A Brief Evaluation of Antioxidants, Antistatics, and Plasticizers Additives from Natural Sources for Polymers Formulation
Abstract
:1. Introduction
2. Antioxidants (AOs)
2.1. Primary AOs (Kinetic Chain Breaking AOs)
2.2. Secondary AOs (Peroxide Decomposers)
2.3. Natural AOs
3. Antistatic Agents
Bio-Based Antistatic Agents
4. Plasticizers
4.1. Phthalates
4.2. Non-Phthalate Plasticizers
4.3. Bio-Based Plasticizers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jaafarzadeh, N.; Ahmadmoazzam, M.; Kojloo, R.; Jorfi, S.; Baasim, Y. The environmental performance of four municipal solid waste management scenarios: A life cycle assessment study. Environ. Qual. Manag. 2021, 31, 77–84. [Google Scholar] [CrossRef]
- Plastic Europe. Plastics—The Facts 2021. An Analysis of European Plastics Production, Demand and Waste Data. 2021, pp. 1–34. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed on 26 September 2022).
- Bart, J. Additives in Polymers: Industrial Analysis and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2005; ISBN 978-0-470-85062-6. [Google Scholar]
- Plastic Additives Market by Type (Plasticizers, Stabilizers, Flame Retardants, Impact Modifiers), Plastic Type (Commodity, Engineering, and High-Performance), Application (Packaging, Consumer Goods) and Region—Global Forecast to 2026. Report Code: CH 1184. 2021. Available online: https://www.marketsandmarkets.com/Market-Reports/plastic-additives-market-722.html?gclid=EAIaIQobChMI-6yy7M-F_AIVII1oCR2CygAREAAYASAAEgIHl_D_BwE (accessed on 26 September 2022).
- Wang, M.; Yin, G.-Z.; Yang, Y.; Fu, W.; Palencia, J.L.D.; Zhao, J.; Wang, N.; Jiang, Y.; Wang, D.-Y. Bio-based flame retardants to polymers: A review. Adv. Ind. Eng. Polym. Res. 2022, in press. [Google Scholar] [CrossRef]
- De Paoli, M.A.; Waldman, W.R. Bio-based additives for thermoplastics. Polímeros 2019, 29, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Vernaez, O.; Neubert, K.J.; Kopitzky, R.; Kabasci, S. Compatibility of Chitosan in Polymer Blends by Chemical Modification of Bio-based Polyesters. Polymers 2019, 11, 1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Chen, J.; Zhu, J.; Yan, N. Lignin-Based Polyurethane: Recent Advances and Future Perspectives. Macromol. Rapid Commun. 2021, 42, e2000492. [Google Scholar] [CrossRef]
- Di Donato, P.; Taurisano, V.; Poli, A.; D’Ayala, G.G.; Nicolaus, B.; Malinconinco, M.; Santagata, G. Vegetable wastes derived polysaccharides as natural eco-friendly plasticizers of sodium alginate. Carbohydr. Polym. 2020, 229, 115427. [Google Scholar] [CrossRef]
- Tátraaljai, D.; Major, L.; Földes, E.; Pukánszky, B. Study of the effect of natural antioxidants in polyethylene: Performance of β-carotene. Polym. Degrad. Stab. 2014, 102, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D. Methods for determination of antioxidant capacity: A review. Inter. J. Pharm. Sci. Res. 2015, 6, 546–566. [Google Scholar] [CrossRef]
- Marturano, V.; Cerruti, P.; Ambrogi, V. Polymer additives. Phys. Sci. Rev. 2017, 2, 20160130. [Google Scholar] [CrossRef]
- Ambrogi, V.; Carfagna, C.; Cerruti, P.; Marturano, V. Additives in Polymers. In Modification of Polymer Properties; Andrew, W., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 87–108. [Google Scholar] [CrossRef]
