Shear Thickening Fluid and Its Application in Impact Protection: A Review
Abstract
:1. Introduction
2. Shear Thickening Mechanism
2.1. Order–Disorder Transition Theory
2.2. Hydro-Clustering Theory
2.3. Dilation Theory
2.4. Jamming Theory
2.5. Friction Contact Theory
3. Soft Body Armors
3.1. Inter-Yarn Interaction of High Performance STF/Fabric Composites
Particles | Carrier Fluids | Additives | Fabrics Materials | Reference |
---|---|---|---|---|
Silica nanoparticles | PEG | — | Kevlar fabrics | [84] |
Silica nanoparticles | PEG | Polyvinyl alcohol (PVA) | Kevlar fabrics | [26] |
Silica nanoparticles | PEG | — | UHMWPE fabrics | [89] |
Silica nanoparticles | EG | — | Kevlar fabrics | [90] |
PS microspheres | PEG | — | Kevlar fabrics | [41] |
Silica nanoparticles | PEG | Silicon carbide | Twaron | [32] |
3.2. Application of STF/Fabric Composites in Ballistic Protection
3.3. Application of STF/Fabric in Stab Resistance and Low-Velocity Impact Protection
Particles | Carrier Fluids | Additives | Fabrics Materials | Reference |
---|---|---|---|---|
PSt-EA nanospheres | EG | — | Kevlar fabrics | [83] |
Silica nanoparticles | PEG | — | Nylon fabrics | [100] |
Nanosilica | EG | — | UHMWPE | [101] |
Nanosilica | PEG | — | Twaron woven fabrics | [90] |
Fumed silica | PEG | Nanoclay | Glass fabrics | [29] |
Nanosilica | EG | PEG | UHMWPE | [103] |
Fumed silica | PEG | — | Kevlar fabrics | [100] |
Kaolin particles | Glycerol | — | Kevlar fabrics | [43] |
PMMA | PEG | — | Kevlar fabrics | [23] |
Nanosilica | PEG | Silicon carbide | Twaron | [104] |
Silica microsphere | [BMIm][BF4] | — | Kevlar fabrics | [99] |
Fumed silica | PEG | Carbon nanotubes (CNTs) | Woven high modulus polypropylene (HMPP) fabric | [34] |
Nanosilica | Ethanol and polyethylene glycol | Silane coupling agent | Kevlar fabrics | [31] |
4. Dampers
5. Shock Absorbers
6. Multi-Functional Properties
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laun, H.M.; Bung, R.; Schmidt, F. Rheology of extremely shear thickening polymer dispersionsa) (passively viscosity switching fluids). J. Rheol. 1991, 35, 999–1034. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, W.; Ye, F.; Gong, X.; Jiang, W.; Xuan, S. pH effects on shear thickening behaviors of polystyrene-ethylacrylate colloidal dispersions. Mater. Res. Express 2014, 1, 015303. [Google Scholar] [CrossRef]
- Malkin, A.Y. Non-Newtonian viscosity in steady-state shear flows. J. Non-Newton. Fluid Mech. 2013, 192, 48–65. [Google Scholar] [CrossRef]
- Liu, K.; Cheng, C.-F.; Zhou, L.; Zou, F.; Liang, W.; Wang, M.; Zhu, Y. A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries. J. Power Sources 2019, 423, 297–304. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, S.; Liu, S.; Cao, S.; Wang, S.; Bai, L.; Sang, M.; Xuan, S.; Jiang, W.; Gong, X. CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance. Compos. Part A Appl. Sci. Manuf. 2019, 126, 114797. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Zhou, J.; Li, F.; Li, J.; Cao, X.; Li, Z.; Zhang, J.; Li, B.; Wang, Y.; et al. Advanced triboelectric nanogenerator with multi-mode energy harvesting and anti-impact properties for smart glove and wearable e-textile. Nano Energy 2020, 78, 105291. [Google Scholar] [CrossRef]
- Liu, H.; Fu, K.; Zhu, H.; Yang, B. The acoustic property and impact behaviour of 3D printed structures filled with shear thickening fluids. Smart Mater. Struct. 2021, 31, 015026. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, H.; Fu, K.; Sun, G.; Chen, Y.; Yang, B.; Li, Y. High-impact resistant hybrid sandwich panel filled with shear thickening fluid. Compos. Struct. 2022, 284, 115208. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Y.; Zhang, H.; Xu, P.; Jiang, Z.; Zhang, H.; Yang, J. Direct microencapsulation of Ionic-Liquid-Based shear thickening fluid via rheological behavior transition for functional applications. Chem. Eng. J. 2023, 455, 140819. [Google Scholar] [CrossRef]
- Sheikhi, M.R.; Gürgen, S. Anti-impact design of multi-layer composites enhanced by shear thickening fluid. Compos. Struct. 2022, 279, 114797. [Google Scholar] [CrossRef]
- Fehrenbach, J.; Hall, E.; Gibbon, L.; Smith, T.; Amiri, A.; Ulven, C. Impact Resistant Flax Fiber Fabrics Using Shear Thickening Fluid. J. Compos. Sci. 2023, 7, 31. [Google Scholar] [CrossRef]
