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Abstract: Cellulose nanocrystals (CNC) obtained from waste sawdust were used to modify the
polyamide membrane fabricated by interfacial polymerization of m-phenylene-diamine (MPDA)
and trimesoyl chloride (TMC). The efficiency of the modification with sawdust-derived CNC was
investigated using zeta potential and X-ray photoelectron spectroscopy (XPS). The effect of the
modification on membrane mechanical strength and stability in acidic and alkaline solutions was
also investigated. Results revealed that the negative zeta potential decreased at a high pH and
the isoelectric point shifted into the acidic range for both modified and unmodified membranes.
However, the negative charges obtained on the surface of the modified membrane at a pH lower
than 8 were higher than the pristine membrane, which is an indication of the successful membrane
modification. The XPS result shows that the degree of crosslinking was lowered due to the presence
of CNC. Enhanced stability in solution in all pH ranges and the increase in mechanical strength, as
indicated by higher Young’s modulus, maximum load, and tensile strength, confirmed the robustness
of the modified membrane.

Keywords: CNC; polyamide; membrane; zeta potential; XPS; interfacial polymerization

1. Introduction

The success of membrane technology in water treatment has been reported world-
wide [1]. However, some drawbacks in the synthesis of membranes affecting their per-
formances required further investigation. In some cases, a membrane with a high pure
water flux might have a very low rejection rate. Depending on the type of membrane
being used, specific solute rejection is affected by either repulsion or attraction between the
membrane surface and a specific solute in water [2]. For instance, the best membranes for
high-pressure water treatment procedures are thin-film composite (TFC) membranes [3].
It usually has a high rejection rate for both organic and inorganic solutes in all varieties
of water matrix [4]. The limitations of this membrane include a trade-off between water
flux and solute rejection, fouling, susceptibility to chlorine attack, and low shelf life [5–7].
Membrane treatment is needed in harsh environments that include mine wastewater treat-
ment. Therefore, thin-film composite membranes require further improvement to increase
water recovery while maintaining their physiochemical properties, which include high
solute rejection ability, mechanical strength, and stability even in harsh environments [8].
One effective method for enhancing the performance and longevity of the membrane
has been demonstrated to be the insertion of suitable nanoparticles on its surface [9–12].
Nanomaterials with rational functionality, superparamagnetic characteristics, antibacterial

Polymers 2023, 15, 57. https://doi.org/10.3390/polym15010057 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15010057
https://doi.org/10.3390/polym15010057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-7186-9171
https://orcid.org/0000-0002-9053-2216
https://doi.org/10.3390/polym15010057
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15010057?type=check_update&version=1


Polymers 2023, 15, 57 2 of 12

capabilities, high hydrophilicity, and strong hydration capacities may be better suited for
membrane modification [13]. As a result, several nanomaterials have been reportedly used
to modify TFC membranes [14,15].

In our previous study, the use of cellulose nanocrystals derived from sawdust to
modify polyamide membranes was reported [16]. This resulted in an increase in water
flux and hydrophilicity while a high rejection of solute is maintained. The interest in
sawdust-derived cellulose nanocrystals is provoked not only by the properties of the
nanomaterial but also by its abundant availability and environmental compatibility [17].
Improved mechanical strength and hydrophilicity are very important for an efficient
membrane that can withstand a harsh environment [18]. It has been noted that cellulose
nanocrystals serve as the last line of defense that prevents cracking and upholds the
integrity of the membrane [19]. For instance, the membrane’s response to stress in terms of
deformation determines the mechanical power of the membrane [20]. A membrane may
typically undergo elastic deformation before the resistance limit is reached and exceeded,
causing inelastic or irreversible distortion as the force is increased. Avoiding fatigue
damage is essential for a membrane used in industrial applications. This is because
inelastic deformation due to excessive stress contributes to membrane fatigue damage. CNC
integration can improve the membrane’s mechanical strength and prevent failure during
operation. The mechanical strength of membranes can be improved through CNC based on
their mechanical properties and their capacity to disperse in the polymer solution [21,22].
If CNC is evenly distributed across polymer solutions, surface interactions such as the
van der Waals and hydration forces can be defeated. As nanoparticles form during the
crystallization of the polymer, it is possible to achieve strength and load transmission from
CNC to composite membranes.

