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Abstract: The Jeziorny method treats nonisothermal crystallization data by replacing the variable
temperature (T) values with the corresponding values of time and substituting them into the isother-
mal Avrami plot, In[—In(1 — «)] vs. Int. For isothermal data, the slope of this plot is the Avrami
exponent, n and the intercept is the rate constant, k4. This does not hold for nonisothermal data.
Theoretical analysis suggests that in the case of nonisothermal data the intercept cannot be interpreted
as k4, and its “correction” by dividing over the temperature change rate 8 is devoid of any meaning.
In turn, the slope cannot be interpreted as n. It is demonstrated that the slope changes with time
and its value depends not only on 7 but also on the temperature, temperature range, and activation
energy of crystallization. Generally, the value of the slope is likely to markedly exceed the n value.
The theoretical results are confirmed by analysis of simulated data. Overall, the Jeziorny method as
well as other techniques that substitute nonisothermal data into the isothermal Avrami plot should be
avoided as invalid and useless for any reasonable Avrami analysis. It is noted that 7 can be estimated
from the nonlinear plot of In[—In(1 — &)] vs. T.
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1. Introduction

Polymer crystallization kinetics under nonisothermal conditions is a topic of great
practical interest. The crystallization kinetics are commonly parameterized in terms
of the Avrami model (also known as the Johnson-Mehl-Avrami-Erofeev-Kolmogorov
model [1,2]). The classical approach to the problem is the use of the Ozawa method [3]. In
his seminal work, Ozawa used theoretical considerations to adjust the Avrami model to
nonisothermal conditions and to develop a method of estimating the Avrami exponent. The
latter is of interest as it can be linked to the dimensionality of the crystal growth. Judging by
over 2000 citations [4] of the original publication [3], the Ozawa method appears to be the
most popular approach to the Avrami analysis of nonisothermal crystallization. Another
very popular (over 1000 citations [4]) approach to the problem is the use of the so-called
Jeziorny method [5]. Unlike the Ozawa method, the one by Jeziorny was proposed on
entirely empirical grounds. Despite that, it had not been thoroughly tested before Zhang
etal. [6], who used simulated data to compare the Ozawa and Jeziorny methods. The results
of that study have demonstrated that the Jeziorny method overestimates significantly the
Avrami exponent, whereas the Ozawa method estimates the correct value. Most recently,
Kourtidou and Chrissafis [7] have used experimental data to test the Jeziorny method.
Again, it has been found that compared to other methods it yields significantly overesti-
mated (about four times) values of the Avrami exponent. The latter has been reported [7]
to exceed physically meaningful values.

The results of the aforementioned tests certainly raise serious concerns regarding the
validity of the Jeziorny method. However, individual examples of the failure are not yet
proof of the faulty nature of the method. One can also find examples where the Jeziorny
method yields the Avrami exponents that are reasonably consistent with the ones estimated
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by the Ozawa method [8-10]. A proper way to understand the faults of the Jeziorny method
is via its theoretical analysis. The purpose of the present article is to provide such analysis.

2. Avrami Model

The classical Avrami model applies to isothermal conditions and is typically used in
the following form [1,2]:
1—a =exp[—ka(T)t"] (1)

where ¢ is the time, a is the fractional volume transformed to the crystalline phase, 7 is the
Avrami exponent, k4(T) is the Avrami rate constant. Then, the parameters of the Avrami
model can be estimated from Equation (2):

In[—In(1 —a)] =nlnt+1Inky(T) 2)

In practical terms, plotting In[—In(1 — «)] against Inf for a given constant temperature
yields a straight line. The slope of this plot yields the Avrami exponent, which is expressed
mathematically as the following derivative:

din[—In(1—a)]
dint - )

In turn, the intercept gives the rate constant at a given temperature.
Note that a nonisothermal form of Equation (1) contains the time integral of k4(T) as
found in a paper by Nakamura et al. [11].