- Ghosh, A.; Majumdar, A.; Butola, B.S. Role of surface chemistry of fibres additives on rheological behavior of ceramic particle based Shear Thickening Fluids. Ceram. Int. 2018, 44, 21514–21524. [Google Scholar] [CrossRef]
- Chu, B.; Salem, D.R. Impact-induced solidlike behavior and elasticity in concentrated colloidal suspensions. Phys. Rev. E 2017, 96, 042601. [Google Scholar] [CrossRef]
- Afeshejani, S.H.A.; Sabet, S.A.R.; Zeynali, M.E.; Atai, M. Energy Absorption in a Shear-Thickening Fluid. J. Mater. Eng. Perform. 2014, 23, 4289–4297. [Google Scholar] [CrossRef]
- Ding, J.; Tracey, P.J.; Li, W.; Peng, G.; Whitten, P.G.; Wallace, G.G. Review on shear thickening fluids and applications. Text. Light Ind. Sci. Technol. 2013, 2, 161. [Google Scholar]
- Zhao, C.; Gong, X.; Wang, S.; Jiang, W.; Xuan, S. Shear Stiffening Gels for Intelligent Anti-impact Applications. Cell Rep. Phys. Sci. 2020, 1, 100266. [Google Scholar] [CrossRef]
- Fu, K.; Wang, H.; Chang, L.; Foley, M.; Friedrich, K.; Ye, L. Low-velocity impact behaviour of a shear thickening fluid (STF) and STF-filled sandwich composite panels. Compos. Sci. Technol. 2018, 165, 74–83. [Google Scholar] [CrossRef]
- Wei, M.; Lin, K.; Sun, L. Shear thickening fluids and their applications. Mater. Des. 2022, 216, 110570. [Google Scholar] [CrossRef]
- Liu, B.; Du, C.; Deng, H.; Fan, Z.; Zhang, J.; Zeng, F.; Fu, Y.; Gong, X. Mechanical properties of magneto-sensitive shear thickening fluid absorber and application potential in a vehicle. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106782. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Chen, Q.; Li, X.; Wang, P.; Yang, E.-H.; Duan, F.; Gong, X.; Zhang, Z.; Yang, J. Encapsulation of shear thickening fluid as an easy-to-apply impact-resistant material. J. Mater. Chem. A 2017, 5, 22472–22479. [Google Scholar] [CrossRef]
- Ribeiro, M.P.; da Silveira, P.; de Oliveira Braga, F.; Monteiro, S.N. Fabric Impregnation with Shear Thickening Fluid for Ballistic Armor Polymer Composites: An Updated Overview. Polymers 2022, 14, 4357. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Sun, Y.; Xu, Y.; Peng, C.; Gong, X.; Zhang, Z. Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine–water mixtures. Rheol. Acta 2010, 49, 1157–1163. [Google Scholar] [CrossRef]
- Kalman, D.P.; Schein, J.B.; Houghton, J.M.; Laufer, C.H.N.; Wetzel, E.D.; Wagner, N.J. Polymer dispersion based shear thickening fluid-fabrics for protective applications. Proc. SAMPE 2007, 3, 1–9. [Google Scholar]
- Na, W.; Ahn, H.; Han, S.; Harrison, P.; Park, J.K.; Jeong, E.; Yu, W.-R. Shear behavior of a shear thickening fluid-impregnated aramid fabrics at high shear rate. Compos. Part B Eng. 2016, 97, 162–175. [Google Scholar] [CrossRef]
- Asija, N.; Chouhan, H.; Amare Gebremeskel, S.; Bhatnagar, N. Impact response of Shear Thickening Fluid (STF) treated ultra high molecular weight poly ethylene composites—Study of the effect of STF treatment method. Thin-Walled Struct. 2018, 126, 16–25. [Google Scholar] [CrossRef]
- Srivastava, A.; Majumdar, A.; Butola, B.S. Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid. Mater. Sci. Eng. A 2011, 529, 224–229. [Google Scholar] [CrossRef]
- Tan, V.B.C.; Tay, T.E.; Teo, W.K. Strengthening fabric armour with silica colloidal suspensions. Int. J. Solids Struct. 2005, 42, 1561–1576. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, G.; Ma, Z.; Li, J.; Zhou, L.; Shi, X. Effects of ionic structures on shear thickening fluids composed of ionic liquids and silica nanoparticles. RSC Adv. 2016, 6, 81913–81923. [Google Scholar] [CrossRef]
- Balali, E.; Kordani, N.; Sadough Vanini, A. Response of glass fiber-reinforced hybrid shear thickening fluid (STF) under low-velocity impact. J. Text. Inst. 2016, 108, 376–384. [Google Scholar] [CrossRef]
- Tan, Z.; Ma, H.; Zhou, H.; Han, X.; Cho, C. The influence of graphene on the dynamic mechanical behaviour of shear thickening fluids. Adv. Powder Technol. 2019, 30, 2416–2421. [Google Scholar] [CrossRef]
- Santos, T.F.; Santos, C.M.S.; Aquino, M.S.; Ionesi, D.; Medeiros, J.I. Influence of silane coupling agent on shear thickening fluids (STF) for personal protection. J. Mater. Res. Technol. 2019, 8, 4032–4039. [Google Scholar] [CrossRef]