- Zweifel, H. Stabilization of Polymeric Materials; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Cirillo, G.; Iemma, F. Antioxidant Polymers: Synthesis, Properties, and Applications; Scrivener Publishinh LLC: Beverly, MA, USA, 2012. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Appelqvist, L.-Å. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef]
- Ambrogi, V.; Cerruti, P.; Carfagna, C.; Malinconico, M.; Marturano, V.; Perrotti, M.; Persico, P. Natural antioxidants for polypropylene stabilization. Polym. Degrad. Stab. 2011, 96, 2152–2158. [Google Scholar] [CrossRef]
- Agustin-Salazar, S.; Gamez-Meza, N.; Medina-Juàrez, L.; Soto-Valdez, H.; Cerruti, P. From Nutraceutics to Materials: Effect of Resveratrol on the Stability of Polylactide. ACS Sustain. Chem. Eng. 2014, 2, 1534–1542. [Google Scholar] [CrossRef]
- Byun, Y.; Kim, Y.T.; Whiteside, S. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. J. Food Eng. 2010, 100, 239–244. [Google Scholar] [CrossRef]
- Zehiroglu, C.; Sarikaya, S.B.O. The importance of antioxidants and place in today’s scientific and technological studies. J. Food Sci. Technol. 2019, 56, 4757–4774. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Compos. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- de Sousa, L.S.; de Moura, C.V.R.; de Oliveira, J.E.; de Moura, E.M. Use of natural antioxidants in soybean biodiesel. Fuel 2014, 134, 420–428. [Google Scholar] [CrossRef] [Green Version]
- An, L.; Si, C.; Wang, G.; Sui, W.; Tao, Z. Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind. Crop. Prod. 2019, 128, 177–185. [Google Scholar] [CrossRef]
- Shahidi, F. Natural Antioxidants: Chemistry, Health Effects, and Applications; AOCS Press: Champaign, IL, USA, 1997; ISBN 9780935315776. [Google Scholar]
- Khounani, Z.; Hosseinzadeh-Bandbafha, H.; Moustakas, K.; Talebi, A.F.; Goli, S.A.H.; Rajaeifar, M.A.; Khoshnevisan, B.; Jouzani, G.S.; Peng, W.; Kim, K.-H.; et al. Environmental life cycle assessment of different biorefinery platforms valorizing olive wastes to biofuel, phosphate salts, natural antioxidant, and an oxygenated fuel additive (triacetin). J. Clean. Prod. 2021, 278, 123916. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Brillas, E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C Photochem. Rev. 2017, 31, 1–35. [Google Scholar] [CrossRef]
- Wypych, G.; Pionteck, J. Handbook of Antistatics; ChemTec Publishing: Toronto, ON, Canada; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Höfer, R. Processing and Performance Additives for Plastics. In Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; pp. 369–381. [Google Scholar] [CrossRef]
- Morra, M.; Occhiello, E.; Garbassi, F. Wettability and antistatic behavior of surface-grafted polypropylene. J. Colloid Interface Sci. 1992, 149, 290–294. [Google Scholar] [CrossRef]
- Mather, P.J.; Thomas, K.M. Carbon black/high density polyethylene conducting composite materials: Part I Structural modification of a carbon black by gasification in carbon dioxide and the effect on the electrical and mechanical properties of the composite. J. Mater. Sci. 1997, 32, 401–407. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Huang, B.-H.; Lin, J.-J. Synthesis and properties of cross-linkable macromers from the selective substitution of poly(oxyalkylene)-amines and cyanuric chloride. Polymer 2005, 46, 4619–4626. [Google Scholar] [CrossRef]
- Dall’Acqua, L.; Tonin, C.; Peila, R.; Ferrero, F.; Catellani, M. Performances and properties of intrinsic conductive cellulose–polypyrrole textiles. Synth. Met. 2004, 146, 213–221. [Google Scholar] [CrossRef]