3. Jeziorny Method

The idea of the Jeziorny method is that Equation (2) can be applied to nonisothermal
data by replacing temperature with time and introducing a correction factor for the rate
constant. Indeed, one can easily switch from temperature to time as the former is usually
varied linearly with the latter so that:

T-Tp
B

where T is the temperature at which crystallization starts and  is the heating rate. How-
ever, one must keep in mind that all values of the time determined in such a way correspond
to different temperatures. In contrast, the isothermal Equation (2) requires the time values
to correspond to the same constant temperature. This, of course, is an important contradic-
tion. To put it differently, the substitution of the time from Equation (4) into the isothermal
Avrami equation has no theoretical justification [12].

The correction factor that is supposed to adjust Equation (2) to nonisothermal condi-
tions has the following form [5]:

b=

(4)

h’lkA(T)
p

As mentioned earlier [13], this correction is fundamentally wrong as it violates the
basic concept of equating physical quantities; one can only equate the quantities that have
the same units of measurement. The left hand side of Equation (5) has no units, whereas
its right hand side has the units of min K~!. Thatis, Equation (5) is as meaning]less as the
statement that 1 gram equals 1 meter.

The Jeziorny method is employed by plotting In[—In(1 — «)] against Int. Usually, such
a plot is nearly linear so that its slope is interpreted as n and intercept as Ink%, i.e., by
analogy with Equation (2). This interpretation is incorrect in the case of nonisothermal data.
Apart from the fact that the “corrected” Ink’, is physically meaningless, it is estimated as a
single number from the respective single value of the intercept. This does not make any
sense because, as per Equation (5), Ink’ is defined via the temperature dependent Ink 4 (T)

Inky =

©)
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and dividing the latter over B does not eliminate the temperature dependence. In other
words, for nonisothermal data In k’, cannot in principle be represented by a single value
because it is necessarily variable.

Furthermore, for nonisothermal data the slope of the In[—In(1 — «)] vs. Inf plot is not
n. Taking into account the aforementioned modifications, the application of the Jeziorny
method boils down to the use of the following equation:

T—TO lnkA(T)
BB

For the reasons explained above, this equation is invalid. Even if it were valid, its
slope would not give the value of n. By definition, the slope of the In[—In(1 — «)] vs. Int
dependence is determined by the respective derivative. In the first approximation, Ink 4 (T)
for crystallization is frequently assumed [14] to have the Arrhenius form:

In[—In(1 —a)] =nln

(6)

lnkA(T):lnA—% (7)
so that the slope is:
dIn[—In(1 - E t
nldn-w] Bt (&
dint R(Ty + Bt)

Clearly, the slope is larger than n by the value of the second addend. Since the
latter is temperature dependent, so is the slope. Additionally, the invalid “correction” via
Equation (5) gives rise to the invalid summation in the right hand side of Equation (8). Just
as one cannot equate the quantities that have different units of measurement, one cannot
add them either. Indeed, 7 is unitless, whereas the second addend has the units of min K~1.

Note that without the “correction”, the second addend in Equation (8) has g in the
numerator:

din[-In(1—a)] _ - E Bt ©)
dint R (To—i—ﬁt)z
so that the problem of the invalid summation vanishes. However, eliminating the “correc-
tion” cannot make Equation (6) valid because the essence of its invalidity is in applying the
isothermal equation Equation (2) to nonisothermal data. A proper equation for the In[—In(1
— «)] vs. Int slope is derived in the next section.

It should be stressed that the conclusions of this section are relevant not only to the
Jeziorny method. They are also relevant to the quite common Avrami analyses [15-21] that
substitute nonisothermal data into the isothermal Avrami plot, which essentially is the
Jeziorny method without the “correction factor” (Equation (5)).