- Gürgen, S.P.; Kuşhan, M.C. The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics. Mech. Adv. Mater. Struc. 2017, 24, 1381–1390. [Google Scholar] [CrossRef]
- Tan, Z.; Ge, J.; Zhang, H.; Zhai, P.; Li, W. Dynamic response of shear thickening fluid reinforced with SiC nanowires under high strain rates. Appl. Phys. Lett. 2017, 111, 031902. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Mottaghitalab, V.; Babaei, H.; Rezaei, M. The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics. Compos. Part A Appl. Sci. Manuf. 2016, 88, 263–271. [Google Scholar] [CrossRef]
- Mawkhlieng, U.; Majumdar, A. Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics. Compos. Part B Eng. 2019, 175, 107167. [Google Scholar] [CrossRef]
- Brown, E.; Forman, N.A.; Orellana, C.S.; Zhang, H.; Maynor, B.W.; Betts, D.E.; DeSimone, J.M.; Jaeger, H.M. Generality of shear thickening in dense suspensions. Nat. Mater. 2010, 9, 220–224. [Google Scholar] [CrossRef]
- Chang, L.; Friedrich, K.; Schlarb, A.K.; Tanner, R.; Ye, L. Shear-thickening behaviour of concentrated polymer dispersions under steady and oscillatory shear. J. Mater. Sci. 2010, 46, 339–346. [Google Scholar] [CrossRef]
- Hoffman, R.L. Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions. I. Observation of a Flow Instability. Trans. Soc. Rheol. 1972, 16, 155–173. [Google Scholar] [CrossRef]
- Bossis, G.; Brady, J.F. The rheology of Brownian suspensions. J. Chem. Phys. 1989, 91, 1866–1874. [Google Scholar] [CrossRef]
- Brown, E.; Jaeger, H.M. The role of dilation and confining stresses in shear thickening of dense suspensions. J. Rheol. 2012, 56, 875–923. [Google Scholar] [CrossRef]
- Wang, Q.-S.; Sun, R.-J.; Yao, M.; Chen, M.-Y.; Feng, Y. The influence of temperature on inter-yarns fictional properties of shear thickening fluids treated Kevlar fabrics. Compos. Part A Appl. Sci. Manuf. 2019, 116, 46–53. [Google Scholar] [CrossRef]
- Ávila, A.F.; de Oliveira, A.M.; Leão, S.G.; Martins, M.G. Aramid fabric/nano-size dual phase shear thickening fluid composites response to ballistic impact. Compos. Part A Appl. Sci. Manuf. 2018, 112, 468–474. [Google Scholar] [CrossRef]
- Rosen, B.A.; Laufer, C.N.; Kalman, D.P.; Wetzel, E.D.; Wagner, N.J. Multi-threat performance of kaolin-based shear thickening fluid (STF)-treated fabrics. In Proceedings of the SAMPE 2007, Baltimore, MD, USA, 3–7 June 2007. [Google Scholar]
- Mari, R.; Seto, R.; Morris, J.F.; Denn, M.M. Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 2014, 58, 1693–1724. [Google Scholar] [CrossRef]
- Fernandez, N.; Mani, R.; Rinaldi, D.; Kadau, D.; Mosquet, M.; Lombois-Burger, H.; Cayer-Barrioz, J.; Herrmann, H.J.; Spencer, N.D.; Isa, L. Microscopic mechanism for shear thickening of non-Brownian suspensions. Phys. Rev. Lett. 2013, 111, 108301. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; Jaeger, H.M. Shear thickening in concentrated suspensions phenomenology, mechanisms. Rep. Prog. Phys. 2014, 77, 046602. [Google Scholar] [CrossRef]
- Gürgen, S.; Kuşhan, M.C.; Li, W. Shear thickening fluids in protective applications: A review. Prog. Polym. Sci. 2017, 75, 48–72. [Google Scholar] [CrossRef]
- Subramaniam, C.G.; Annamalai, V. Recent Advancements in Shear Thickening Fluid A applications—A Review. J. Chem. Pharm. Sci. 2017, 7, 84–92. [Google Scholar]
- Salim, Y.; Yahya, M.Y.; Israr, H.A.; Mohamed, R. A Review on Stab and Spike Resistance Performance of Shear Thickening Fluids (STF) Impregnated Fabrics. In Proceedings of the ICLTET-2017, ACBES-2017, Kuala Lumpur, Malaysia, 22–24 May 2017. [Google Scholar]
- Srivastava, A.; Majumdar, A.; Butola, B.S. Improving the Impact Resistance of Textile Structures by using Shear Thickening Fluids: A Review. Crit. Rev. Solid State Mater. Sci. 2012, 37, 115–129. [Google Scholar] [CrossRef]
- Mawkhlieng, U.; Majumdar, A.; Laha, A. A review of fibrous materials for soft body armour applications. RSC Adv. 2020, 10, 1066–1086. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, W.; Liu, Y.; Liu, L.; Zhao, Z.; Luo, G. Design of the ballistic performance of shear thickening fluid (STF) impregnated Kevlar fabric via numerical simulation. Mater. Des. 2023, 226, 111599. [Google Scholar] [CrossRef]