Zeta potential measurement is a procedure that can be used to measure the charge
on the surface of membranes and can also be used to predict ionic solute rejection in an
aqueous solution [23]. Based on changes in the surface chemistry, the approach may also
effectively assess the impact and efficacy of surface modification. This is because the surface
chemistry is changed due to modification even though the membrane is not yet in contact
with an aqueous solution. XPS is a method used to establish the elemental composition of
the material. The method has been used recently to determine the degree of crosslinking
in polymeric membranes [24,25]. The degree of crosslinking determines the membrane
tightness and, hence, salt rejection and water permeability. Both XPS and zeta potential
measurements can be combined to determine the effectiveness of a membrane modification.

Consequently, the aim of this study is to investigate the effectiveness of membrane
modification with cellulose nanocrystals using zeta potential analysis and XPS. The work
sought to establish improved mechanical strength and stability as a result of the modifica-
tion of the polyamide membrane. XPS was used to evaluate the degree of crosslinking. Zeta
potential analysis and the XPS showed that the modification was effective. The modified
membrane gives off a higher negative charge and exhibits a lower degree of crosslinking
and higher water permeability. The modified membrane also exhibits stability in highly
alkaline and acidic solutions and higher mechanical strength, as indicated by increased
Young’s modulus, maximum load, and tensile strength.

2. Materials and Methods

The membrane fabrication technique, the modification, and the materials used have
been reported in the work published by Adeniyi et al. [16]. The technique used was
interfacial polymerization. The monomers were TMC and MPDA; both were obtained from
Sigma-Aldrich, Centurion, South Africa. The CNC used for the modification was derived
from sawdust. The CNC was obtained from CSIR, Durban, South Africa. After many trials,
the membrane with 0.21% CNC was selected for further investigation and comparison with
the unmodified membrane. The modified membrane is tagged PA-CNC while the pristine
membrane is tagged PA.
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2.1. Zeta Potential (ZP) Measurement

The Zeta potential measurement was carried out using a Surpass electrokinetic ana-
lyzer, made by Anton Paar, Graz, Austria. The equipment is equipped with an adjustable
“gap” measuring cell with a measuring surface of 20 mm by 10 mm. The procedure has
been described in our previous work [26].

2.2. X-ray Photoelectron Spectroscopy (XPS)

X-rays are used in XPS to extract photoelectrons from a surface. Using the X-ray
photon energy and the extracted electrons’ kinetic energy, one may calculate the binding
energy of the extracted electrons. It is possible to identify the elements from which the
electrons were extracted using this one-of-a-kind quantity. The approach can identify all
elements (apart from hydrogen and helium), as well as compounds because the binding
energy of an element changes from compound to compound. It is primarily a surface
technique, as the escape depth of the photoelectrons ranges from 2 to 10 nm. The XPS
detection threshold is roughly 0.1%. Sputtering the surface with powerful argon ions while
keeping an eye on the binding energy areas of particular elements can provide information
from layers underneath the outer surface. The chemical contents of the polyamide layers
of the membrane were examined using an X-ray photoelectron spectrometer fitted with
Monochromatic Al k (1486.7 eV). The ESCAlab 250Xi model (Thermo, Waltham, MA, USA)
was the one used. The experimental setup is shown in Table 1. The XPS spectra were
calibrated using an Ag standard to ensure that the binding energy scale was correct.

Table 1. Experimental setup for X-ray photoelectron spectroscopy.

Parameter Value

Instrument Brand Thermo, Waltham, MA, USA

Model ESCAlab 250Xi

X-rays Monochromatic Al k (1486.7 eV)

X-ray Power 300 W

X-ray Spot Size 900

Pass Energy (Survey) 100 eV

Pass Energy (Hi-res) 20 eV

Pressure <10−8 mBar

2.3. Mechanical Test

The mechanical test was performed using an Instron tensile tester–5966 manufactured
by Instron Engineering Corporation, Norwood, MA, USA. The sample sizes were 10 mm
wide and 0.2 mm thick. The membranes were strained at a rate of 1 mm/min. The gauge
length was 25 mm.