4. Nonisothermal Form of Avrami Model

To become applicable to nonisothermal data, the Avrami equation has to be converted
to a nonisothermal form. This is performed best by starting with a slightly modified
isothermal form:

1—a= exp[—(kmA(T)t)"} (10)

where k;,4(T) is the modified Avrami rate constant. An advantage of this form is that
the respective rate constant always has units of time !, i.e., the units of the conversion
rate, d/dt. The resulting k4 (T) values can be substituted directly into the Arrhenius
Equation (7) to estimate the correct values of InA and E. On the contrary, k4 (T) values have
units of time™ and their direct substitution into the Arrhenius equation yields InA and E
values that are n times larger than the correct ones [22-26]. Note that the given modification
changes Equation (2) into:

In[—In(1—a)] =nlnk,s(T)+nlint (11)
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This, however, does not affect the slope of the In[-In(1 — «)] vs. Int plot. Per Equa-
tion (3), it remains equal to 7.

Naturally, Equation (10) is still isothermal. As already mentioned, its nonisothermal
form includes integration with respect to the time [11]. However, when temperature is
varied linearly with time, the time integral is easily replaceable with the temperature
integral:

im_ AT —E
[—In(1—a)]"" = B exp (RT)dT (12)

It should be stressed that the resulting nonisothermal form of the Avrami equation is
valid when a system is saturated with the nuclei so that the crystallization rate is limited by
the rate of their growth [22,23,27]. It is also valid when the rates of nucleation and growth
have the same temperature dependence [28] or, more specifically, the same Arrhenian
activation energies [29]. Nevertheless, if the latter condition is not satisfied, Equation (12)
acquires a constant multiplier, which means that it still remains applicable [29].

The main difference between Equation (12) and the one used in the Nakamura et al.
method, is in the different types of temperature dependencies for k4(T). Equation (12)
employs the Arrhenius dependence, whereas the Nakamura et al. method uses the depen-
dence of the Williams-Landel-Ferry type. Both dependencies are approximations that hold
for a narrower temperature range. For a broad range, it is more appropriate to use the more
complex Hoffman-Lauritzen equation [30]. Yet, the use of the Arrhenius approximation is
still adequate for obtaining insights into the meaning of the In[—In(1 — «)] vs. Int plot.

The temperature integral in Equation (12) does not have an analytical solution. Its
integration inevitably involves the use of approximating functions, p(x):

Ig/oT exp(%f)d’l’ = Igﬁp(x) (13)

where x = E/RT. Equation (13) replaces the lower integration limit in Equation (12) with
0, which simplifies integration without generally diminishing its accuracy [31]. The p(x)
functions are available in a large variety of complexities and accuracies [32]. The following

function [33]
(x) = exp(—1.0008x — 0.312)

pix Y192 (14)

is one of the most accurate among the simpler ones. Its substitution into Equation (13)
followed by the substitution of Equation (13) into (12) yields:

In[-In(1—a)] =n <ln ?If —-1.92 lng - 0.312) +192nInT — 1.000811% (15)
or simply:
E
In[—In(1 — a)] = nConst +1.92nIn T — 1.0008n — (16)

RT

where Const collects all temperature independent terms.

Equation (16) is a nonisothermal form of the Avrami equation. Unlike Equation (2),
this equation is suitable for replacing temperature with time. In accord with Equation (4),
Equation (16) transforms into an equation with the time dependent terms:

In[—1In(1 — )] = nConst +1.92nIn(Tp + pt) — 1‘0008nR(TOE+/3t) (17)
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The importance of Equation (17) is that it can be used to understand the true meaning
of the slope of In[—In(1 — &)] vs. Int in the case of nonisothermal data. By taking the
derivative of Equation (17) with respect to Int one obtains the value of the slope as follows:

dlIn[—In(1 — a)] Bt E Bt
=192 1.00081n - —— 18
dint nTo+;8t+ nR(TO+IBt)2 (18)