- Hong, J.W.; Kim, H.K.; Yu, J.A.; Kim, Y.B. Characterization of UV-curable reactive diluent containing quaternary ammonium salts for antistatic coating. J. Appl. Polym. Sci. 2002, 84, 132–137. [Google Scholar] [CrossRef]
- Sittinger, V.; Pflug, A.; Werner, W.; Rickers, C.; Vergöhl, M.; Kaiser, A.; Szyszka, B. Production of MF and DC-pulse sputtered anti-reflective/anti-static optical interference coatings using a large area in-line coater. Thin Solid Films 2006, 502, 175–180. [Google Scholar] [CrossRef]
- Amberg-Schwab, S.; Katschorek, H.; Weber, U.; Burger, A.; Hänsel, R.; Steinbrecher, B.; Harzer, D. Inorganic-Organic Polymers as Migration Barriers Against Liquid and Volatile Compounds. J. Sol-Gel Sci. Technol. 2003, 26, 699–703. [Google Scholar] [CrossRef]
- Sangermano, M.; Foix, D.; Kortaberria, G.; Messori, M. Multifunctional antistatic and scratch resistant UV-cured acrylic coatings. Prog. Org. Coat. 2013, 76, 1191–1196. [Google Scholar] [CrossRef]
- Roessler, A.; Schottenberger, H. Antistatic coatings for wood-floorings by imidazolium salt-based ionic liquids. Prog. Org. Coat. 2014, 77, 579–582. [Google Scholar] [CrossRef]
- Jelil, R.A. A review of low-temperature plasma treatment of textile materials. J. Mater. Sci. 2015, 50, 5913–5943. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Xiong, Y.; Lu, D.-N. Surface characteristics and antistatic mechanism of plasma-treated acrylic fibers. Appl. Surf. Sci. 2006, 252, 2960–2966. [Google Scholar] [CrossRef]
- Dietzel, Y.; Przyborowski, W.; Nocke, G.; Offermann, P.; Hollstein, F.; Meinhardt, J. Investigation of PVD arc coatings on polyamide fabrics. Surf. Coat. Technol. 2000, 135, 75–81. [Google Scholar] [CrossRef]
- Zeng, J.; Saltysiak, B.; Johnson, W.; Schiraldi, D.A.; Kumar, S. Processing and properties of poly(methyl methacrylate)/carbon nanofiber composites. Compos. B Eng. 2004, 35, 245–249. [Google Scholar] [CrossRef]
- Li, C.; Liang, T.; Lu, W.; Tang, C.; Hu, X.; Cao, M.; Lang, S. Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Compos. Sci. Technol. 2004, 64, 2089–2096. [Google Scholar] [CrossRef]
- Park, C.; Ounaies, Z.; A Watson, K.; E Crooks, R.; Smith, J.; E Lowther, S.; Connell, J.W.; Siochi, E.J.; Harrison, J.S.; Clair, T.L. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 2002, 364, 303–308. [Google Scholar] [CrossRef]
- Bleier, H.; Finter, J.; Hilti, B.; Hofherr, W.; Mayer, C.; Minder, E.; Hediger, H.; Ansermet, J. Transparent electrically conductive composite materials: Methods of preparation and their application. Synth. Met. 1993, 57, 3605–3610. [Google Scholar] [CrossRef]
- Pionteck, J.; Wypych, G. (Eds.) Antistatic agent selection for specific polymers—Chapter 13. In Handbook of Antistatics, 2nd ed.; ChemTec Publishing: Toronto, ON, Canada, 2016; pp. 183–276. [Google Scholar] [CrossRef]
- Jaroszewski, M.; Thomas, S.; Rane, A. Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Al-Saidi, B.A.; Al-Zoubi, R.M. Experimental and theoretical analysis of the mechanical and thermal properties of carbon nanotube/acrylonitrile–styrene–butadiene nanocomposites. Polymer 2016, 89, 12–17. [Google Scholar] [CrossRef]
- Chen, J.; Yan, L.; Song, W.; Xu, D. Interfacial characteristics of carbon nanotube-polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2018, 114, 149–169. [Google Scholar] [CrossRef]
