied material.
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Figure 3. (a) A cell of the microstructure. (b) The representative unit cell (RUC).

The RUC refers to a local coordinate system (X1, x(λ)2 , x(λ)3 ) (Figure 4). The displace-
ment in each subcell is defined through the following formulas [27,28]:

u(λ)
i = uo(λ)

i + x(λ)2 ξ
(λ)
i + x(λ)3 ζ

(λ)
i ; i = 1, 2, 3 . (1)

Here, uo
i is the displacement component of the origin and “λ” represents both the fiber

(when λ = f ) and the matrix (when λ = m).
Considering the material to be linear, the strain–displacement relations are as follows:

εij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
; i, j = 1, 2, 3 , (2)

Equation (2) can be written for fiber and matrix in the unified form:

ε
(λ)
ij =

1
2

∂u(λ)
i

∂xj
+

∂u(λ)
j

∂xi

 ; i, j = 1, 2, 3 (3)
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If i 6= j , it can be written as

ε
(λ)
ij =

1
2

∂u(λ)
i

∂xj
+

∂u(λ)
j

∂xi

 =
γ
(λ)
ij

2
; i, j = 1, 2, 3 ; i 6= j (4)

The engineering shear strain is denoted as γ
(λ)
ij = 2ε

(λ)
ij ; i, j = 1, 2, 3 ; i 6= j.

Using Equation (1) into Equation (2) and considering Equations (3) and (4), the follow-
ing equations can be obtained:

ε
(λ)
11 =

∂uo(λ)
i

∂X1
(5)

ε
(λ)
11 =

∂uo(λ)
i

∂X1
(6)

ε
(λ)
33 = ζ

(λ)
3 (7)

γ
(λ)
23 =

[
ξ
(λ)
3 + ζ

(λ)
2

]
(8)

γ
(λ)
31 =

[
∂uo(λ)

3
∂X1

+ ζ
(λ)
1

]
(9)

γ
(λ)
12 =

[
∂uo(λ)

2
∂X1

+ ξ
(λ)
1

]
(10)

Considering a linear and transversely isotropic composite, the constitutive equation
can be written as

ε11
ε22
ε33
γ23
γ31
γ12



(λ)

=



S11 S12 S12 0 0 0
S12 S22 S23 0 0 0
S12 S23 S22 0 0 0
0 0 0 S44 0 0
0 0 0 0 S66 0
0 0 0 0 0 S66



(λ)

σ11
σ11
σ11
τ23
τ31
τ12



(λ)

(11)

or, considering the expression of the engineering constant for this type of material:
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ε11
ε22
ε33
γ23
γ31
γ12



(λ)

=



1
E11

− ν12
E22

− ν12
E22

0 0 0
− ν12

E22
1

E22
− ν23

E22
0 0 0

− ν12
E22

− ν23
E22

1
E22

0 0 0
0 0 0 1

G23
0 0

0 0 0 0 1
G12

0
0 0 0 0 0 1

G12



(λ)

σ11
σ22
σ33
τ23
τ31
τ12



(λ)

(12)

Here, E11 and E22 = E33 are Young’s moduli, G23 and G12 = G13 are the shear moduli,
and ν23 and ν12 = ν13 are the Poisson ratios. The direction of anisotropy is, in our model, X1,
and the plane of isotropy is X2–X3. From Equation (12), the following formula is obtained:



σ11
σ22
σ33
τ23
τ31
τ12



( f )

=



C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 C66 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44



( f )

ε11
ε22
ε33
γ23
γ31
γ12



( f )

(13)

with
C66 =

C22 − C23

2
(14)

Equation (13) can be written as

σ( f ) = C( f )ε( f ) (15)

The behavior of a viscoelastic material can be described using Boltzmann’s superposi-
tion principle and the results presented in [12]:

ε(t) = Dn σn (16)

with

Dn = goDo + g
m

∑
j=1

Dj

(
1− e−t/rj

)
(17)

The paper [12] presents us with the possibility of writing the constitutive equations as

ε
(m)
ij = Dn[1 + ν(t)]σ(m)

ij − Dn ν(t) σ
(m)
kk δij (18)

In Equation (18), Dn is obtained using Equation (17), ν(t) is the Poisson ratio (in our
study, this is considered to be independent of time), and δij is Kronecker’s delta.

The first step must be to determine the average stresses, and then the average strains.
Thus, the general behavior of the material is obtained based on the average stresses and
average strains in a RUC.

2.2. Average Stress

In the proposed model, the RUC is considered to be a rectangular parallelepiped with
parallel edges. The reference frame axes are (X1, X2, X3) of the volume V. This will be
determined as the average stress σij in V. This can be obtained via the following relation:

σij =
1
V

∫
V

SijdV (19)
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Considering one-quarter of a cell, this relation can be written as

σij =
1
A

(
S( f )

ij A f + S(m)
ij Am

)
(20)

where S(λ)
ij are the average stresses. Now, consider a unit depth of the RUC, i.e., V = A × 1.

Using the notation presented in Figure 3b, the following is obtained:

A = (R + h/2)2; A f = πR2/4; Am = (R + h/2)2 − πR2/4 (21)

σij =
1(

R + h
2

)2

{
πR2

4
S( f )

ij +

[(
R +

h
2

)2
− πR2

4

]
S(m)

ij

}
(22)

The partial average stress S(λ)
ij is obtained with

S(λ)
ij =

1
Aν

∫
A

σ
(λ)
ij dA =

1
Aν

x
σ
(λ)
ij dx2dx3 (23)

Using polar coordinates, the Jacobian can be obtained:

J =
∂(x2, x3)

∂(r, θ)
=

∣∣∣∣ cos θ sin θ
−r sin θ r cos θ

∣∣∣∣ = r (24)

Moreover, Equation (23) for fiber (subcell “f ”) becomes

eS( f )
ij =

4
πR2

∫ π/2

0

∫ R

0
σ
( f )
ij rdrdθ (25)

where σ
( f )
ij is given by Equation (13). Introducing Equations (5)–(10) and (11) into Equation

(25) leads to

S( f )
ij =



C11ε
( f )
11 + C12

(
ε
( f )
22 + ε

( f )
33

)
C12ε

( f )
11 + C22ε

( f )
22 + C23ε

( f )
33

C12ε
( f )
11 + C23ε

( f )
22 + C22ε

( f )
33

C66γ
( f )
23

C44γ
( f )
31

C44γ
( f )
12


(26)

or

S( f )
ij =



C11
∂uo( f )

1
∂X1

+ C12

(
ξ
( f )
2 + ζ

( f )
3

)
C12

∂uo( f )
1

∂X1
+ C22ξ

( f )
2 + C23ζ

( f )
3

C12
∂uo( f )

1
∂X1

+ C23ξ
( f )
2 + C22ζ

( f )
3

C66

[
ξ
( f )
3 + ζ

( f )
2

]
C44

[
∂uo( f )

3
∂X1

+ ζ
( f )
1

]
C44

[
∂uo( f )

2
∂X1

+ ξ
( f )
1

]



(27)

The average stresses in the matrix (subcell “m”) are determined using the follow-
ing relations:

S(m)
ij =

1(
R + h

2

)2
− πR2

4

(∫ R+h/2

0

∫ R+h/2

0
σ
(m)
ij dx2dx3 −

∫ π/2

0

∫ R

0
σ
(m)
ij rdrdθ

)
(28)
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Equation (15) together with Equations (5)–(10) yields

∂uo
1

∂X1
= Dn[1 + ν(t)]S(m)

11 − Dn[ν(t)]S
(m)
kk (29)

ξ
(m)
2 = Dn[1 + ν(t)]S(m)

22 − Dn[ν(t)]S
(m)
kk (30)

ζ
(m)
3 = Dn[1 + ν(t)]S(m)

33 − Dn[ν(t)]S
(m)
kk (31)

ξ
(m)
3 + ζ

(m)
2 = 2Dn[1 + ν(t)]S(m)

23 (32)

∂uo(m)
3

∂X1
+ ζ

(m)
1 = 2Dn[1 + ν(t)]S(m)

31 (33)

∂uo(m)
2

∂X1
+ ξ

(m)
1 = 2Dn[1 + ν(t)]S(m)

12 (34)

2.3. Continuity Conditions

In a RUC, the conditions of continuity of the movements at the interface between sub-
cells must be ensured. These conditions must be assured in both the X2 and X3 directions.
From Figure 4, the following relations hold:

x( f )
2 = Xi

2 ∓ X( f )
2 = ∓R cos θ (35)

x(m)
2 = Xi

2 ∓ X(m)
2 = ±

(
h
2
+ R− R cos θ

)
(36)

where there are θ located points on the interface.
Introducing Equations (35) and (36) into Equation (1) for the cases when λ = f and

λ = m results in
u( f )

i = uo( f )
i ∓ R cos θξ

( f )
i + x( f )

3 ζ
( f )
i (37)

u(m)
i = uo(m)

i ±
(

h
2
+ R− R cos θ

)
ξ
(m)
i + x(m)

3 ζ
(m)
i (38)

where
uo( f )

i = uo( f )
i (X( f )

2 ) (39)

uo(m)
i = uo(m)

i (X(m)
2 ) (40)

The continuity of the displacements at the interface is considered in the average sense.
This is expressed by the following relations:

∫ π/2

−π/2

[
uo( f )

i ∓ R cos θξ
( f )
i + x( f )

3 ζ
( f )
i

]
R cos θdθ =

∫ π/2

−π/2

[
uo(m)

i ±
(

h
2
+ R− R cos θ

)
ξ
(m)
i + x(m)

3 ζ
(m)
i

]
R cos θdθ (41)

Equation (41) produces

uo( f )
i

(
X( f )

2

)
± πR

2
ξ
( f )
i = uo(m)

i

(
X(m)

2

)
∓
(

h + 2R− πR
2

)
ξ
(m)
i (42)

The addition of the two Equations (42) offers us

uo( f )
i = uo(m)

i = uo
i (43)

which represent the continuity conditions for displacement.
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2.4. Average Strain

Considering the composite specimen presented earlier, and the continuity conditions,
the average of the strains over volume is

εij =
1
V

∫
V

εijdV (44)

For the representative cell studied, the following formula is obtained:

εij =
1
A ∑

λ= f ,m
ε
(λ)
ij Aλ (45)

Here A = Am + A f and ε
(λ)
ij are the strains obtained using Equations (5)–(10)

(λ = f , m). Considering Equations (1) and (3) (considering i = j = 1), we obtain

ε
(λ)
ij =

∂uo
1

∂X1
(46)

Equation (46) together with Equation (45) yields

ε11 =
1(

R + h
2

)2

{
πR2

4
∂uo

1
∂X1

+

[(
R +

h
2

)2
− πR2

4

]
∂uo

1
∂X1

}
(47)

or

ε11 =
∂uo

1
∂X1

(48)

The octahedral shear stress in the matrix is

S(m)
oct =

{
1
2

[(
S(m)

11 − S(m)
22

)2
+
(

S(m)
22 − S(m)

33

)2
+
(

S(m)
33 − S(m)

11

)2
]
+ 3
[(

S(m)
12

)2
+
(

S(m)
23

)2
+
(

S(m)
31

)2
]} 1

2
(49)

The unknowns are calculated using an incremental procedure. The unknowns are

• the six values of stresses in the two subcells: S(λ)
11 , S(λ)

22 , and S(λ)
33 ;

• the four micro-variables in the two subcells: ξ
(λ)
2 and ζ

(λ)
3 ;

• the three strains in the composite: ε11, ε22, and ε33.

Now, the connection between the stress in the matrix and in the fiber of a RUC must
be determined. Using the assumptions proposed in [36,37], the shear stress in the X2
direction is

S( f )
22 = α f σ22 (50)

for the fiber and
S(m)

22 = αmσ22 (51)

for the matrix from where it results:

S( f )
22 =

α f

αm
S(m)

22 (52)

In the X3 direction, a similar equation is obtained:

S( f )
33 =

β f

βm
S(m)

33 (53)

The concentration factors αλ and βλ are weighting coefficients and should satisfy the
following relations:

α f v f + αmvm = 1 (54)
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and
β f v f + βmvm = 1 (55)

In a particular case, considering that the composite loaded is in only one of the
directions X2 or X3, the relation (38) in direction X3 (unloaded) becomes

S( f )
33 = −vm

v f
S(m)

33 (56)

and
S( f )

22 = −vm

v f
S(m)

22 (57)

Consider now the case of a uniaxial load. Therefore, we obtain a linear system with 13
equations and 13 unknowns:

S( f )
11 = C11ε11 + C12

(
ξ
( f )
2 + ζ

( f )
3

)
(58)

S( f )
22 = C12ε11 + C22ξ

( f )
2 + C23ζ

( f )
3 (59)

S( f )
33 = C12ε11 + C23ξ

( f )
2 + C22ζ

( f )
3 (60)

ε11 = Dn[1 + ν(t)]S(m)
11 − Dn[ν(t)]S

(m)
kk (61)

ξ
(m)
2 = Dn[1 + ν(t)]S(m)

22 − Dn[ν(t)]S
(m)
kk (62)

ζ
(m)
3 = Dn[1 + ν(t)]S(m)

33 − Dn[ν(t)]S
(m)
kk (63)

ε22 =
1
A

[
A f ξ

( f )
2 + Amξ

(m)
2

]
(64)

ε33 =
1
A

[
A f ζ

( f )
3 + Amζ

(m)
3

]
(65)

S( f )
22 =

α f

αm
S(m)

22 (66)

S( f )
33 =

β f

βm
S(m)

33 (67)

σ11 =
1
A

[
A f S( f )

11 + AmS(m)
11

]
(68)

σ22 =
1
A

[
A f S( f )

22 + AmS(m)
22

]
(69)

σ33 =
1
A

[
AfS

(f)
33 + AmS(m)

33

]
(70)

The analysis presented in this section shows that a micromechanical model for the
study of a unidirectional composite can provide good results. Thus, analytical relations
are obtained, which then allow for the calculation of the mechanical constants of such a
composite and for the study of its behavior in a range of applications. Schapery’s nonlinear
constitutive equation for isothermal uniaxial loading conditions is used in the analysis,
thus allowing us to consider the nonlinear viscoelastic response of the material. Papers that
present many experimental results [55–59] demonstrate the potential of the method.