2.4. Stability in the Acidic and Basic Environment

The membranes were submerged in 0.1 L of either 1 M HCl or 1 M NaOH aqueous
solution for two weeks at room temperature. After that, the membranes were washed
with distilled water until the pH was neutral [27]. The weight change after one week was
noted and used as an additional pH-stability indication. The membrane’s performance was
subsequently evaluated again for water flux and sodium chloride (1500 ppm) rejection.
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2.5. Analysis

The equation relating the elemental composition (%) of nitrogen (N) and oxygen (O) to
the degree of crosslinking is given by Equation (1) [24] where n is the degree of crosslinking.
The ratio N/O is obtained from XPS results.

N
O

=
n + 2
4 − n

(1)

If the ratio (N/O) is assigned to r, then Equation (1) can be re-written as follows:

n =
4r − 2
r + 1

(2)

Water flux calculation was performed based on Equation (3) [16]

Jw =
V
At

(3)

where the water flux is Jw (L/m2/h) and the permeate volume is V (L). The filtration period
t is measured in h, whereas the active membrane area A is measured in m2.

The rejection of solute was calculated based on Equation (4).

R =

(
Cf − Cp

)
Cf

× 100% (4)

where Cf is the solute concentration in the feed, Cp is the solute concentration in the
permeate, and R is the rejection percentage.

3. Results and Discussion
3.1. Surface Charge

Figure 1 shows the ZP pattern for both PA-CNC and PA membranes. Both membranes
have surfaces with a predominance of negative charges. The carboxylic group that forms in
the membrane because of the interfacial polymerization of highly reactive TMC, an acid
chloride monomer with high functionality, with MPDA is what gives the PA membrane
its negative charge [28,29]. The addition of CNC, a negatively charged particle, must
have increased the negative charge observed in the PA-CNC membrane. The addition of
nanomaterials has always been observed to result in a greater negative surface charge of
the PA membrane [30]. For both membranes, the negative zeta potential decreased at a
high pH. The isoelectric point, the pH where there is no effective charge on the membrane,
shifted towards the acidic range. This demonstrates how hydrophilic both membranes
are. At a pH range from 4 to 7, the change in apparent zeta potential rose in proportion
to the membrane hydrophilicity [31]. At pH levels below 8, the new membrane’s zeta
potential was, nevertheless, more negative than the pristine membrane. This suggests that
the membrane has been successfully modified. This is also demonstrated by the increased
water permeability compared to the original membrane [16]. The higher negative zeta
potential of the PA membrane between pH 8 and 10 is because of the dissociation of a more
carboxylic group in the membrane [32].
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Figure 1. Zeta potential for both the modified (PA-CNC) and the unmodified (PA) membranes.

3.2. Elemental Composition and the Degree of Crosslinking

The XPS analysis shows the elemental compositions of both the PA and PA-CNC
membranes. The outcomes are displayed in Figure 2. The results analysis is displayed
in Table 2. The ratio of Nitrogen to Carbon remains unchanged whereas the ratio of
oxygen to carbon and nitrogen to oxygen changed. Theoretically, the oxygen atoms for
the PA membrane come from carboxylic acid groups cleaved from unreacted acyl chloride
groups during interfacial polymerization and the functionality of the –NHCO–bond [28].
The –NHCO bond and the –NH2 end groups are where the nitrogen atoms are found.
Equation (2) was used to calculate the degree of crosslinking between the nitrogen and
oxygen values acquired from the XPS readings. A higher N/O ratio is an indication of
a higher degree of crosslinking. The relative amounts of elements were affected by the
modification with CNC (Table 2). The modification increased the relative amount of oxygen
and reduced the amount of nitrogen and carbon. For the PA-CNC membrane, the N/O ratio
was reduced because of the successful modification of the polyamide with the cellulose
nanocrystals. Increasing the concentration of oxygen was attributed to the presence of
hydroxyl groups on the CNC, and decreasing the amount of nitrogen after modification is
understood as the attenuation of nitrogen from the membrane surface [33]. This means that
the structure of the polyamide membrane was changed by the incorporation of CNC. This
is because cellulose nanocrystals carry the OH group into the polyamide and thus increase
the composition of the atomic oxygen in the modified membrane. The addition of CNC
led to a loose polyamide membrane because the N/O ratio of the PA-CNC membrane was
significantly lower than that of the PA membrane. Fewer acyl chloride groups on TMC,
some of which may have reacted with the CNC, may be the source of the decreased degree
of cross-linking. However, the degree of crosslinking obtained with CNC is better than the
value reported in the literature [24].