- Soto-Oviedo, M.A.; Araújo, O.A.; Faez, R.; Rezende, M.C.; De Paoli, M.-A. Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synth. Met. 2006, 156, 1249–1255. [Google Scholar] [CrossRef]
- Lynwood, C. Polystyrene: Synthesis, characteristics and applications. In Chemistry Research and Applications; Nova Science Publishers: New York, NY, USA, 2014; ISBN 978-1-63321-356-2. [Google Scholar]
- Gonçalves, A.; Paredes, X.; Cristino, A.; Santos, F.; Queirós, C. Ionic Liquids—A Review of Their Toxicity to Living Organisms. Int. J. Mol. Sci. 2021, 22, 5612. [Google Scholar] [CrossRef]
- Correia, D.M.; Fernandes, L.; Martins, P.; García-Astrain, C.; Costa, C.M.; Reguera, J.; Lanceros-Méndez, S. Ionic Liquid–Polymer Composites: A New Platform for Multifunctional Applications. Adv. Funct. Mater. 2020, 30, 1909736. [Google Scholar] [CrossRef]
- Kosiński, S.; Rykowska, I.; Gonsior, M.; Krzyżanowski, P. Ionic liquids as antistatic additives for polymer composites—A review. Polym. Test. 2022, 112, 107649. [Google Scholar] [CrossRef]
- Iwata, T.; Tsurumaki, A.; Tajima, S.; Ohno, H. Fixation of ionic liquids into polyether-based polyurethane films to maintain long-term antistatic properties. Polymer 2014, 55, 2501–2504. [Google Scholar] [CrossRef]
- Tsurumaki, A.; Tajima, S.; Iwata, T.; Scrosati, B.; Ohno, H. Antistatic effects of ionic liquids for polyether-based polyurethanes. Electrochim. Acta 2015, 175, 13–17. [Google Scholar] [CrossRef]
- Tsurumaki, A.; Tajima, S.; Iwata, T.; Scrosati, B.; Ohno, H. Evaluation of ionic liquids as novel antistatic agents for polymethacrylates. Electrochim. Acta 2017, 248, 556–561. [Google Scholar] [CrossRef]
- Tsurumaki, A.; Iwata, T.; Tokuda, M.; Minami, H.; Navarra, M.A.; Ohno, H. Polymerized ionic liquids as durable antistatic agents for polyether-based polyurethanes. Electrochim. Acta 2019, 308, 115–120. [Google Scholar] [CrossRef]
- Guo, L.; Yang, Z.-Y.; Tang, R.-C.; Yuan, H.-B. Grape Seed Proanthocyanidins: Novel Coloring, Flame-Retardant, and Antibacterial Agents for Silk. ACS Sustain. Chem. Eng. 2020, 8, 5966–5974. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, N.; Ni, L.; Wei, Z.; Quan, H.; Zhou, Y. One-pot high efficiency low temperature ultrasonic-assisted strategy for fully bio-based coloristic, anti-pilling, antistatic, bioactive and reinforced cashmere using grape seed proanthocyanidins. J. Clean. Prod. 2021, 315, 128148. [Google Scholar] [CrossRef]
- Shirvan, A.R.; Shakeri, M.; Bashari, A. Recent advances in application of chitosan and its derivatives in functional finishing of textiles. In The Impact and Prospects of Green Chemistry for Textile Technology; Woodhead Publishing, Elsevier Ltd.: Duxford, UK, 2019; pp. 107–133. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.; Zheng, Z.; Liu, S.; Mao, S.; Li, X.; Chen, Y.; Mao, Q.; Wang, L.; Wang, F.; et al. Functionalization of polyethylene terephthalate fabrics using nitrogen plasma and silk fibroin/chitosan microspheres. Appl. Surf. Sci. 2019, 495, 143481. [Google Scholar] [CrossRef]
- Hasanin, M.S.; Mostafa, A.M.; Mwafy, E.A.; Darwesh, O.M. Eco-friendly cellulose nano fibers via first reported Egyptian Humicola fuscoatra Egyptia X4: Isolation and characterization. Environ. Nanotechnol. Monit. Manag. 2018, 10, 409–418. [Google Scholar] [CrossRef]
- El-Saied, H.; Mostafa, A.M.; Hasanin, M.S.; Mwafy, E.A.; Mohammed, A.A. Synthesis of antimicrobial cellulosic derivative and its catalytic activity. J. King Saud Univ.-Sci. 2020, 32, 436–442. [Google Scholar] [CrossRef]