3. Description of Homogenization Theory
3.1. Overview

The theory of homogenization is a mathematical method used to average the physical
properties of inhomogeneous materials. This method has been developed over the last eight
decades and is used to analyze and solve differential equations with periodic coefficients.
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As essentially inhomogeneous materials that have a periodicity or certain symmetries in
their structure, composite materials lend themselves very well to the application of these
methods that determine the mechanical characteristics of a material. The experimental
results validate the methods used by the theory of homogenization [55–59]. For this
reason, the homogenization method has been used in numerous cases and engineering
applications [33,34,36,37,39–41,59] to determine the mechanical properties of multiphase
composites. In this method, a transition is made, through homogenization, from a periodic
structure to a homogeneous and isotropic or transversely isotropic material throughout its
structure [44].

In the research, several analytical and numerical methods have been proposed to solve
the problems generated by the application of this method. Experimental results have always
shown the predominant acceptance of such methods [45,60]. The interaction between
the phases of the composite is modeled by unifying the homogenization problems for
heterogeneous elasto-plastic and elasto-viscoplastic materials [61,62]. Other works address
the improvement of the method, using the experience gained by different engineering
applications [61–69]. Other related methods are considered in [70,71]. The object of this
research is the development of reliable procedures that can be easily applied by designers.
The following section presents the homogenization theory used to determine the mechanical
quantities that characterize the viscoelastic material in question. An application is suggested
for a composite reinforced with carbon fibers.

3.2. Homogenized Model

One of the advantages offered by the homogenization theory is the possibility of
studying differential equations in which the coefficients have rapid variations or periodic
variations. Engineering constants, which are useful in engineering practice, are obtained
following averaging processes. Thus, a material with a periodic structure can be treated
as a homogeneous material. A differential equation with periodic coefficients with large
variations is thus replaced in the modeling with an equation with constant coefficients.
This is how the continuum concept is extended to micro-structured materials (composite
materials also belong to this class). The bases of this mathematical theory are presented
in [72–77]. In this application, the calculation method is used to analyze the creep response
of a unidirectional composite reinforced with carbon fibers.

The stress field σδ for repeating unit cells of size δ must obey the following equations:

∂σδ
11

∂x1
+

∂τδ
12

∂x2
+

∂τδ
13

∂x3
= f1(x)

∂τδ
21

∂x1
+

∂σδ
22

∂x2
+

∂τδ
23

∂x3
= f2(x)

∂τδ
31

∂x1
+

∂τδ
32

∂x2
+

∂σδ
33

∂x3
= f3(x)

(71)

where σδ
ij = σδ

ji, for i, j = 1, 2, 3.
The contour conditions that must be respected by the displacements are

uδ
∣∣∣
∂1Ω

= ũ (72)

The boundary conditions are

σδ
11n1 + τδ

12n2 + τδ
13n3 = T1(x)

τδ
21n1 + σδ

22n2 + τδ
23n3 = T2(x)

τδ
31n1 + τδ

32n2 + σδ
33n3 = T3(x)

(73)

on the contour ∂2Ω, (∂1Ω ∪ ∂2Ω = ∂Ω). Hook’s Law is
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σ11
σ22
σ33
τ23
τ31
τ12



δ

=



C1111 C1122 C1133
C2211 C2222 C2233 0
C3311 C3322 C3333

C2323
0 C3131

C1212





ε11
ε22
ε33
γ23
γ31
γ13



δ

(74)

Or, using a compact notation,
σδ = Cεδ (75)

The elasticity matrix C is semi-positive definite:

Cijkhxijxkh ≥ α xijxkh (76)

for α > 0 and ∀xij, xkh ∈ R, Cijkh(x) is a periodical function of x with the period equal with
the dimension δ of the unit cell. Considering a new function y, y = x/δ:

Cijkh(x) = Cijkh(yδ) = Cijkh(y) (77)

and the stress is
σδ

ij = σo
ij(x, y) + σ1

ij(x, y)δ + . . . . . (78)

The dependence of stress on y is “quasi-periodical”. Introducing Equation (78) in
Equation (71) produces

δ−1
∂σo

ij

∂yj
+

(
∂σo

ij

∂xj
+

∂σ1
ij

∂yj

)
δo +

(
∂σ1

ij

∂xj
+

∂σ2
ij

∂yj

)
δ1 + . . . . . = fi(x) (79)

The following relation is used:

d
dx

( f ) =
∂ f
∂x

dx +
∂ f
∂x

dy (80)

but y = x/δ, and, thus, dy = dx/δ; so,

d
dx

( f ) =
∂ f
∂x

( f ) +
1
δ

∂

∂y
( f ) (81)

The coefficients of δ−1 in Equation (79) must be 0; therefore,

∂σo
ij

∂yj
= 0 (82)

Equation (82) is called the “local equation”. Identifying the terms of δ 0 produces

∂σo
ij

∂xj
+

∂σ1
ij

∂yj
= fi(x) i = 1, 2, 3 (83)

Applying the average operator to Equation (83) results in the following equation:

∂
〈

σo
ij

〉
∂xj

+

〈
∂σ1

ij

∂yj

〉
= fi(x) i = 1, 2, 3 (84)

but 〈
∂σ1

ij

∂yj

〉
=

1
V

∫
V

∂σ1
ijdV =

1
V

∫
∂V

σ1
ijnjdS = 0 (85)
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The stresses σ1
ij take equal values on the corresponding points of the boundary of the

cell Γ (due to the property of periodicity), so

∂
〈

σo
ij

〉
∂xj

= fi(x) i = 1, 2, 3 (86)

We state that

εij,x(w) =
1
2

(
∂wi
∂xj

+
∂wj

∂xi

)
; i, j = 1, 2, 3 (87)

εij,y(w) =
1
2

(
∂wi
∂yj

+
∂wj

∂yi

)
; i, j = 1, 2, 3 (88)

The displacement field can be expressed by the series:

u(x, y) = uo(x) + u1(x, y) δ + u2(x, y) δ2 + . . . . (89)

uo(x) is a function on x (only). The terms u1(x, y) , u2(x, y) are considered to be quasi-
periodical. Using (87)–(89), it can be written as

εkh,x(u) = 1
2

(
∂uk
∂xh

+ ∂uh
∂xk

)
= 1

2

(
∂uo

k
∂xh

+
∂uo

h
∂xk

)
+ δ

2

(
∂u1

k
∂xh

+
∂u1

h
∂xk

)
+ δ

2

(
∂u2

k
∂yh

+
∂u2

h
∂yk

)
+ . . . .