- Morris, J.F. Shear Thickening of Concentrated Suspensions: Recent Developments and Relation to Other Phenomena. Annu. Rev. Fluid Mech. 2020, 52, 121–144. [Google Scholar] [CrossRef]
- Crouch, I.G. Body armour—New materials, new systems. Def. Technol. 2019, 15, 241–253. [Google Scholar] [CrossRef]
- Cwalina, C.D.; McCutcheon, C.M.; Dombrowski, R.D.; Wagner, N.J. Engineering enhanced cut and puncture resistance into the thermal micrometeoroid garment (TMG) using shear thickening fluid (STF)—Armor™ absorber layers. Compos. Sci. Technol. 2016, 131, 61–66. [Google Scholar] [CrossRef]
- Wei, M.; Lin, K.; Liu, H. Experimental investigation on hysteretic behavior of a shear thickening fluid damper. Struct. Control Health Monit. 2019, 26, e2389. [Google Scholar] [CrossRef]
- Pooja, J.; Chavhan, R.P.; Donode, S.; Pathan, R.; Damahe, H. Non-Newtonian Fluid Speed Breaker. Int. J. Innov. Eng. Sci. 2019, 4, 2456–3463. [Google Scholar]
- Aslan, R.; Turan, O. An acoustic structure design supported by shear thickening fluid for sound absorption. Appl. Acoust. 2021, 182, 108257. [Google Scholar] [CrossRef]
- Gürgen, S.; Sert, A. Polishing operation of a steel bar in a shear thickening fluid medium. Compos. Part B Eng. 2019, 175, 107127. [Google Scholar] [CrossRef]
- Hoffman, R.L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests. J. Colloid Interface Sci. 1974, 46, 491–506. [Google Scholar] [CrossRef]
- Wagner, N.J.; Brady, J.F. Shear thickening in colloidal dispersions. Phys. Today 2009, 62, 27–32. [Google Scholar] [CrossRef]
- Laun, H.M.; Bung, R.; Hess, S.; Loose, W.; Hess, O.; Hahn, K.; Hädicke, E.; Hingmann, R.; Schmidt, F.; Lindner, P. Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flowa). J. Rheol. 1992, 36, 743–787. [Google Scholar] [CrossRef]
- Catherall, A.A.; Melrose, J.R.; Ball, R.C. Shear thickening and order–disorder effects in concentrated colloids at high shear rates. J. Rheol. 2000, 44, 1–25. [Google Scholar] [CrossRef]
- Cheng, X.; McCoy, J.H.; Israelachvili, J.N.; Cohen, I. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 2011, 333, 1276–1279. [Google Scholar] [CrossRef] [PubMed]
- Peters, I.R.; Majumdar, S.; Jaeger, H.M. Direct observation of dynamic shear jamming in dense suspensions. Nature 2016, 532, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Brady, J.F.; Bossis, G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech. 2006, 155, 105–129. [Google Scholar] [CrossRef]
- Butera, R.J.; Wolfe, M.S.; Bender, J.; Wagner, N.J. Formation of a Highly Ordered Colloidal Microstructure upon Flow Cessation from High Shear Rates. Phys. Rev. Lett. 1996, 77, 2117–2120. [Google Scholar] [CrossRef] [PubMed]
- Egres, R.G.; Nettesheim, F.; Wagner, N.J. Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J. Rheol. 2006, 50, 685–709. [Google Scholar] [CrossRef]
- Hoffman, R.L. Explanations for the cause of shear thickening in concentrated colloidal suspensions. J. Rheol. 1998, 42, 111–123. [Google Scholar] [CrossRef]
- Maranzano, B.J.; Wagner, N.J. The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions. J. Rheol. 2001, 45, 1205–1222. [Google Scholar] [CrossRef]
- Chellamuthu, M.; Arndt, E.M.; Rothstein, J.P. Extensional rheology of shear-thickening nanoparticle suspensions. Soft Matter 2009, 5, 2117–2124. [Google Scholar] [CrossRef]
- Phung, T.; Brady, J.F. Microstructured fluids: Structure, diffusion and rheology of colloidal dispersions. In Proceedings of the AIP Conference Proceedings, Fukuoka, Japan, 4–8 November 1992; pp. 391–400. [Google Scholar]
- Barnes, H.A. Shear-Thickening (“Dilatancy”) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids. J. Rheol. 1989, 33, 329–366. [Google Scholar] [CrossRef]
- Kabla, A.J.; Senden, T.J. Dilatancy in slow granular flows. Phys. Rev. Lett. 2009, 102, 228301. [Google Scholar] [CrossRef]
- Nakanishi, H.; Nagahiro, S.; Mitarai, N. Fluid dynamics of dilatant fluids. Phys. Rev. E 2012, 85, 011401. [Google Scholar] [CrossRef]
- Lootens, D.; van Damme, H.; Hemar, Y.; Hebraud, P. Dilatant flow of concentrated suspensions of rough particles. Phys. Rev. Lett. 2005, 95, 268302. [Google Scholar] [CrossRef]
- O’Hern, C.S.; Silbert, L.E.; Liu, A.J.; Nagel, S.R. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 2003, 68, 011306. [Google Scholar] [CrossRef]