Polymers 2022, 14, x FOR PEER REVIEW 5 of 13 
 

 

Figure 1. Zeta potential for both the modified (PA-CNC) and the unmodified (PA) membranes. 

3.2. Elemental Composition and the Degree of Crosslinking 
The XPS analysis shows the elemental compositions of both the PA and PA-CNC 

membranes. The outcomes are displayed in Figure 2. The results analysis is displayed in 
Table 2. The ratio of Nitrogen to Carbon remains unchanged whereas the ratio of oxygen 
to carbon and nitrogen to oxygen changed. Theoretically, the oxygen atoms for the PA 
membrane come from carboxylic acid groups cleaved from unreacted acyl chloride 
groups during interfacial polymerization and the functionality of the –NHCO– bond [28]. 
The –NHCO bond and the –NH2 end groups are where the nitrogen atoms are found. 
Equation (2) was used to calculate the degree of crosslinking between the nitrogen and 
oxygen values acquired from the XPS readings. A higher N/O ratio is an indication of a 
higher degree of crosslinking. The relative amounts of elements were affected by the mod-
ification with CNC (Table 2). The modification increased the relative amount of oxygen 
and reduced the amount of nitrogen and carbon. For the PA-CNC membrane, the N/O 
ratio was reduced because of the successful modification of the polyamide with the cellu-
lose nanocrystals. Increasing the concentration of oxygen was attributed to the presence 
of hydroxyl groups on the CNC, and decreasing the amount of nitrogen after modification 
is understood as the attenuation of nitrogen from the membrane surface [33]. This means 
that the structure of the polyamide membrane was changed by the incorporation of CNC. 
This is because cellulose nanocrystals carry the OH group into the polyamide and thus 
increase the composition of the atomic oxygen in the modified membrane. The addition 
of CNC led to a loose polyamide membrane because the N/O ratio of the PA-CNC mem-
brane was significantly lower than that of the PA membrane. Fewer acyl chloride groups 
on TMC, some of which may have reacted with the CNC, may be the source of the de-
creased degree of cross-linking. However, the degree of crosslinking obtained with CNC 
is better than the value reported in the literature [24]. 

Table 2. XPS analysis for both the PA and PA-CNC membranes. 

Membrane 
Elemental Composition 

O/C N/C r n 
C O N 

PA 69.3 15.1 12.7 0.23 0.18 0.84 0.74 
PA-CNC 67.1 17.4 11.8 0.26 0.18 0.68 0.42 

 

Figure 2. The XPS spectra for both the unmodified membrane (A) and the modified membrane (B). 

The Na peaks on both membranes located at 1100 eV are observed because sodium 
hydroxide was added to the aqueous phase as an acid acceptor. Both survey spectra showed 
the Na KLL Auger peak at 500 eV [34]. The presence of polyamide was confirmed by C 1s, 
N 1s, and O 1s peaks at 284.1, 398.9, and 530.8 eV for PA membrane and at peaks of 284.2, 
399, and 530.9 eV, respectively, for PA-CNC membrane [35]. In the XPS survey profiles, the 
cellulose signals for C 1s and O 1s are typically 286 eV and 533 eV, respectively [36]. The 

Figure 2. The XPS spectra for both the unmodified membrane (A) and the modified membrane (B).



Polymers 2023, 15, 57 6 of 12

Table 2. XPS analysis for both the PA and PA-CNC membranes.