= εkh,x(uo) + εkh,y(u1) + δ[εkh,x(u1) + εkh,y(u2)] + δ2[. . .]. + . . . ; k, h = 1, 2, 3

(90)

or
εkh,x(u) = εo

kh + δ ε1
kh + . . . ; k, h = 1, 2, 3 (91)

where
εo

kh = εkh,x(uo) + εkh,y(u1) k, h = 1, 2, 3 (92)

ε1
kh = [εkh,x(u1) + εkh,y(u2)] ; k, h = 1, 2, 3 (93)

Applying the linear Hooke’s law results in

σo
ij = Cijkhεo

kh , i, j, k, h = 1, 2, 3 (94)

From Equation (94), it follows that

∂
(

Cijkhεo
kh

)
∂yj

= 0 , i, j, k, h = 1, 2, 3 (95)

or
∂
[
Cijkh

(
εkh,x(u

o) + εkh,y(u
1)
)]

∂yj
= 0 , i, j, k, h = 1, 2, 3 (96)

The terms εkh,x(u
o) depend only on x. Equation (96) can be written as

−
∂
[
Cijkh εkh,y(u

1)
]

∂yj
= εkh,x(uo)

∂Cijkh

∂yj
, i, j, k, h = 1, 2, 3 (97)

introducing
u1 = wkhεkh,x(u

o) + k(x) (98)
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Using Equations (97) and (98) with k(x) an arbitrary function on x, we can obtain

ε lm,y(u
1) = εkh,x(u

o)
1
2

(
∂wkh

l
∂ym

+
∂wkh

m
∂yl

)
= εkh,x(u

o)ε lm,y(w
kh) (99)

Equation (99) becomes

− εkh,x(u
o)

∂
[
Cijlmε lm,y(wkh)

]
∂yj

= εkh,x(uo)
∂Cijkh

∂yj
, i, j, k, h = 1, 2, 3 = 1 (100)

Equation (100) is valid for any strain field εkh,x(uo), so Equation (100) becomes

−
∂[Cijlmε lm,y(wkh)]

∂yj
=

∂Cijkh

∂yj
, i, j, k, h = 1, 2, 3 (101)

Using Green’s theorem, we obtain

∫
Γ

∂[Cijlmε lm,y(wkh)]

∂yj
vidV +

∫
Γ Cijlmε lm,y(wkh) ∂vi

∂yj
dV

=
∫

∂ Γ uiCijlmε lm,y(wkh)vidS = 0 , i, j, k, h = 1, 2, 3
(102)

∫
Γ

∂[Cijlmε lm,y(wkh)]
∂yi

vjdV +
∫

Γ Cijlmε lm,y(wkh)
∂vj
∂yi

dV
=
∫

∂ Γ ujCijlmε lm,y(wkh)vjdS = 0 , i, j, k, h = 1, 2, 3
(103)

In Equation (103), the indices i and j have been interchanged and the property
Cijlm = Cjilm has been considered. From (102) and (103), it follows that∫

Γ
∂[Cijlmε lm,y(wkh)]

∂yj
vidV +

∫
Γ

∂[Cijlmε lm,y(wkh)]

∂yi
vjdV

= 2
∫

Γ Cijlmε lm,y(wkh) 1
2

(
∂vi
∂yj

+
∂vj
∂yi

)
dV = 2

∫
Γ Cijlmεij,y(v)ε lm,y(wkh)dV, i, j, k, h = 1, 2, 3

(104)

Because Cijlm = Cjilm, multiplying Equation (104) by v results in

∂[Cijlmε lm,y(wkh)]

∂yj
vi =

∂Cijkh

∂yj
vi (105)

Interchanging the indices i and j results in

∂
[
Cijlmε lm,y(wkh)

]
∂yi

vj =
∂Cijkh

∂yi
vj (106)

The integration and addition of Equations (105) and (106) using Equation (104) offer

∫
Γ

Cijlmεij,y(v)ε lm,y(wkh)dV =
∫

Γ

∂Cijkh

∂yj
vidV (107)

We must then find wkh in Vy such that ∀v ∈ Vy, which verifies Equation (107). If wkh is
obtained, then

σo
ij = Cijkh[εkh,x(u

o) + εkh,y(u
1)]

= Cijkh[εkh,x(u
o) + εkh,x(u

o) ε lm,y

(
wkh
)
]

(108)
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By applying the average operator, it results in〈
σo

ij

〉
=
〈

Cijkhεkh,x(uo)
〉
+
〈

Cijkhεkh,x(uo)ε lm,y(ukh)
〉

=
〈

Cijkh

〉
εkh,x(uo) +

〈
Cijkhε lm,y(ukh)

〉
εkh,x(uo)

(109)

This produces 〈
σo

ij

〉
= [
〈

Cijkh

〉
+
〈

Cijkhε lm,y(ukh)
〉
]εkh,x(uo) (110)

A comparison of Equation (110) can be made with〈
σo

ij

〉
= Co

ijkh ε̃kh(uo) (111)

and, if we denote εkh,x(uo) ≡ ε̃kh(uo), the homogenized coefficients can be obtained:

Co
ijkh =

〈
Cijkh

〉
+
〈

Cijkhε lm,y(ukh)
〉

(112)

Therefore, there are two ways to obtain the homogenized coefficients:

• Using the local equations, the strain and stress field and the averages are determined,
obtaining the homogenized coefficients;

• Using the variational formulation and determining the function wkh can also help us
to determine the homogenized coefficients.

For the fiber-reinforced composite, there is a class of solutions wkh, with k,h = 1,2,3 satisfying

−
∂[Cijlmε lm,y(w)]

∂yj
=

∂Cijkh

∂yj
, i = 1, 2, 3 (113)

with the boundary conditions
wkh
∣∣∣
∂Γ

= 0 (114)

and 〈
wkh
〉
= 0 (115)

If (x1, x2, x3) are the principal material axes, we state

C1111 = C11; C2222 = C22; C1122 = C1133 = C12; C2211 = C3311 = C21
C3322 = C2233 = C23; C3333 = C33; C4444 = (C22 − C23)/2; C5555 = C44;

C6666 = C44

(116)

The other components of Cijkl are zero (we work with a transversely isotropic material).
The stress–strain relation becomes

σ22
σ33
τ23

 =

C22 C23 0
C23 C33 0
0 0 C22−C23

2


ε22
ε33
γ23

 (117)

or
{σ} = [C]{ε}o (118)

The equilibrium conditions in Equation (71) are[
∂

∂y2
0 ∂

∂y3

0 ∂
∂y3

∂
∂y2

]
σ22
σ33
τ23

 = 0 (119)
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Equation (119) can be expressed in compact form:

[∂]{σ} = [∂][C]{ε}o = 0 (120)

Equation (92) becomes

{ε}o = {ε}uo

,x + {ε}u1

,y (121)

and (120) becomes

−
[

∂
∂y2

0 ∂
∂y3

0 ∂
∂y3

∂
∂y2

]
C(λ)

22 C(λ)
23 0

C(λ)
23 C(λ)

33 0

0 0 C(λ)
22 −C(λ)

23
2

{ε}u1

,y

=

[
∂

∂y2
0 ∂

∂y3

0 ∂
∂y3

∂
∂y2

]
C(λ)

22 C(λ)
23 0

C(λ)
23 C(λ)

33 0

0 0 C(λ)
22 −C(λ)

23
2

{ε}uo

,x

(122)

Considering the plane strain loading conditions, we obtain

[
∂

∂y2
0 ∂

∂y3

0 ∂
∂y3

∂
∂y2

]
C(λ)