Equation (18) indicates clearly that when one plots In[—In(1 — «)] vs. Int the resulting
slope does not give the value of the Avrami exponent. It also suggests that the slope is time
and, thus, temperature dependent, which means the In[—In(1 — )] vs. Inf plot is nonlinear.
The dependence is quite complex. If the first addend depends on the crystallization
temperature (T + Bt) and the temperature interval of crystallization (Bt), the second also
depends on the activation energy of crystallization. Furthermore, the second addend is
likely to be markedly larger than the first one. For typical crystallization conditions [7,34,35],
Bt is roughly around 40 K, whereas T + ft is around 400 K. This makes the first addend
around 0.2n. For the same temperature conditions, the second addend is roughly around
3n for E = 100 k] mol~! or n for 30 k] mol~!. In either case, the sum of these two addends
exceeds the actual value n. The fact that the Jeziorny method yields excessive values of the
Avrami exponent has already been noted [6,7]. However, depending on the crystallization
parameters (lower activation energy, higher temperature, or narrower temperature range)
the second addend can also possibly drop below 7 so that the slope can, in principle, yield
the values around or even smaller than n. It means that the In[—In(1 — «)] vs. Int plot
may occasionally yield the Avrami exponent, which can explain why the Jeziorny method
sometimes evaluates 7 values that are reasonably consistent with those determined by the
Ozawa method. However, this cannot occur as the general case.

It is noteworthy that Equation (15) can be easily linked to the Ozawa method [3]. This
method uses isothermal sections of nonisothermal data so that the Avrami exponent is
determined as the slope of the In[—In(1 — «)] vs. Inj plot. In Equation (15) only one term
depends on B, and the temperature dependent terms are constant for isothermal sections.
As a result, the respective derivative is:

dIn[—In(1 — a)]

dln B - (19)

That is, Equation (15) gives exactly the same result as the Ozawa method.

5. Simulations

Theoretical analysis in the previous section has permitted the obtaining of an equation
for the slope of the In[—In(1 — &)] vs. Int plot. In this section, the obtained result is tested
by using simulated data that correspond to the Avrami process with n = 3. The process was
simulated assuming the Arrhenius temperature dependence with E = 100 k] mol~! and
A =102 min}!, for the heating rates 1, 1.5, 2, 3, and 5 K min~L. The complete details of the
simulations are presented elsewhere [36].

Figure 1 displays the simulated data at 1 K min~!. The curve was simulated in the
form « vs. T and then converted into the form « vs. t in accord with Equation (4). It is
seen that the curve remains the same whether it is plotted against temperature or time. In
other words, the use of Equation (4) does not change the nature of the data, which remains
invariably nonisothermal.
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T/K
370 380 390 400 410

t / min

Figure 1. Simulated nonisothermal data for a process with the Avrami exponent, n = 3.

Equation (4) was employed to convert all simulated data into the o vs. t form. Then,
the resulting data were used to construct the In[—In(1 — «)] vs. Inf plots for the o range
0.05-0.95, as usually done in practical analyses. The plots are shown in Figure 2. Although
they are slightly nonlinear, they are fitted well with a straight line. All respective coefficients
of correlation exceed 0.998 and are statistically significant. Regardless of the heating rate,
the slope of all plots is ~7.5. This result clearly confirms the theoretical conclusion that the
slope of the respective plots does not equal the Avrami exponent, which has to be 3. If one
is to interpret this slope as n, the value exceeds significantly the true one, as was found in
the tests by Zhang et al. [6] and Kourtidou and Chrissafis [7].

2
O1 O 15 A 2 < 3 O 5
ok
E
o
= 2l
slope=7.5
-4 1 | 1 L
1.5 2.0 25 3.0 3.5 4.0

In(t / min)

Figure 2. Avrami plots for the simulated nonisothermal data (1 = 3). Numbers by the symbols are
heating rates in K min~.