- Filimon, A.; Dobos, A.M.; Musteata, V. New perspectives on development of polysulfones/cellulose derivatives based ionic-exchange membranes: Dielectric response and hemocompatibility study. Carbohydr. Polym. 2019, 226, 115300. [Google Scholar] [CrossRef]
- Takechi, S.; Teramoto, Y.; Nishio, Y. Improvement of dielectric properties of cyanoethyl cellulose via esterification and film stretching. Cellulose 2016, 23, 765–777. [Google Scholar] [CrossRef]
- Hasanin, M.; Labeeb, A.M. Dielectric properties of nicotinic acid/methyl cellulose composite via “green” method for anti-static charge applications. Mater. Sci. Eng. B 2021, 263, 114797. [Google Scholar] [CrossRef]
- Barraza, L. A New Approach for Regulating Bisphenol A for the Protection of the Public’s Health. J. Law Med. Ethic. 2013, 41, 9–12. [Google Scholar] [CrossRef]
- Bocqué, M.; Voirin, C.; Lapinte, V.; Caillol, S.; Robin, J.-J. Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 11–33. [Google Scholar] [CrossRef]
- Testai, E.; Hartemann, P.; Rastogi, S.C.; Bernauer, U.; Piersma, A.; De Jong, W.; Gulliksson, H.; Sharpe, R.; Schubert, D.; Rodriguez-Farre, E.; et al. The safety of medical devices containing DEHP plasticized PVC or other plasticizers on neonates and other groups possibly at risk (2015 update). Regul. Toxicol. Pharmacol. 2016, 76, 209–210. [Google Scholar] [CrossRef]
- Kutz, M. Applied Plastics Engineering Handbook—Processing, Materials and Applications, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Rahman, M.; Brazel, C.S. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci. 2004, 29, 1223–1248. [Google Scholar] [CrossRef]
- McGrath, T.; Poma, G.; Matsukami, H.; Malarvannan, G.; Kajiwara, N.; Covaci, A. Short- and Medium-Chain Chlorinated Paraffins in Polyvinylchloride and Rubber Consumer Products and Toys Purchased on the Belgian Market. Int. J. Environ. Res. Public Health 2021, 18, 1069. [Google Scholar] [CrossRef]
- Münch, F.; Höllerer, C.; Klapproth, A.; Eckert, E.; Rüffer, A.; Cesnjevar, R.; Göen, T. Effect of phospholipid coating on the migration of plasticizers from PVC tubes. Chemosphere 2018, 202, 742–749. [Google Scholar] [CrossRef]
- Hosney, H.; Nadiem, B.; Ashour, I.; Mustafa, I.; El-Shibiny, A. Epoxidized vegetable oil and bio-based materials as PVC plasticizer. J. Appl. Polym. Sci. 2018, 135, 46270. [Google Scholar] [CrossRef] [Green Version]
- Larsson, K.; Lindh, C.H.; Jönsson, B.A.; Giovanoulis, G.; Bibi, M.; Bottai, M.; Bergström, A.; Berglund, M. Phthalates, non-phthalate plasticizers and bisphenols in Swedish preschool dust in relation to children’s exposure. Environ. Int. 2017, 102, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Barceló, D.; Petrovic, M. Emerging contaminants from industrial and municipal waste. In The Handbook of Environmental Chemistry; Water Pollution, Part S/2; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5. [Google Scholar] [CrossRef]
- Smital, T. Acute and chronic effects of emerging contaminants. In Emerging Contaminats from Industrial and Municipal Waste. The Handbook of Environmental Chemistry; Water Pollution, Part S/1; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5, pp. 105–142. [Google Scholar] [CrossRef]