22 C(λ)
23 0

C(λ)
23 C(λ)

33 0

0 0 C(λ)
22 −C(λ)

23
2

{ε}u1

,y = 0 (123)

Using the determined functions wkh, it can be deduced that

{ε}u1

,y =

ε22
(
w22) ε22

(
w33) ε22

(
w23)

ε33
(
w22) ε33

(
w33) ε33

(
w23)

ε23
(
w22) ε23

(
w33) ε23

(
w23)

{ε}uo

,x (124)

or, in an alternative form,

{ε}u1

,y =
[{

ε
(
w22)} {

ε
(
w33)} {

ε
(
w23)}]{ε}uo

,x (125)

Additionally,

[
∂

∂y2
0 ∂

∂y3

0 ∂
∂y3

∂
∂y2

]
C(λ)

22 C(λ)
23 0

C(λ)
23 C(λ)

33 0

0 0 C(λ)
22 −C(λ)

23
2

[{ε
(
w22)} {

ε
(
w33)} {

ε
(
w23)}]{ε}uo

,x = 0 (126)

[{
ε
(
w22)} {

ε
(
w33)} {

ε
(
w23)}]{ε}uo

,x = 0 (127)

Equation (127) should remain valid for all {ε}uo

,x . Equation (113) becomes

−
C(λ)

ijlm∂ε
(λ)
lm,y(w

kh)

∂yj
= 0 , i = 1, 2, 3 (128)

In we consider the case of plane strain i = 2, 3 and j = 2, 3,

C(λ)
22

∂ε22

(
wkh
)

∂y2
+ C(λ)

23

∂ε33

(
wkh
)

∂y2
+

1
2

[
C(λ)

22 − C(λ)
23

]∂ε23

(
wkh
)

∂y3
= 0 (129)

and

C(λ)
23

∂ε22

(
wkh
)

∂y3
+ C(λ)

22

∂ε33

(
wkh
)

∂y3
+

1
2

[
C(λ)

22 − C(λ)
23

]∂ε23

(
wkh
)

∂y2
= 0 (130)
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The solution is

wkh =

{
wkh,( f ) f or y ∈ Vf
wkh,(m) f or y ∈ Vm

(131)

satisfying the boundary conditions

wkh,( f )
∣∣∣
∂Γ

= wkh,(m)
∣∣∣
∂Γ

; σ
( f )
ij nj = σ

(m)
ij nj (132)

The boundary conditions for the RUC are: ui = αijyj. It is possible to show that the
average strain is:

〈
εij
〉
= εij = αij. Let us denote the displacement field by w∗ having the

property w∗|∂Γ = u |∂Γ and εkh(w∗) = αij. Due to the existing symmetry in the distribution
of the unit cell it can be concluded that 〈w∗〉 = 0. The field w is introduced as

w = w∗ − u (133)

with the boundary conditions
w |∂Γ = 0 (134)

〈w〉 = 〈w∗ − u〉 = 〈w∗〉 − 〈u〉 = 0 (135)

This function (w) verifies the condition of zero average and value zero on the contour,
and it verifies Equation (130). For the “quasi-periodical fields” u 1, it follows that

u1 = α22

{
w∗22
α22
− y2

0

}
+ α33

{
0

w∗22
α22
− y2

}
(136)

The strain field is

ε22

(
w22
)
=

ε22(w∗)
α22

− 1 ; ε33

(
w22
)
= 0 (137)

ε22

(
w33
)
=

ε22(w∗)
α33

− 1 ; ε33

(
w33
)
= 0 (138)

and
ε22(u1) = ε22(w∗)− α22 ; ε33(u1) = ε33(w∗)− α33 (139)

or

ε22

(
w22
)
=

ε22(w∗)
α22

− 1 = 0 ; ε33

(
w33
)
=

ε33(w∗)
α33

− 1 = 0 (140)

For the fiber-reinforced unidirectional composite, the homogenized coefficients can be
obtained with the following relations:

Co
ijkh =

〈
Cijkh

〉
+
〈

Cijkhε lm,y

(
wkh
)〉

= 1
V
∫

Γ CijkhdV + 1
V
∫

Γ Cijkhε lm(w∗)dV

= 1
V

(
C( f )

ijkhVf + C(m)
ijkhVm

)
+ 1

V

(
C( f )

ijlmε
( f )
lm (w)Vf + C(m)

ijlmε
(m)
lm (w)Vm

) (141)

where
αlmε

( f )
lm (w) = ε

( f )
lm (w∗)− αlm ; αlmε

(m)
lm (w) = ε

(m)
lm (w∗)− αlm (142)

Thus, we have

Co
ijkh = v f C( f )

ijkh + vmC(m)
ijkh + v f C( f )

ijkh

 ε
( f )
lm (w∗)

αlm
− 1

+ vmC(m)
ijkh

[
ε
(m)
lm (w∗)

αlm
− 1

]
(143)
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As a result (considering the plane strain loading conditions),

Co
22 = v f C( f )

22 + vmC(m)
22 + v f C( f )

22

[
ε
( f )
22 (w∗)

α22
− 1
]
+ vmC(m)

22

[
ε
(m)
22 (w∗)

α22
− 1
]

= v f C( f )
22

ε
( f )
22 (w∗)

α22
+ vmC(m)

22
ε
(m)
22 (w∗)

α22

(144)

and

Co
23 = v f C( f )

23 + vmC(m)
23 + v f C( f )

23

[
ε
( f )
33 (w∗)

α33
− 1
]
+ vmC(m)

23

[
ε
(m)
33 (w∗)

α33
− 1
]

= v f C( f )
23

ε
( f )
33 (w∗)

α33
+ vmC(m)

23
ε
(m)
33 (w∗)

α33

(145)

4. The Mori–Tanaka Model
4.1. Mathematical Model

In the following section, the mathematical model proposed by Mori and Tanaka is
applied to obtain the engineering parameters that define Hooke’s law for a one-dimensional
fiber-reinforced composite [34]. We consider an epoxy matrix with a visco-elastic response,
reinforced with monotonous and parallel aligned carbon fibers that are uniformly dis-
tributed inside the resin (Figure 5). The resulting material has an orthotropic behavior.
However, there are applications where the fibers are elliptical cylinders. These cylinders
are randomly distributed, and the behavior of the material is a transverse isotropic.
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The theory developed in [78] is applied in [28] for a reinforced material with continu-
ous cylindrical fibers with an elliptic section. To solve this problem, Mori–Tanaka’s [34]
mean-field theory is used. In [79,80], the two phases of the composite are two isotropic
materials.

We consider a comparison material (CM). In the CM, there is a linear relation between
the mean strain field ε◦ and the mean stress field σ:

σ = Cmε0 (146)

The average strain field in the RUC is εm = ε0 + ε and the mean stress field is
σm = σ + σ̃. This results in

σm = σ + σ̃ = Cm(ε
0 + ε) (147)

The mean strain fields in the fiber and in the matrix are differentiated through an
additional term εpt, hence ε f = εm + εpt = ε0 + ε̃ + εpt. In a similar way, the average stress
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field differs by the term σpt and, therefore, σ f = σ + σ̃ + σpt. The generalized Hooke
law becomes

σ f = σ + σ̃ + σpt = C f (ε
0 + ε̃ + εpt) (148)

or
σ f = σ + σ̃ + σpt = C f (ε

0 + ε̃ + εpt) = Cm(ε
0 + ε̃ + εpt − ε∗) (149)

We introduce εpt in Equation (149).