Membrane
Elemental Composition

O/C N/C r n
C O N

PA 69.3 15.1 12.7 0.23 0.18 0.84 0.74
PA-CNC 67.1 17.4 11.8 0.26 0.18 0.68 0.42

The Na peaks on both membranes located at 1100 eV are observed because sodium
hydroxide was added to the aqueous phase as an acid acceptor. Both survey spectra showed
the Na KLL Auger peak at 500 eV [34]. The presence of polyamide was confirmed by C 1s,
N 1s, and O 1s peaks at 284.1, 398.9, and 530.8 eV for PA membrane and at peaks of 284.2,
399, and 530.9 eV, respectively, for PA-CNC membrane [35]. In the XPS survey profiles, the
cellulose signals for C 1s and O 1s are typically 286 eV and 533 eV, respectively [36]. The
percentage of O 1s increased from 15.1 to 17.4 after the addition of cellulose nanocrystals,
as expected. This is a result of the OH group in the cellulose nanocrystals. The presence
of Cl 2p in the modified membrane indicated that the ammonium chloride added for pH
adjustment was adequately absorbed in the crosslinking due to the modification with
cellulose nanocrystals.

High-resolution C 1s, O 1s, and N 1s scans were performed to obtain more detail on
the modification of the polyamide film. The results are shown in Figure 3. For the PA
membrane, the C 1s deconvoluted into four sub-peaks attributed to C=O at 287.5 eV, C-O at
285.8 eV, C-C Sp3 at 284.8 eV, and C-C Sp2 at 284 eV. Similarly, for the PA-CNC membrane,
the C 1s were deconvoluted into four sub-peaks attributed to C=O at 287.5 eV, C-O at
286.6 eV, C-C Sp3 at 285 eV, and C-C Sp2 at 284 eV. The change in the peaks observed for
C-O is due to the incorporation of CNC. This is a chemical shift, and it is due to a change in
the chemical bonding of C-O as a result of the incorporation of CNC [37]. Core binding
energies are determined by the electrostatic interaction between it and the nucleus. They
are reduced by the electrostatic shielding of the nuclear charge from all other electrons in
the atom (including valence electrons). Moreover, the removal or addition of electronic
charge as a result of changes in bonding will alter the shielding.

The O 1s core spectrum for PA and PA-CNC membranes is shown in Figure 3C,D. The
peaks are at 530.6, 532.4, and 535.2 eV for the PA membrane. For the PA-CNC membrane,
the peaks are at 530.6, 532.6, and 535.1 eV. All these peaks are assigned to organic O. These
peaks mean that the carboxylic groups are present in both membranes. The deconvoluted
N 1s core spectrum is shown in Figure 3E,F. The peaks are at 397.8, 399.2, and 402.1 eV for
the PA membrane. The peaks are at 397.7, 399.2, and 402.1 eV for the PA-CNC membranes.
These peaks are an indication of the presence of an amide group in both the PA and the
PA-CNC membranes.
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3.3. Mechanical Strength of the Membranes

Polymeric membranes are required to have good mechanical durability for their relia-
bility and life span. The mechanical durability can be measured by analyzing membrane
real stress loading conditions. The required load is determined by measuring the mem-
brane’s strain at a controlled rate. Typically, metrics such as Young’s modulus, toughness,
tensile strength, and elongation are used to measure this. Elongation and toughness are
required in addition to Young’s modulus and tensile strength in order to fully describe
the mechanical behavior of the membrane [38]. The linear component of the stress-strain
isotherm’s first slope, or roughly the first 2.0% of strain, is utilized as an indicator of
the stiffness of the elastic deformation initiation known as Young’s module [21]. Tensile
strength, which can be used to gauge a membrane’s strength, is the highest stress that a
membrane can withstand before breaking during stretching. The ductility of a membrane
is determined by its elongation-at-break value. Toughness is defined as how much en-
ergy a material can withstand before failing [39]. Figure 4 shows the stress-strain curves.
Five specimens were tested for each of the membranes. The curve shows the expected
pattern for membranes under the application of stress. The linear part is the region of
reversible deformation where the membrane can easily return to its normal form. As the
applied stress increases, the membranes enter the region of irreversible deformation, as in-
dicated by the curves. The membranes ultimately reach their fracture strength, after which
breakage occurs.
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Figure 4. Stress-strain curves for the PA (A) and PA-CNC (B) membranes. The Figures shows a
higher average tensile stress for PA-CNC than the value obtained for PA.