- Wadey, B. Plasticizers. In Encyclopedia of Physical Science and Technology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 441–456. [Google Scholar] [CrossRef]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bialecka-Florjańczyk, E.; Florjańczyk, Z. Solubility of plasticizers, polymers and environmental pollution. In Thermodynamics, Solubility and Environmental Issues; Elsevier: Amsterdam, The Netherlands, 2007; pp. 397–408. [Google Scholar] [CrossRef]
- Wypych, G. PVC Degradation and Stabilization, 3rd ed.; Chemtec Publishing: Toronto, ON, Canada, 2015. [Google Scholar] [CrossRef]
- Biron, M. Thermoplastics and Thermoplastic Composites, Technical Information for Plastics Users, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Park, M.; Choi, I.; Lee, S.; Hong, S.-J.; Kim, A.; Shin, J.; Kang, H.-C.; Kim, Y.-W. Renewable malic acid-based plasticizers for both PVC and PLA polymers. J. Ind. Eng. Chem. 2020, 88, 148–158. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, J.; Zhang, R.; Zhu, J. Designing bio-based plasticizers: Effect of alkyl chain length on plasticization properties of isosorbide diesters in PVC blends. Mater. Des. 2017, 126, 29–36. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; da Silva, M.A.; Dos Santos, L.O.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef]
- Ghosh-Dastidar, A.; Kaujalgikar, S.; Chaudhary, B. Epoxidized Fatty Acid Alkyl Ester Plasticizers and Methods for Making Epoxidized Fatty Acid Alkyl Ester Plasticizers. U.S. Patent 9499681 B2, 22 November 2016. [Google Scholar]
- Lim, K.M.; Ching, Y.C.; Gan, S.N. Effect of Palm Oil Bio-Based Plasticizer on the Morphological, Thermal and Mechanical Properties of Poly(Vinyl Chloride). Polymers 2015, 7, 2031–2043. [Google Scholar] [CrossRef] [Green Version]
- Bouchareb, B.; Benaniba, M.T. Effects of epoxidized sunflower oil on the mechanical and dynamical analysis of the plasticized poly(vinyl chloride). J. Appl. Polym. Sci. 2008, 107, 3442–3450. [Google Scholar] [CrossRef]
- Liu, D.; Shen, Y.; Jiang, P.; Wai, P.T.; Zhang, Z.; Zhang, P.; Agus, H.; Nie, Z.; Zhao, M.; Zhao, H. An efficient cold-resistant strategy: Synthesis and application of green cold-resistant bio-based plasticizer for poly(vinyl chloride). Eur. Polym. J. 2021, 142, 110154. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Shi, J.; Zhu, R.; Zhang, J.; Zhang, Z.; Ma, D.; Hou, Y.; Lin, F.; Yang, J.; et al. A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering. Sci. Rep. 2016, 6, 39477. [Google Scholar] [CrossRef] [Green Version]
- Gheorghita Puscaselu, R.; Lobiuc, A.; Dimian, M.; Covasa, M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers 2020, 12, 2417. [Google Scholar] [CrossRef]
- Gao, C.; Pollet, E.; Avérous, L. Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food Hydrocoll. 2017, 63, 414–420. [Google Scholar] [CrossRef]
- López, O.V.; Ninago, M.D.; Lencina, M.S.; García, M.A.; Andreucetti, N.A.; Ciolino, A.E.; Villar, M.A. Thermoplastic starch plasticized with alginate–glycerol mixtures: Melt-processing evaluation and film properties. Carbohydr. Polym. 2015, 126, 83–90. [Google Scholar] [CrossRef]
- Parreidt, T.S.; Schott, M.; Schmid, M.; Müller, K. Effect of Presence and Concentration of Plasticizers, Vegetable Oils, and Surfactants on the Properties of Sodium-Alginate-Based Edible Coatings. Int. J. Mol. Sci. 2018, 19, 742. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, S.C.; Fraqueza, M.J.; Fernandes, M.H.; Moldão-Martins, M.; Alves, V.D. Application of Edible Alginate Films with Pineapple Peel Active Compounds on Beef Meat Preservation. Antioxidants 2020, 9, 667. [Google Scholar] [CrossRef]