εpt = Pε∗ (150)

The Eshelby transformation tensor P from Equation (150) is presented in Appendix A
(where Pikjl = Pjikl = Pijtk). The average stress in the whole RUC is

σ = v f σf + vmσm = v f (σ + σ̃ + σpt) + vm(σ + σ̃)
= (v f + vm)σ + (v f + vm)σ̃ + v f σpt = σ + σ̃ + v f σpt (151)

which reduces to
σ̃ = −v f σpt (152)

In a similar way, we can obtain

ε = −v f (ε
pt − ε∗) = −v f (Pε∗ − ε∗) = −v f (P− I)ε∗ (153)

I denotes the unit tensor. Equations (147) and (149) yield

C f [ε
0 − v f (P− I)ε∗ + Pε∗] = Cm[ε

0 − v f (P− I)ε∗ + Pε∗ − ε∗] (154)

or [
C f

(
−v f (P− I) + P

)
+ Cm

(
v f (P− I)− P + I

)]
ε∗ +

(
C f − Cm

)
ε0 = 0 (155)

or [
C f

(
vmP + v f I

)
− Cmvm(P− I)

]
ε∗ +

(
C f − Cm

)
ε0 = 0 (156)

and [
vm

(
C f − Cm

)
P + v f

(
C f − Cm

)
+ Cm

]
ε∗ +

(
C f − Cm

)
ε0 = 0 (157)

The final form is[(
C f − Cm

)(
vmP + v f I

)
+ Cm

]
ε∗ +

(
C f − Cm

)
ε0 = 0 (158)

This offers
ε∗11 = 1

A
(

A11εo
11 + A12εo

22 + A13εo
33
)

;
ε∗11 = 1

A
(

A21εo
11 + A22εo

22 + A23εo
33
)

;
ε∗11 = 1

A
(

A31εo
11 + A32εo

22 + A33εo
33
)

.
(159)

The coefficients Aij are presented in Appendix A [30]. The shear strain is [30]

ε∗12 =

(
G12, f − Gm

)
(

G12, f − Gm

)(
2vmP1212 + v f

)
+ Gm

ε0
12 (160)

ε∗23 =

(
G23, f − Gm

)
(

G23, f − Gm

)(
2vmP2323 + v f

)
+ Gm

ε0
23 (161)
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ε∗31 =

(
G31, f − Gm

)
(

G31, f − Gm

)(
2vmP3131 + v f

)
+ Gm

ε0
31 (162)

Equations (158)–(162) can now be used to determine the elastic/viscoelastic parameters
of a composite, which is considered as an orthotropic body. To compute the Young’s
modulus Em, the composite specimen is subjected to a pure traction σ11. This results in the
following equation: σ11 = E11ε11 and σ11 = Emε0

11; ε0
22 = ε0

33 = −νmε0
11.

Equation (158) produces

ε11 = ε0
11+ v f ε∗11 = ε0

11 + v f

(
A11
A ε0

11 +
A12
A ε0

22 +
A13
A ε0

33

)
= ε0

11

(
1 + v f a11

)
− v f a12vmε0

11 − v f a13vmε0
11

= ε0
11

[
1 + v f [a11 − vm(a12 + a13)]

] (163)

Here, we show that aij = Aij/A, Aij, and A is presented in Appendix A; see rel. (A6).
This results in

E11 =
ε0

11
ε11

Em =
Em

1 + v f [a11 − vm(a12 + a13)]
(164)

For the other directions, in a similar way, we obtain the following equations:

E22 =
ε0

22
ε22

Em =
Em

1 + v f [a22 − vm(a21 + a23)]
(165)

and

E33 =
ε0

33
ε33

Em =
Em

1 + v f [a33 − vm(a31 + a32)]
(166)

Considering the shear moduli, we have

σ12 = 2G12ε12 ; σ12 = 2Gmε0
12 (167)

However,

ε12 = ε0
12 + v f ε∗12 = ε∗12 − v f

G12, f − Gm(
G12, f − Gm

)(
2vmP1212 + v f

)
+ Gm

ε0
12 (168)

Using Equations (167) and (168) produces G12:

G12 = Gm

1 +
v f

Gm
G12, f−Gm

+ 2vmP1212

 (169)

In the same way, we obtain

G23 = Gm

1 +
v f

Gm
G23, f−Gm

+ 2vmP2323

 (170)

and

G31 = Gm

1 +
v f

Gm
G31, f−Gm

+ 2vmP3131

 (171)

The Poisson ratio is computed using the formulas

ε22 = −vmε11 ; ε0
22 = ε0

33 = −vmε0
11 (172)
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Note that

ε11 = ε0
11 + v f ε∗11 = ε0

11 + v f a11ε0
11 + v f a12ε0

22 + v f a13ε0
33

= ε0
11

(
1 + v f a11

)
+ v f a12ε0

22 + v f a13ε0
33

(173)

and
ε22 = ε0

22 + v f ε∗22 = v f a21ε0
11 + ε0

22

(
1 + v f a22

)
+ v f a23ε0

33 (174)

or

ε11 =
[(

1 + v f a11

)
− v f a12vm − v f a13vm

]
ε0

11 =
[
v f a21 − vm

(
1 + v f a22

)
− vmv f a23

]
ε0

11 (175)

Introducing Equation (174) into Equation (175) produces

v12 = − ε22

ε11
= −

v f a21 − vm

(
1 + v f a22

)
− vmv f a23

1 + v f a11 − v f a12vm − v f a13vm
(176)

which can be written as

v12 =
vm − v f [a22 − vm(a21 + a23)]

1 + v f [a11 − vm(a12 + a13)]
(177)

In the same way, it produces

v23 =
vm − v f [a22 − vm(a21 + a23)]

1 + v f [a33 − vm(a7 + a8)]
(178)

and

v31 =
vm − v f [a33 − vm(a31 + a32)]

1 + v f [a11 − vm(a12 + a13)]
(179)

5. The Finite Element Method Used to Obtain the Creep Response

Recently, FEM has become the main method used for the study of elastic systems, as
it is able to address a multitude of situations and types of materials, including composite
materials [81]. Specialized problems are also studied, such as the influence of temperature
on the stresses that appear in the analyzed structures [82]. In [83], a model is presented
for the study of a composite reinforced with silicon carbide fibers. A similar model is
addressed in [84]. Bodies with transverse isotropy were also studied, as in [11,85]. If we are
dealing with microstructured systems, where a unit cell can be identified, the geometric
symmetry allows the analysis to be conducted only on a quarter or half of the unit cell,
on a unit previously defined as the “representative unit cell” (RUC). The unit cell model
with finite elements is presented in Figures 6 and 7; two models of a RUC that are used in
various applications are also presented (Models 1 and 2).
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The mechanical constants used in the application are

Em = 4.14 GPa ; vm = 0.22; Ef = 86.90 GPa; vf = 0.34 (180)

The results of the analysis are shown in Tables 1–6 (in these tables, σ is the average
stress and ε is the average strain).

