Superior Enhancement of the UHMWPE Fiber/Epoxy Interface through the Combination of Plasma Treatment and Polypyrrole In-Situ Grown Fibers
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Surface Treatments
2.3. Mechanical Performance Test
2.4. Characterization Methods
3. Results and Discussion
3.1. Microsphere Debonding Tests
3.2. Tensile Properties
3.3. Effect of the Surface Treatment on the UHMWPE Fibers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Du, J.; Yang, H.; Jia, C.; Wang, Y.; Wang, D.; Lv, Y. Surface modification of ultra-high molecular weight polyethylene fiber by different kinds of SiO2 nanoparticles. Polym. Compos. 2017, 38, 1928–1936. [Google Scholar] [CrossRef]
- Ebrahimnezhad-Khaljiri, H. Experimental assessment of adding carbon nanotubes on the impact properties of Kevlar-ultrahigh molecular weight polyethylene fibers hybrid composites. J. Ind. Text. 2020, 51, 3767S–3785S. [Google Scholar]
- Xin, J.; Wang, W.; Bian, L.; Xiao, C.; Guo, Z.; Zhou, C. The effect of polypyrrole coatings on the adhesion and structure properties of uhmwpe fiber. Synth. Met. 2011, 161, 984–989. [Google Scholar]
- Saligheh, O.; Farsani, R.E.; Khajavi, R. The Effect of Post Hot Compaction on Crystallinity and Thermal Behavior of Ultra-High Molecular Weight Polyethylene Fiber Laminates. J. Macromol. Sci. B 2009, 48, 766–773. [Google Scholar] [CrossRef]
- Markandan, K.; Lai, C.Q. Fabrication, properties and applications of polymer composites additively manufactured with filler alignment control: A review. Compos. Part B Eng. 2023, 256, 1359–8368. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Wang, X.; Mai, Y.; Zhang, Y. Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization. Appl. Surf. Sci. 2011, 257, 7600–7608. [Google Scholar] [CrossRef]
- Yeh, J.T.; Lai, Y.C.; Suen, M.C.; Chen, C.C. An improvement on the adhesion-strength of laminated ultra-high-molecular-weight polyethylene fabrics: Surface-etching/modification using highly effective helium/oxygen/nitrogen plasma treatment. Polym. Adv. Technol. 2011, 22, 1971–1981. [Google Scholar] [CrossRef]
- Sa, R.; Wei, Z.; Yan, Y.; Wang, L.; Wang, W.; Zhang, L.; Tian, M. Catechol and epoxy functionalized ultrahigh molecular weight polyethylene (UHMWPE) fibers with improved surface activity and interfacial adhesion. Compos. Sci. Technol. 2015, 113, 54–62. [Google Scholar] [CrossRef]
- Bozaci, E.; Sever, K.; Sarikanat, M.; Seki, Y.; Demir, A.; Ozdogan, E.; Tavman, I. Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber-matrix for composite materials. Compos. Part B Eng. 2013, 45, 565–572. [Google Scholar] [CrossRef]
- Patil, N.A.; Njuguna, J.; Kandasubramanian, B. UHMWPE for biomedical applications: Performance and functionalization. Eur. Polym. J. 2020, 125, 109529. [Google Scholar] [CrossRef]
- Armentia, S.; Enciso, B.; Mokry, G.; Abenojar, J.; Martinez, M.A. Novel application of a thermoplastic composite with improved matrix-fiber interface. J. Mater. Res. Technol. 2019, 8, 5536–5547. [Google Scholar] [CrossRef]
- Li, W.; Huang, M.; Ma, R. Improved mechanical properties of epoxy composites reinforced with surface-treated UHMWPE fibers. Polym. Adv. Technol. 2018, 29, 1287–1293. [Google Scholar] [CrossRef]