- Waitukaitis, S.R.; Jaeger, H.M. Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 2012, 487, 205–209. [Google Scholar] [CrossRef]
- Brassard, M.-A.; Causley, N.; Krizou, N.; Dijksman, J.A.; Clark, A.H. Viscous-like forces control the impact response of shear-thickening dense suspensions. J. Fluid Mech. 2021, 923, A38. [Google Scholar] [CrossRef]
- Seto, R.; Mari, R.; Morris, J.F.; Denn, M.M. Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 2013, 111, 218301. [Google Scholar] [CrossRef]
- Smith, M.I.; Besseling, R.; Cates, M.E.; Bertola, V. Dilatancy in the flow and fracture of stretched colloidal suspensions. Nat. Commun. 2010, 1, 114. [Google Scholar] [CrossRef]
- Gore, P.M.; Kandasubramanian, B. Functionalized Aramid Fibers and Composites for Protective Applications: A Review. Ind. Eng. Chem. Res. 2018, 57, 16537–16563. [Google Scholar] [CrossRef]
- Cao, S.; Chen, Q.; Wang, Y.; Xuan, S.; Jiang, W.; Gong, X. High strain-rate dynamic mechanical properties of Kevlar fabrics impregnated with shear thickening fluid. Compos. Part A Appl. Sci. Manuf. 2017, 100, 161–169. [Google Scholar] [CrossRef]
- Majumdar, A.; Butola, B.S.; Srivastava, A. An analysis of deformation and energy absorption modes of shear thickening fluid treated Kevlar fabrics as soft body armour materials. Mater. Des. 2013, 51, 148–153. [Google Scholar] [CrossRef]
- Kordani, N.; Vanini, A.S. Optimizing the ethanol content of shear thickening fluid/fabric composites under impact loading. J. Mech. Sci. Technol. 2014, 28, 663–667. [Google Scholar] [CrossRef]
- Park, Y.; Kim, Y.; Baluch, A.H.; Kim, C.-G. Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric. Int. J. Impact Eng. 2014, 72, 67–74. [Google Scholar] [CrossRef]
- Arora, S.; Majumdar, A.; Butola, B.S. Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics. Compos. Struct. 2019, 210, 41–48. [Google Scholar] [CrossRef]
- Khodadadi, A.; Liaghat, G.; Taherzadeh-Fard, A.; Shahgholian-Ghahfarokhi, D. Impact characteristics of soft composites using shear thickening fluid and natural rubber—A review of current status. Compos. Struct. 2021, 271, 114092. [Google Scholar] [CrossRef]
- Majumdar, A.; Laha, A. Effects of fabric construction and shear thickening fluid on yarn pull-out from high-performance fabrics. Text. Res. J. 2016, 86, 2056–2066. [Google Scholar] [CrossRef]
- Bai, R.; Ma, Y.; Lei, Z.; Feng, Y.; Liu, C. Energy analysis of fabric impregnated by shear thickening fluid in yarn pullout test. Compos. Part B Eng. 2019, 174, 106901. [Google Scholar] [CrossRef]
- Lu, Z.; Yuan, Z.; Chen, X.; Qiu, J. Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact. Compos. Struct. 2019, 227, 111208. [Google Scholar] [CrossRef]
- Khodadadi, A.; Liaghat, G.; Vahid, S.; Sabet, A.R.; Hadavinia, H. Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid. Compos. Part B Eng. 2019, 162, 643–652. [Google Scholar] [CrossRef]
- Wagner, N.J.; Wetzel, E.D. Advanced Body Armor Utilizing Shear Thickening Fluids. U.S. Patent 7226878B2, 5 June 2007. [Google Scholar]
- Gürgen, S.; Kuşhan, M.C. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 2017, 64, 296–306. [Google Scholar] [CrossRef]
- Gürgen, S. Numerical modeling of fabrics treated with multi-phase shear thickening fluids under high velocity impacts. Thin-Walled Struct. 2020, 148, 106573. [Google Scholar] [CrossRef]
- Bajya, M.; Majumdar, A.; Butola, B.S.; Verma, S.K.; Bhattacharjee, D. Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid. Compos. Part B Eng. 2020, 183, 107721. [Google Scholar] [CrossRef]
- Haro, E.E.; Szpunar, J.A.; Odeshi, A.G. Ballistic impact response of laminated hybrid materials made of 5086-H32 aluminum alloy, epoxy and Kevlar® fabrics impregnated with shear thickening fluid. Compos. Part A Appl. Sci. Manuf. 2016, 87, 54–65. [Google Scholar] [CrossRef]
- Sen, S.; Jamal, M.N.B.; Shaw, A.; Deb, A. Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar composite. Int. J. Mech. Sci. 2019, 164, 105174. [Google Scholar] [CrossRef]
- Qin, J.; Guo, B.; Zhang, L.; Wang, T.; Zhang, G.; Shi, X. Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid. Compos. Part B Eng. 2020, 183, 107686. [Google Scholar] [CrossRef]
- Decker, M.J.; Halbach, C.J.; Nam, C.H.; Wagner, N.J.; Wetzel, E.D. Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Technol. 2007, 67, 565–578. [Google Scholar] [CrossRef]