Table 1. Average values of stress and strain (Case 1).

¯
σ Fiber Matrix RUC ¯

ε Fiber Matrix RUC

σ22 0.146 × 103 0.122 × 103 0.138 × 103 ε22 0.16 × 100 0.263 × 101 0.106 × 101

σ33 0.71 × 100 −0.906 × 100 0.118 × 100 ε33 −0.445 × 10−1 −0.137 × 101 −0.529 × 100

σ11 0.324 × 102 0.413 × 103 0.357 × 102 ε11 0.0 × 100 0.0 × 100 0.0 × 100

σ23 0.194 × 10−4 0.412 × 102 0.359 × 10−4 ε23 0.539 × 10−7 0.447 × 10−5 0.167 × 10−5

Table 2. Computed values of elastic moduli (Case 1).

Modulus [MPa] Matrix Fiber Average

E11 4140.0 86,900.0 56,278.0
E23 = E13 4140.0 86,899.0 12,741.0

ν1 0.34 0.22 0.259
ν23 0.34 0.22 0.475
G23 1544.0 35,614.7 4318.2
K23 4827.4 63,597.7 12,886.2

Table 3. Average values of stress and strain (Case 2).

¯
σ Fiber Matrix RUC ¯

ε Fiber Matrix RUC

σ22 0.147 × 103 0.122 × 103 0.138 × 103 ε22 0.134 × 100 0.183 × 101 0.757 × 100

σ33 0.857 × 102 0.702 × 102 0.801 × 102 ε33 0.485 × 10−1 0.157 × 100 0.881 × 10−1

σ11 0.512 × 102 0.653 × 102 0.564 × 102 ε11 0.0 × 100 0.0 × 100 0.0 × 100

σ23 0.992 × 10−5 0.322 × 10−4 0.181 × 10−4 ε23 0.306 × 10−7 0.190 × 10−5 0.717 × 10−6

In this paper, we used a three-dimensional model to obtain the shear modulus and
Poisson’s ratios in a plane perpendicular to x2x3.

A few of the foregoing models are listed in Table 7, for which the results using finite
element analysis are obtained.
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Table 4. Computed values of the elastic moduli (Case 2).

Modulus Matrix Fiber Average

E11 4140.0 86,900.0 56,278.0
E23 = E13 4140.0 86,900.0 12,741.0

ν1 0.34 0.22 0.259
ν23 0.34 0.22 0.475
G23 1544.0 35,614.8 4318.2
K23 4827.4 63,597.8 12,886.2

Table 5. Average values of stress and strain (Case 3).

¯
σ Fiber Matrix RUC ¯

ε Fiber Matrix RUC

σ22 0.147 × 103 0.123 × 103 0.138 × 103 ε22 0.160 × 100 0.263 × 101 0.106 × 10−1

σ33 0.644 × 100 −0.983 × 100 0.049 × 10−1 ε33 −0.446 × 10−1 −0.137 × 101 0.530 × 100

σ11 0.324 × 102 0.414 × 102 0.357 × 102 ε11 0.0 × 100 0.0 × 100 0.0 × 100

σ23 0.899 × 10−5 −0.979 × 10−4 −0.301 × 10−4 ε23 0.258 × 10−7 −0.638 × 10−5 0.232 × 10−5

Table 6. Computed values of the elastic moduli (Case 3).

Modulus Matrix Fiber Average

E11 4140.0 86,900.0 56,279.0
E23 = E13 4140.0 86,899.0 12,754.0

ν1 0.34 0.22 0.259
ν23 0.34 0.22 0.475
G23 1544.0 35,614.7 4322.2
K23 4827.4 63,597.7 12,900.8

Table 7. Finite element models and associated boundary conditions (BCs).

Case Model B.C. (x2 Direction) B.C. (x3 Direction)

1 Model 1-a px = 137.90 (MPa) py = 0.00 (MPa)
2 Model 1-b px = 137.90 (MPa) py = 80.0 (MPa)
3 Model 2-a px = 137.90 (MPa) py = 0.00 (MPa)
4 Model 2-b ux = 0.01 (mm) uy = 0.01 (mm)
5 Model 2-c ux = 0.01 (mm) uy = 0.01 (mm)

There are some discrepancies between the present FE results and those presented
in [49]. With respect to these discrepancies, the following verification should be considered.
If the boundary condition for the FE model is taken as ui = αijxj (where αij = αji), the
average strain should be equal to εij = αij. This can be demonstrated as follows:

εij =
1
V

∫
Γ

εijdV =
1

2V

∫
Γ

(
∂uj

∂xi
+

∂ui
∂xj

)
dV (181)

By applying Green’s theorem, it follows that

εij =
1

2V
∫

∂ Γ

(
niuj + njui

)
ds

= 1
2V

(∫
∂ Γ niαjkxkds +

∫
∂ Γ njαil xlds

)
= 1

2V

(
αjk
∫

∂ Γ nixkds + αil
∫

∂ Γ njxlds
) (182)

or
εij =

1
2V

(
αjk
∫

Γ
∂xk
∂xi

dV + αil
∫

Γ
∂xl
∂xj

dV
)

= 1
2V

(
αjk
∫

Γ δkidV + αil
∫

Γ δl jdV
)
= 1

2V
(
αji + αij

)
= αij

(183)
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The discrepancy identified with the results of [49] can be attributed to the different
type of finite elements used.

Therefore, we obtain average strains and stresses, viz., σ22, σ33, σ11, σ23 = τ23, ε22,
ε33, ε11, ε23 = 1/2 γ23. Using these values, it is now possible to obtain the mechanical
constants of the studied composite [56]. To determine the longitudinal elastic modulus E11,
we use the well-known rule of mixture:

E11 = E f ν f + Emνm (184)

where

ν f =
A f

A
; ν f =

Am

A
(185)

The following relations exist:

σ22 = C22ε22 + C23ε33;
σ33 = C23ε22 + C22ε33;
σ11 = C12(ε22 + ε33);

τ23 = C66 γ23

(186)

from which results [
ε22 ε33
ε33 ε22

]{
C22
C23

}
=

{
σ22
σ33

}
(187)

and {
C22
C23

}
=

1
ε2

22 − ε2
33

[
ε22 −ε33
−ε33 ε22

]{
σ22
σ33

}
(188)

This results in the following:

C22 =
σ22ε22 − σ33ε33

ε2
22 − ε2

33
; C23 =

σ33ε22 − σ22ε33

ε2
22 − ε2

33
(189)

For C12 and C66,

C12 =
σ11

ε22 + ε33
; C66 =

τ23

γ23
(190)

To determine the bulk modulus K23 is used in the relation:

K23 =
C22 + C33

2
=

σ22 + σ33

2(ε22 + ε33)
. (191)

The longitudinal Poisson’s ratio is calculated via the following relation:

ν1 = ν21 = ν31 =
1
2

(
C11 − E11

K23

)1/2
=

C12

C22 + C33
=

σ11

(σ22 + σ33)
. (192)

and the shear modulus
G23 =

C22 − C33

2
=

σ22 − σ33

2(ε22 − ε33)
. (193)

or from
G23 = C66 =

σ23

2ε23
. (194)