- Wang, S.; Ma, J.; Feng, X.; Cheng, J.; Ma, X.; Zhao, Y.; Chen, L. An effective surface modification of UHMWPE fiber for improving the interfacial adhesion of epoxy resin composites. Polym. Compos. 2020, 41, 1614–1623. [Google Scholar] [CrossRef]
- Han, L.; Cai, H.; Chen, X.; Zheng, C.; Guo, W. Study of UHMWPE Fiber Surface Modification and the Properties of UHMWPE/Epoxy Composite. Polymers 2020, 12, 521. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, J.U.; Byun, J.H. Catecholamine polymers as surface modifiers for enhancing interfacial strength of fiber-reinforced composites. Compos. Sci. Technol. 2015, 110, 53–61. [Google Scholar] [CrossRef]
- Gilman, A.B.; Kuznetsov, A.A.; Ozerin, A.N. Modification of ultra-high-molecular-weight polyethylene fibers and powders using low-temperature plasma. Russ. Chem. Bull. 2017, 66, 577–586. [Google Scholar] [CrossRef]
- Murilo, J.; Giovanna, S.S.; Michelle, C.F.; Thércio, H.; Edson, N.; José, D. Surface modification of kapok fibers by cold plasma surface treatment. J. Mater. Res. Technol. 2020, 9, 2467–2476. [Google Scholar]
- Jia, C.; Wang, Q.; Ren, Z. Influence mechanism of ultrahigh molecular weight polyethylene (UHMWPE) fiber surface modification on interfacial performance of UHMWPE/epoxy composites. Acta Mater. Compos. Sin. 2020, 37, 573–580. [Google Scholar]
- Garcia, A.; Dominguez-Lopez, I.; Sánchez, O.B. Effect of atmospheric plasma treatment on the wettability of UHMWPE. Mater. Lett. 2020, 285, 129159. [Google Scholar]
- Mohit, H.; Arul, M.S.V. A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Compos. Interface 2018, 25, 5–7. [Google Scholar] [CrossRef]
- Cech, V.; Knob, A.; Hosein, H.A. Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification. Compos. Part A Appl. Sci. Manuf. 2014, 58, 84–89. [Google Scholar] [CrossRef]
- Steinke, K.; Sodano, H.A. Enhanced interfacial shear strength in ultra-high molecular weight polyethylene epoxy composites through a zinc oxide nanowire interphase. Compos. Sci. Technol. 2022, 219, 109218. [Google Scholar] [CrossRef]
- Zhu, L.; Dikin, D.; Percec, S.; Ren, F. Improving Interlayer Adhesion of Poly(P-phenylene Terephthalamide) (PPTA)/Ultra-High-Molecular-Weight Polyethylene (UHMWPE) Laminates Prepared by Plasma Treatment and Hot Pressing Technique. Polymers 2021, 13, 2600. [Google Scholar] [CrossRef] [PubMed]
- Markandan, K.; Lim, R.; Kumar Kanaujia, P.; Seetoh, I.; bin Mohd Rosdi, M.R.; Huey Tey, Z.; Seng Goh, J.; Cheong Lam, Y.; Lai, C. Additive manufacturing of composite materials and functionally graded structures using selective heat melting technique. J. Mater. Sci. Technol. 2020, 47, 243–252. [Google Scholar] [CrossRef]
- Keer, L.M.; Lee, J.C.; Mura, T. Stress Distributions for a Quarter Plane Containing an Arbitrarily Oriented Crack. J. Appl. Mech. 1983, 50, 43–49. [Google Scholar] [CrossRef]
- Jayatilaka, A.; Trustrum, K. Statistical approach to brittle fracture. J. Mater. Sci. 1977, 12, 1426–1430. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Boiko, Y.M.; Marikhin, V.A.; Moskalyuk, O.A.; Myasnikova, L.P. Features of Statistical Strength Distributions in Mono- and Polyfilament Ultraoriented High-Strength Fibers of Ultrahigh-Molecular-Weight Polyethylene. Phys. Solid State 2020, 62, 676–681. [Google Scholar] [CrossRef]