Classification | Chemical Composition | Supplier | Implementations |
---|---|---|---|
Primary AOs | Phenols | ANOX 29 (Addivant), IRGANOX 1010 (BASF), EVERNOX 10 (Everspring) | Polyvinyl chloride (PVC), Polyamide (PA), PP, PE, cellulosic polymers |
ADK STAB A040 (AdekaCorp), SONGNOX 1077 LQ (Songwon) | Cellulosic polymers | ||
Amines | AMINOX (Addivant), DUSANTOX 86 (Dulso), ANTIOXIDANT DQ (Akrochem) | Natural rubbers | |
Sipax DLTDP, BNX 2000 (Mayzo) | PA, PE, PP | ||
Secondary AOs | Phosphites | WESTON 705 (Addivant), ADK STAB 1500 (Adeka Palmarole) | Cellulosic polymers |
EVERFOS 168 (Everspring Chemical), ADK STAB PEP-36 (Adeka Palmarole), ALKANOX 240 (Addivant) | PVC, Polystyrene (PS), PA, PP, PE, cellulosic polymers | ||
Thioester | Octolite 529 (Tiarco Chemical) | Synthetic rubbers | |
Songnox DSTDP (Songwon), Irganox PS800 (BASF) | PA, PE, PP, PVC, PC |
Plant Source | Phenolic Components | Ref. |
---|---|---|
Grape seeds | Gallic acid, proantho-cyanidins and flavanols | [21] |
Grape stems | Flavanols, proantho-cyanidins, flavonols and hydroxycinnamates | [21] |
White grape peels | Flavanols, proantho-cyanidins and hydroxycinnamates | [21] |
Red grape peels | Anthocyanins, flavanols, proantho-cyanidins, flavonols and hydroxycinnamates | [21] |
Apples (red-skinned) | Flavanols, proantho-cyanidins, flavonols and hydroxycinnamates | [21] |
Potato (brown-skinned) | Chlorogenic acid | [21] |
Onion (red-skinned) | Flavonols, anthocyanins | [21] |
Olive tree leaves | Oleuropein, flavones, flavonols, flavonol derivatives | [21] |
Carob | Gallic acid, gallo-tannins, proantho-cyanidins, flavanols, flavonols | [21] |
Citrus peels | Flavonoids, carotenoids, pectin | [20] |
Green tea | Flavanols | [20] |
Cranberries | Flavonoids, phenolics and fiber | [20] |
Classification | Examples |
---|---|
NONIONIC | Fatty acid esters Fatty amine polyglycol ethers Fatty acid diethanolamides Fatty alcohol polyglycol ethers |
ANIONIC | Alkyl sulfonates Phosphoric acid alkyl esters |
CATIONIC | Quaternary ammonium compounds |
AMPHOTERIC | Alkyl betaines |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, S.; Ozkan, S.; Gonçalves, D.; Paulo, I.; Queirós, C.S.G.P.; Ferreira, O.; Bordado, J.; Galhano dos Santos, R. A Brief Evaluation of Antioxidants, Antistatics, and Plasticizers Additives from Natural Sources for Polymers Formulation. Polymers 2023, 15, 6. https://doi.org/10.3390/polym15010006
Almeida S, Ozkan S, Gonçalves D, Paulo I, Queirós CSGP, Ferreira O, Bordado J, Galhano dos Santos R. A Brief Evaluation of Antioxidants, Antistatics, and Plasticizers Additives from Natural Sources for Polymers Formulation. Polymers. 2023; 15(1):6. https://doi.org/10.3390/polym15010006
Chicago/Turabian StyleAlmeida, Suzete, Sila Ozkan, Diogo Gonçalves, Ivo Paulo, Carla S. G. P. Queirós, Olga Ferreira, João Bordado, and Rui Galhano dos Santos. 2023. "A Brief Evaluation of Antioxidants, Antistatics, and Plasticizers Additives from Natural Sources for Polymers Formulation" Polymers 15, no. 1: 6. https://doi.org/10.3390/polym15010006
APA StyleAlmeida, S., Ozkan, S., Gonçalves, D., Paulo, I., Queirós, C. S. G. P., Ferreira, O., Bordado, J., & Galhano dos Santos, R. (2023). A Brief Evaluation of Antioxidants, Antistatics, and Plasticizers Additives from Natural Sources for Polymers Formulation. Polymers, 15(1), 6. https://doi.org/10.3390/polym15010006