By introducing the following parameter,

ψ = 1 +
4ν2

1 K23

E11
, (195)
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the transverse moduli and Poisson’s ratio are obtained using the following relations:

E22 = E33 =
4G23K23

K23 + ψG23
(196)

and
ν23 =

K23 − ψG23

K23 + ψG23
(197)

As such, the expressions for E11, E22 = E33, ν12 = ν13, ν23, G23, K23 were determined.
From

C22 + C33 = 2K23 ; C22 − C33 = 2G23 (198)

one may obtain
C22 = K23 + G23 ; C23 = K23 − G23 . (199)

Recall that

C44 = G1 = G12 = G13; C12 = ν1(C22 + C23) = 2ν1K23 (200)

and

C11 = E11 +
2C2

12
C22 + C23

= E11 + 4ν2
1 K23 = ψE11 . (201)

In a similar way, FEM was used to determine the average stresses and strains in a
3D elastic solid. These are:σ11, σ22, σ33, σ12 = τ12, σ23 = τ23, σ31 = τ31, ε11, ε22, ε33, ε12 =
1/2 γ12, ε23 = 1/2 γ23, ε31 = 1/2 γ31. The general Hooke’s Law can be written as follows:

σ11 = C11ε11 + C12ε22 + C12ε33
σ22 = C12ε11 + C22ε22 + C23ε33
σ33 = C12ε11 + C23ε22 + C22ε33

σ23 = τ23 = (C11 − C23)ε23 = 1
2 (C11 − C23)γ23

σ31 = τ31 = 2C44ε31 = C66γ31
σ12 = τ12 = 2C44ε12 = C66γ12

(202)

From the last part of Equation (202), we can obtain

C44 =
σ12

2 ε12
=

τ12

γ12
= G12 = G13 = G1 (203)

Equation (202) yields

σ22 − σ33 = (C22 − C33)(ε22 − ε33) (204)

The law of mixture offers us

E11 = E f v f + Emvm (205)

Using Equation (205), one can replace the redundant fourth relation from Equation
(201) with

E11 = C11 −
2C2

12
C22 + C23

(206)

The addition of the second and third equations in Equation (202) yields

σ22 + σ33 −
2C12ε11

ε22 + ε33
= C22 + C23 (207)
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From the first part of Equation (202), one can show that

C11 =
σ11 − C12(ε22 + ε33)

ε11
(208)

The substitution of Equation (208) into E11 yields

E11 =
σ11

ε11
+ C12

ε22 + ε33

ε11
−

2C2
12(ε22 + ε33)

(σ22 + σ33 − 2C12ε11)
(209)

from which it is possible to compute C12.
Figures 8 and 9 present two creep curves for a composite carbon/epoxy at two different

temperatures [56,57].
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6. Conclusions

The method presented in this paper proves to be a calculus method suitable for ob-
taining the general mechanical constants of a multiphase composite material. The material
constants required by designers are obtained using the average of the values obtained by
applying FEM. The results obtained experimentally verified the models proposed by differ-
ent researchers. The tests and measurements conducted here show a good concordance
between the results obtained using the proposed models and the experimental verifications.
Thus, FEM proves to be a powerful tool for determining the engineering constants of
composite materials. Compared to the methods described in the other sections, this method
proves to be a useful and relatively simple means of identifying the constitutive laws. The
results were also applied to a study of the creep behavior of a composite material. This case
is more complicated because, in the case of creep phenomena, the influences of temperature
prove to be nonlinear. All the presented models can replace expensive methods of deter-
mining the engineering constants of a viscoelastic material by experimental measurements
with calculation-based methods.

This review focuses on the behavior of unidirectional fiber composites.
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Appendix A

Eshelby’s tensor for an elliptic cylinder:

P2222 = 1
2(1−vm)

[
1+2α

(1+α)2 +
1−2vm

1+α

]
P3333 = α

2(1−vm)

[
α+2

(1+α)2 +
1−2vm

1+α

]
P2211 = vm

1−vm
1

1+α

P2233 = 1
2(1−vm)

[
1

(1+α)2 +
1−2vm

1+α

]
P3311 = vm

1−vm
α

1+α

P3322 = α
2(1−vm)

[
α

(1+α)2 +
1−2vm

1+α

]
P1212 = 1

2(1+α)

P1313 = α
2(1+α)

P2323 = 1
4(1−vm)

[
1+α2

(1+α)2 + (1− 2vm)

]

(A1)

and
P1111 = 0 ; P1122 = 0 ; P1133 = 0 (A2)
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where all other Pijkl = 0. Relation (9) presents the link between ε0
ij and ε∗ij. It must use the

following relations (see Reference [25]):M1 M2 M3
M4 M5 M6
M7 M8 M9


ε∗11
ε∗22
ε∗33

+

N1 1 1
1 N2 1
1 1 N3


ε0

11
ε0

22
ε0

33

 = 0 (A3)

where
M1 = v f N1 + N2 + vm(P2211 + P3311);

M2 = v f + N3 + vm(P2222 + P3322);
M3 = v f + N3 + vm(P2233 + P3333);
M4 = v f + N3 + vm(P2211 + P3311);

M5 = v f N1 + N2 + vm(N1P2222 + P3322);
M6 = v f + N3 + vm(P2233 + P3333);

M7 = v f + N3 + vm(N1P3311 + P2211);
M8 = v f + N3 + vm(N1P3322 + P2222);
M9 = v f N1 + N2 + vm(P3333 + P2233)

(A4)

and
N1 = 1 + 2

(
G f − Gm

)
/
(

λ f − λm

)
;

N2 = (λm + 2Gm)/
(

λ f − λm

)
;

N3 = λm/
(

λ f − λm

) (A5)

where λ f and λm are the Lamé constants (for the fiber and the matrix).
From (A3), we obtain the following:

ε∗11
ε∗22
ε∗33

 =
1
A

A11 A12 A13
A21 A22 A23
A31 A32 A33


ε0

11
ε0

22
ε0

33

 (A6)

A11 = A · a11 = N1(M6M8 −M5M9) + M3(M5 −M8) + M2(M9 −M6);
A12 = A · a12 = N1(M2M9 −M3M8) + M6(M8 −M2) + M5(M3 −M9);
A13 = A · a13 = N1(M3M5 −M2M6) + M8(M6 −M3) + M9(M2 −M5);
A21 = A · a21 = N1(M4M9 −M6M7) + M1(M6 −M9) + M3(M7 −M4);
A22 = A · a22 = N1(M3M7 −M1M9) + M4(M9 −M3) + M6(M1 −M7);
A23 = A · a23 = N1(M1M6 −M3M4) + M9(M4 −M1) + M7(M3 −M6);
A31 = A · a31 = N1(M5M7 −M4M8) + M2(M4 −M7) + M1(M8 −M5);
A32 = A · a32 = N1(M1M8 −M2M7) + M5(M7 −M1) + M4(M2 −M8);
A33 = A · a33 = N1(M2M4 −M1M5) + M7(M5 −M2) + M8(M1 −M4)

(A7)
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