Furthermore, as suggested by Equation (18), the slope for the In[—In(1 — &)] vs. Int
plot is time dependent, i.e., the plot is nonlinear. However, Figure 2 presents straight line
fits that naturally have a constant slope. By its meaning, such a slope is a value averaged
over the corresponding time region. The actual variable slopes calculated in accord with
Equation (18) are depicted in Figure 3. It is seen that the theoretical values of the slope vary
approximately between six and nine. Thus, the respective average value is about 7.5. This

is the slope value determined from the linear fits in Figure 2, which confirms the validity of
Equation (18).
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Figure 3. Theoretical slope values estimated for the simulated nonisothermal data. Open symbols
for Equation (18), semi-solid symbols for Equation (9). Numbers by the symbols are heating rates in
K min~1.

In addition, Figure 3 presents the slopes predicted by Equation (9). As stated above,
this equation derives from Equation (6), which is deemed invalid so that Equation (6)
should not be expected to predict the correct values of the slope. Indeed, the predicted
value varies between five and six. That is, the average is around 5.5, which is markedly
smaller than the 7.5 obtained directly from linear fits of the In[—In(1 — «)] vs. Int plots
(Figure 2). Therefore, Equation (9) inherits the invalidity of Equation (6).

Although the results of the present study demonstrate that the In[—In(1 — «)] vs.
Int plots are useless for the purpose of the Avrami analysis of nonisothermal data, there
appears to be a possibility of such analysis with the aid of Equation (16) that predicts a
nonlinear dependence of In[—In(1 — &)] vs. T. In other words, one can use experimental
data to construct such a plot and then fit Equation (16) to it. As a result, the fit parameter
in the second term can be used to determine the Avrami exponent. Then, substitution of
the resulting 7 into the fit parameter in the third term should permit the determining of
the activation energy. This type of analysis was tried on the simulated data. The results
are displayed in Figure 4. The fits are practically perfect (the coefficient of correlation is
1.0). However, the obtained value of the Avrami exponent is 2.94-2.95 which is 2% smaller
than the true value of 3.00. This deviation probably arises from the approximate nature
of Equation (16). Of course, the substitution of the underestimated n value gives rise to
an overestimated value of E. The latter is 2% larger than the true value of 100 k] mol~1. Tt
should be noted that the obtained value of the Avrami exponent is noticeably less accurate
than the one estimated by the Ozawa method from the same simulated data. The Ozawa
method consistently produced n values accurate to the third decimal place, i.e., 3.000 [36].
With this in mind, Equation (16) may be worth looking into as a means of obtaining a quick
and approximate estimate for n. On the other hand, the resulting estimate is incomparably
more accurate than the one produced by the Jeziorny method.
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0 1 K/min, n=2.95, E=102 kJ /mol

In[-In(1-c0)]

[
T

G 5 K/min, n=2.94, E=102 k] /mol
4 1 ! 1 1
380 390 400 410 420 430

T/K

Figure 4. Simulated data fitted by Equation (16).

6. Conclusions

The theoretical analysis demonstrates that the Jeziorny method is a faulty approach to
the Avrami analysis of nonisothermal crystallization. The method constructs the experi-
mental plots of In[—In(1 — «)] vs. Int and fits them with a straight line. It is shown that the
slope of the resulting line does not equal the Avrami exponent and the intercept the Avrami
rate constant. The latter is impossible to determine either with or without the “correction”,
which is explained to be meaningless. A theoretical equation that evaluates the slope of
the In[—In(1 — &)] vs. Int plot has been derived. It indicates that the plot is nonlinear and
its slope varies rather widely with time so that when fitted with a straight line it yields an
averaged value that tends to markedly exceed the Avrami exponent. Overall, the Jeziorny
method either with or without the “correction” appears rather useless in the Avrami anal-
ysis of nonisothermal crystallization and, thus, should be avoided. The same conclusion
applies to other techniques that substitute nonisothermal data into the isothermal Avrami
plot.
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