- Chung, Y.C.; Kim, J.Y.; Park, J.E. Hydrophilic Modification of a Polyurethane Surface Using Grafted 2,4,6-Tris(Dimethylaminomethyl) Phenol. Fibers Polym. 2021, 22, 904–915. [Google Scholar] [CrossRef]
- Huang, C.Y.; Wu, J.Y.; Tsai, C.S.; Hsieh, K.H.; Yeh, J.T.; Chen, K.N. Effects of argon plasma treatment on the adhesion property of ultra high molecular weight polyethylene (UHMWPE) textile. Surf. Coat. Technol. 2013, 231, 507–511. [Google Scholar] [CrossRef]
- Zahra, M.; Zulfiqar, S.; Yavuz, C.T.; Kweon, H.; Sarwar, M.I. Conductive nanocomposite materials derived from SEBS-g-PPy and surface modified clay. Compos. Sci. Technol. 2014, 100, 44–52. [Google Scholar] [CrossRef]
- Preedy, E.C.; Brousseau, E.; Evans, S.L.; Perni, S.; Prokopovich, P. Adhesive forces and surface properties of cold gas plasma treated UHMWPE. Colloids Surf. A Physicochem. Eng. Asp. 2014, 460, 83–89. [Google Scholar] [CrossRef] [PubMed]
Materials | Sample Code | Details of the Surface Treatment |
---|---|---|
Untreated fibers | UF | — |
Fibers treated with plasma in a gas mixture | PF(N5O5) | Volume ratio of N2 to O2 = 5:5 |
PF(N8O2) | Volume ratio of N2 to O2 = 8:2 | |
PF(N10) | Pure nitrogen | |
Fibers treated with PPy | UF-PPy | PPy treated on the basis of UF |
PF(N5O5)-PPy | PPy treated on the basis of PF(N5O5) | |
PF(N8O2)-PPy | PPy treated on the basis of PF(N8O2) | |
PF(N10)-PPy | PPy treated on the basis of pure nitrogen |
No. | Materials | Scale Parameter Estimates ( ) | Shape Parameter Estimates (m) |
---|---|---|---|
1 | PF(N5O5)-PPy | 6.78 | 20.24 |
2 | PF(N5O5) | 3.97 | 22.4 |
3 | PF(N8O2)-PPy | 5.91 | 17.89 |
4 | PF(N8O2) | 3.82 | 21.51 |
5 | PF(N10)-PPy | 5.8 | 16.79 |
6 | PF(N10) | 3.45 | 27.06 |
No. | Materials | IFSS (MPa) | Increment | Tensile Strength (GPa) | Decrement |
---|---|---|---|---|---|
1 | UF | 3.45 | —— | 7.156 | —— |
2 | UF-PPy | 7.21 | 109% | 7.029 | 17.7% |
3 | PF(N5O5) | 3.48 | 0.9% | 3.985 | 44.3% |
4 | PF(N5O5)-PPy | 15.75 | 357% | 6.633 | 7.3% |
5 | PF(N8O2) | 4.55 | 32% | 3.768 | 47.3% |
6 | PF(N8O2)-PPy | 10.08 | 192% | 6.071 | 15.2% |
7 | PF(N10) | 2.25 | —— | 3.298 | 53.9% |
8 | PF(N10)-PPy | 8.08 | 134% | 5.803 | 18.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhang, Z.; Xiang, Y.; Sun, Q.; Xia, Y.; Xiong, Z. Superior Enhancement of the UHMWPE Fiber/Epoxy Interface through the Combination of Plasma Treatment and Polypyrrole In-Situ Grown Fibers. Polymers 2023, 15, 2265. https://doi.org/10.3390/polym15102265
Yang X, Zhang Z, Xiang Y, Sun Q, Xia Y, Xiong Z. Superior Enhancement of the UHMWPE Fiber/Epoxy Interface through the Combination of Plasma Treatment and Polypyrrole In-Situ Grown Fibers. Polymers. 2023; 15(10):2265. https://doi.org/10.3390/polym15102265
Chicago/Turabian StyleYang, Xiaoning, Zhongwei Zhang, Yuhang Xiang, Qingya Sun, Yilu Xia, and Ziming Xiong. 2023. "Superior Enhancement of the UHMWPE Fiber/Epoxy Interface through the Combination of Plasma Treatment and Polypyrrole In-Situ Grown Fibers" Polymers 15, no. 10: 2265. https://doi.org/10.3390/polym15102265
APA StyleYang, X., Zhang, Z., Xiang, Y., Sun, Q., Xia, Y., & Xiong, Z. (2023). Superior Enhancement of the UHMWPE Fiber/Epoxy Interface through the Combination of Plasma Treatment and Polypyrrole In-Situ Grown Fibers. Polymers, 15(10), 2265. https://doi.org/10.3390/polym15102265