- Sun, L.-L.; Xiong, D.-S.; Xu, C.-Y. Application of shear thickening fluid in ultra high molecular weight polyethylene fabric. J. Appl. Polym. Sci. 2013, 129, 1922–1928. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, X.; Wang, Y.; Yuan, Z. Stabbing resistance of body armour panels impregnated with shear thickening fluid. Compos. Struct. 2017, 163, 465–473. [Google Scholar] [CrossRef]
- Li, W.; Xiong, D.; Zhao, X.; Sun, L.; Liu, J. Dynamic stab resistance of ultra-high molecular weight polyethylene fabric impregnated with shear thickening fluid. Mater. Des. 2016, 102, 162–167. [Google Scholar] [CrossRef]
- Gürgen, S.; Kuşhan, M.C. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Compos. Part A Appl. Sci. Manuf. 2017, 94, 50–60. [Google Scholar] [CrossRef]
- Kim, Y.; Park, Y.; Cha, J.; Ankem, V.A.; Kim, C.-G. Behavior of Shear Thickening Fluid (STF) impregnated fabric composite rear wall under hypervelocity impact. Compos. Struct. 2018, 204, 52–62. [Google Scholar] [CrossRef]
- Galindo-Rosales, F. Complex Fluids in Energy Dissipating Systems. Appl. Sci. 2016, 6, 206. [Google Scholar] [CrossRef]
- Zhao, Q.; He, Y.; Yao, H.; Wen, B. Dynamic performance and mechanical model analysis of a shear thickening fluid damper. Smart Mater. Struct. 2018, 27, 075021. [Google Scholar] [CrossRef]
- Neagu, R.C.; Bourban, P.-E.; Månson, J.-A.E. Micromechanics and damping properties of composites integrating shear thickening fluids. Compos. Sci. Technol. 2009, 69, 515–522. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Li, W.H.; Gong, X.L. The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper. Smart Mater. Struct. 2008, 17, 035027. [Google Scholar] [CrossRef]
- Yeh, F.-Y.; Chang, K.-C.; Chen, T.-W.; Yu, C.-H. The dynamic performance of a shear thickening fluid viscous damper. J. Chin. Inst. Eng. 2014, 37, 983–994. [Google Scholar] [CrossRef]
- Zhou, H.; Yan, L.; Jiang, W.; Xuan, S.; Gong, X. Shear thickening fluid–based energy-free damper: Design and dynamic characteristics. J. Intell. Mater. Syst. Struct. 2014, 27, 208–220. [Google Scholar] [CrossRef]
- Mark, R.; Jolly, J.W.B. Field Reponsive Shear Thickening Fluid. U.S. Patent 20060231357A1, 21 November 2006. [Google Scholar]
- Zhang, X.; Li, W.; Gong, X.L. Study on magnetorheological shear thickening fluid. Smart Mater. Struct. 2008, 17, 015051. [Google Scholar] [CrossRef]
- Tian, T.; Li, W.; Nakano, M. Design and evaluation of a linear damper working with MR shear thickening fluids. In Proceedings of the Tenth International Conference on Flow Dynamics, Sendai, Japan, 25–27 November 2013; Tohoku University: Sendai, Japan, 2013; pp. 440–441. [Google Scholar]
- Yang, J.; Sun, S.; Li, W.; Du, H.; Alici, G.; Nakano, M. Development of a linear damper working with magnetorheological shear thickening fluids. J. Intell. Mater. Syst. Struct. 2015, 26, 1811–1817. [Google Scholar] [CrossRef]
- Gaines, D.W.; Mueller, P.T. Non-Newtonian Stress Thickening Fluid Vibration Damper System for Vehicle Seat. U.S. Patent 8,590,966 B2, 26 November 2013. [Google Scholar]
- Gürgen, S.; Sofuoğlu, M.A. Smart polymer integrated cork composites for enhanced vibration damping properties. Compos. Struct. 2021, 258, 113200. [Google Scholar] [CrossRef]
- Gürgen, S.; Sofuoğlu, M.A. Vibration attenuation of sandwich structures filled with shear thickening fluids. Compos. Part B Eng. 2020, 186, 107831. [Google Scholar] [CrossRef]
- Haris, A.; Lee, H.P.; Tan, V.B.C. An experimental study on shock wave mitigation capability of polyurea and shear thickening fluid based suspension pads. Def. Technol. 2018, 14, 12–18. [Google Scholar] [CrossRef]
- Williams, T.H.; Day, J.; Pickard, S. Surgical and Medical Garments and Materials Incorporating Shear Thickening Fluids. U.S. Patent US20090255023A1, 15 October 2009. [Google Scholar]
- Wasserman, S.H.; Cogen, J.M.; Person, T.J.; Gross, L.H. Cable Comprising a Shear Thickening Composition. U.S. Patent 8,045,833 B2, 25 October 2011. [Google Scholar]
- Singh, W.S.; Srilatha, N. Design and Analysis of Shock Absorber: A Review. Mater. Today Proc. 2018, 5, 4832–4837. [Google Scholar] [CrossRef]
- Chatterjee, V.A.; Verma, S.K.; Bhattacharjee, D.; Biswas, I.; Neogi, S. Enhancement of energy absorption by incorporation of shear thickening fluids in 3D-mat sandwich composite panels upon ballistic impact. Compos. Struct. 2019, 225, 111148. [Google Scholar] [CrossRef]