Table 3 shows Young’s modulus, tensile strength, and elongation. The results show
that these variables increased because of the presence of cellulose nanocrystals. This may be
due to the properties of the cellulose nanocrystals and the fact that they are well dispersed
in the aqueous phase monomer solution. CNC had a large ratio of length to diameter
and excellent mechanical characteristics [40]. An interactive network was developed by
the interactions between the CNC and the MPDA monomer due to hydrophilic hydroxyl
groups in the CNC [29]. This interaction creates a bonding (hydrogen) and an electrostatic
attraction, that overcomes the van der Waals and the hydration forces, resulting in improved
overall mechanical properties of composite membranes [41].

Table 3. Mechanical characterization of both PA and PA-CNC membranes.

Membrane
Modulus Maximum UTS Elongation

(MPa) Load (N) (MPa) (%)

PA 450.6 ± 35.7 35.5 ± 2.7 17.7 ± 1.4 27.6 ± 1.7
PA-CNC 505.8 ± 45.5 40.4 ± 2.3 20.2 ± 1.2 26.8 ± 2.3

Young’s modulus, a measure of the membrane’s stiffness, was found to increase by
12% due to the presence of CNC. A similar result was obtained by Bai et al. (2017). The
tensile strength increases by 13.8%. Mao et al. [40] obtained similar results when 3% of
CNC was added to the chitosan membrane. They recorded a 13.2% increase in tensile
strength as a result of the addition of CNC. Jahan et al. [42] obtained a similar increase
in tensile strength when CNC was added to poly (vinyl alcohol) (PVA) nanocomposite
membranes. The elongation was found to reduce from 27.6% for the pristine membrane to
26.8% for the modified membrane.
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3.4. Stability in the Acidic and Alkaline Environment

No significant swelling was recorded for both membranes after putting them in the
acidic solutions for two weeks, as shown in Table 4. For the PA membrane, the weight gain
was 0.0035 g, while the weight gain for the PA-CNC was 0.0010. A significant swelling was
observed for both membranes when immersed in a 1 M NaOH solution for 2 weeks. The
weight gain for PA was 0.0279 g, while that of PA-CNC was 0.0182 g. The water flux at 7 bar
increases for both membranes, with the highest increase experienced with the PA membrane,
as shown in Figure 5. Moreover, both membranes experience a reduction of sodium chloride
rejection, particularly in an alkaline environment, as shown in Figure 6. This is basically
due to the hydrolysis of the carboxylic group because of exposure to nucleophilic attack
under an alkaline and acidic environment [43]. Most polyamide membranes are stable
between a pH of 2 and 11. The stability test was conducted at a pH of acidic and basic
ranges. The effect of the alkaline and acidic environment is more significant with the PA
membrane. In all cases, the presence of CNC enhanced the membranes’ stability. This may
be because the CNC reacted with the carboxylic group and hindered further hydrolysis.
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Figure 5. Water flux for PA (A) and PA-CNC (B) at 7 bar after soaking for two weeks in 1 M HCl
(acidic) and 1 M NaOH (alkaline) solutions.
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Table 4. Change in weight of both PA and PA-CNC membranes after immersion in 1M NaOH and
1M HCl for two weeks.

Membrane Initial Weight (g) Final Weight after Immersion in
Acid Solution (g)

PA 0.1940 0.1975
PA-CNC 0.1923 0.1933

Membrane Initial Weight (g) Final Weight after Immersion in
Basic Solution.

PA 0.1972 0.2251
PA-CNC 0.1925 0.2107
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4. Conclusions

In this study, the successful interfacial polymerization-fabricated polyamide mem-
brane modified with CNC obtained from sawdust was tested. Zeta potential analysis and
X-ray photoelectron spectroscopy (XPS) were used for the verification of the modification.
The XPS demonstrated the CNCs presence that caused the degree of crosslinking to de-
crease. The CNC membrane had a stronger negative charge. The addition of the CNC
made the polyamide mechanically stronger by raising its maximum load, tensile strength,
and Young’s modulus. Due to the moderate increases in the water flux and decreases in salt
chloride rejection, the stability of the membrane was improved while using a polyamide
membrane with CNC. The modification of the polymeric membrane with CNC produced
from sawdust has significant promise for industrial applications.
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