- Han, E.; Peters, I.R.; Jaeger, H.M. High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming. Nat. Commun. 2016, 7, 12243. [Google Scholar] [CrossRef]
- Lu, Z.; Jing, X.; Sun, B.; Gu, B. Compressive behaviors of warp-knitted spacer fabrics impregnated with shear thickening fluid. Compos. Sci. Technol. 2013, 88, 184–189. [Google Scholar] [CrossRef]
- Lu, Z.; Wu, L.; Gu, B.; Sun, B. Numerical simulation of the impact behaviors of shear thickening fluid impregnated warp-knitted spacer fabric. Compos. Part B Eng. 2015, 69, 191–200. [Google Scholar] [CrossRef]
- Fu, K.; Cui, X.; Zhang, Y.X.; Ye, L.; Chang, L.; Friedrich, K. Confined compression behaviour of a shear thickening fluid with concentrated submicron particles. Compos. Commun. 2018, 10, 186–189. [Google Scholar] [CrossRef]
- Asija, N.; Chouhan, H.; Gebremeskel, S.A.; Bhatnagar, N. High strain rate characterization of shear thickening fluids using Split Hopkinson Pressure Bar technique. Int. J. Impact Eng. 2017, 110, 365–370. [Google Scholar] [CrossRef]
- Lim, A.S.; Lopatnikov, S.L.; Gillespie, J.W. Development of the split-Hopkinson pressure bar technique for viscous fluid characterization. Polym. Test. 2009, 28, 891–900. [Google Scholar] [CrossRef]
- Lim, A.S.; Lopatnikov, S.L.; Wagner, N.J.; Gillespie, J.W. Investigating the transient response of a shear thickening fluid using the split Hopkinson pressure bar technique. Rheol. Acta 2010, 49, 879–890. [Google Scholar] [CrossRef]
- Jiang, W.; Gong, X.; Xuan, S.; Jiang, W.; Ye, F.; Li, X.; Liu, T. Stress pulse attenuation in shear thickening fluid. Appl. Phys. Lett. 2013, 102, 101901. [Google Scholar] [CrossRef]
- Fu, K.; Wang, H.; Wang, S.; Chang, L.; Shen, L.; Ye, L. Compressive behaviour of shear-thickening fluid with concentrated polymers at high strain rates. Mater. Des. 2018, 140, 295–306. [Google Scholar] [CrossRef]
- Wu, X.; Yin, Q.; Huang, C.; Zhong, F. Dynamic energy absorption behavior of lattice material filled with shear thickening fluid. Procedia Eng. 2017, 199, 2514–2518. [Google Scholar] [CrossRef]
- Petel, O.E.; Ouellet, S.; Loiseau, J.; Frost, D.L.; Higgins, A.J. A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction. Int. J. Impact Eng. 2015, 85, 83–96. [Google Scholar] [CrossRef]
- Cheng, J.; Ye, L.; Fu, K.; Wang, H. Effect of striker shape on impact energy absorption of a shear thickening fluid. Compos. Commun. 2021, 23, 100560. [Google Scholar] [CrossRef]
- Fu, K.; Wang, H.; Zhang, Y.X.; Ye, L.; Escobedo, J.P.; Hazell, P.J.; Friedrich, K.; Dai, S. Rheological and energy absorption characteristics of a concentrated shear thickening fluid at various temperatures. Int. J. Impact Eng. 2020, 139, 103525. [Google Scholar] [CrossRef]
- Li, A.; Yang, G.; Yao, C.; Yan, X.; Hu, D. Influence of geometry constraint in finite space on impact resistance of shear thickening fluid. Smart Mater. Struct. 2022, 31, 035022. [Google Scholar] [CrossRef]
- Pinto, F.; Meo, M. Design and Manufacturing of a Novel Shear Thickening Fluid Composite (STFC) with Enhanced out-of-Plane Properties and Damage Suppression. Appl. Compos. Mater. 2016, 24, 643–660. [Google Scholar] [CrossRef]
- Galindo-Rosales, F.J.; Martínez-Aranda, S.; Campo-Deaño, L. CorkSTFμfluidics—A novel concept for the development of eco-friendly light-weight energy absorbing composites. Mater. Des. 2015, 82, 326–334. [Google Scholar] [CrossRef]
- Ding, J.; Tian, T.; Meng, Q.; Guo, Z.; Li, W.; Zhang, P.; Ciacchi, F.T.; Huang, J.; Yang, W. Smart multifunctional fluids for lithium ion batteries: Enhanced rate performance and intrinsic mechanical protection. Sci. Rep. 2013, 3, 2485. [Google Scholar] [CrossRef]
- Wei, M.; Hu, G.; Jin, L.; Lin, K.; Zou, D. Forced vibration of a shear thickening fluid sandwich beam. Smart Mater. Struct. 2016, 25, 055041. [Google Scholar] [CrossRef]
- Li, T.-T.; Ling, L.; Wang, X.; Jiang, Q.; Liu, B.; Lin, J.-H.; Lou, C.-W. Mechanical, acoustic, and thermal performances of shear thickening fluid-filled rigid polyurethane foam composites: Effects of content of shear thickening fluid and particle size of silica. J. Appl. Polym. Sci. 2019, 136, 47359. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Ding, J.; Wu, H.; Fu, Y. Effect of shear thickening fluid on the sound insulation properties of textiles. Text. Res. J. 2013, 84, 897–902. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Fu, X.; Fu, Y. Effect of TW-ZnO/SiO2-compounded shear thickening fluid on the sound insulation property of glass fiber fabric. Text. Res. J. 2014, 85, 980–986. [Google Scholar] [CrossRef]
- Wagner, N.; Kirkwood, J.E.; Egres, R.G., Jr. Shear Thickening Fluid Containment in Polymer Composites. U.S. Patent 20060234572A1, 2 September 2010. [Google Scholar]
- Tian, T.; Nakano, M. Design and testing of a rotational brake with shear thickening fluids. Smart Mater. Struct. 2017, 26, 035038. [Google Scholar] [CrossRef]
- Li, M.; Lyu, B.; Yuan, J.; Dong, C.; Dai, W. Shear-thickening polishing method. Int. J. Mach. Tools Manuf. 2015, 94, 88–99. [Google Scholar] [CrossRef]
- Li, M.; Lyu, B.; Yuan, J.; Yao, W.; Zhou, F.; Zhong, M. Evolution and equivalent control law of surface roughness in shear-thickening polishing. Int. J. Mach. Tools Manuf. 2016, 108, 113–126. [Google Scholar] [CrossRef]
- Li, M.; Huang, Z.; Dong, T.; Mao, M.; Lyu, B.; Yuan, J. Surface integrity of bearing steel element with a new high-efficiency shear thickening polishing technique. Procedia CIRP 2018, 71, 313–316. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, C. Electrokinetics of non-Newtonian fluids: A review. Adv. Colloid Interface Sci. 2013, 201–202, 94–108. [Google Scholar] [CrossRef]
- Xie, C.; Lv, W.; Wang, M. Shear-thinning or shear-thickening fluid for better EOR?—A direct pore-scale study. J. Pet. Sci. Eng. 2018, 161, 683–691. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, M.; Xuan, S.; Jiang, W.; Cao, S.; Gong, X. Shear dependent electrical property of conductive shear thickening fluid. Mater. Des. 2017, 121, 92–100. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Deng, H.; Zhou, J.; Liu, S.; Wu, J.; Sang, M.; Gong, X. A high anti-impact STF/Ecoflex composite structure with a sensing capacity for wearable design. Compos. Part B Eng. 2022, 233, 109656. [Google Scholar] [CrossRef]
- Hao, J.; Ding, J.; Rutledge, G.C. Shape-Stable Composites of Electrospun Nonwoven Mats and Shear-Thickening Fluids. ACS Appl. Mater. Interfaces 2022, 14, 8373–8383. [Google Scholar] [CrossRef]
Particles | Carrier Fluids | Additives | Reference |
---|---|---|---|
Polystyrene-ethylacrylate (PSt-EA) | EG | — | [2] |
Polymethyl methacrylate (PMMA) | Glycerine–water | — | [22] |
PEG | — | [23] | |
Silica nanoparticles | PEG | — | [24] |
Ethyl alcohol and PPG | — | [25] | |
PEG | Polyvinyl alcohol | [26] | |
Water | — | [27] | |
Ionic liquids | — | [28] | |
EG | PEG | [29] | |
PEG | Graphene | [30] | |
Ethanol and PEG | Silane coupling agent | [31] | |
Fumed silica | PEG | SiC | [32] |
SiC nanowires | [33] | ||
Carbon nanotubes | [34] | ||
EG | — | [35] | |
PEG | Clay nanoparticles | [29] | |
Cornstarch | Water | — | [36] |
CsCl in demineralized water | — | [36] | |
Styrene/acrylate | EG | — | [37] |
(Poly)Styrene-acrylonitrile (PSAN) | EG | — | [38] |
Polyvinyl chloride (PVC) | Dioctyl phthalate | — | [38] |
Precipitated calcium carbonate | PEG | — | [39] |
ZrO2 | Mineral oil | — | [40] |
Soda-lime glass spheres | Water | — | [40] |
Glass spheres | Mineral oil | — | [40] |
Polystyrene (PS) | PEG | — | [41] |
Nano-silica and calcium | PEG and ethanol | — | [42] |
Kaolin clay particles | Glycerol | — | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Fu, K.; Cui, X.; Zhu, H.; Yang, B. Shear Thickening Fluid and Its Application in Impact Protection: A Review. Polymers 2023, 15, 2238. https://doi.org/10.3390/polym15102238
Liu H, Fu K, Cui X, Zhu H, Yang B. Shear Thickening Fluid and Its Application in Impact Protection: A Review. Polymers. 2023; 15(10):2238. https://doi.org/10.3390/polym15102238
Chicago/Turabian StyleLiu, Haiqing, Kunkun Fu, Xiaoyu Cui, Huixin Zhu, and Bin Yang. 2023. "Shear Thickening Fluid and Its Application in Impact Protection: A Review" Polymers 15, no. 10: 2238. https://doi.org/10.3390/polym15102238
APA StyleLiu, H., Fu, K., Cui, X., Zhu, H., & Yang, B. (2023). Shear Thickening Fluid and Its Application in Impact Protection: A Review. Polymers, 15(10), 2238. https://doi.org/10.3390/polym15102238