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Abstract: Degradation behavior of combustible fuel is the core factor in determining combustion
characteristics. To investigate the effect of ambient atmosphere on the pyrolysis process of poly-
oxymethylene (POM), the pyrolysis mechanism of POM was studied with thermogravimetric analyzer
tests and Fourier transform infrared spectroscopy tests. The activation energy, reaction model, and
estimated lifetime of POM pyrolysis under different kinds of ambient gases have been estimated
in this paper based on different results of the kinetics. The activation energy values, obtained with
different methods, were 151.0–156.6 kJ mol−1 in nitrogen and 80.9–127.3 kJ mol−1 in air. Then,
based on the Criado analysis, the pyrolysis reaction models of POM in nitrogen were found to be
mastered by the “n + m = 2; n = 1.5” model, and by the “A3” model in air. The optimum processing
temperature for POM was estimated, with a range from 250 to 300 ◦C in nitrogen and from 200 to
250 ◦C in air. IR analysis revealed that the significant difference in POM decomposition between N2

and O2 atmospheres is the formation of isocyanate group or carbon dioxide. Combustion parameters
of two POMs (with and without flame retardants) obtained using cone calorimetry revealed that
flame retardants can effectively improve the ignition time, smoke release rate, and other parame-
ters of POM. The outcomes of this study will contribute to the design, storage, and transportation
of polyoxymethylene.

Keywords: polyoxymethylene (POM); thermal decomposition; thermal kinetics; degradation
mechanism; combustion performance

1. Introduction

Polyoxymethylene (POM), structural formula HO(CH2O)nH, is the smallest polymer-
ization product of formaldehyde, with a typical degree of polymerization of 8–100 units.
Due to the fact that POM has the characteristics of high strength, wear resistance, fatigue
resistance, good dimensional stability, self-lubrication, etc., it has been applied increasingly
in mechanical engineering, the automotive industry, precision instruments, etc., either
alone or as a composite material. For example, it is used to make parts for telephones,
tape recorders, and computers, as well as shafts and gears [1–3]. Its role has become
more important over the years due to its excellent physical and mechanical properties [4].
However, the unstable hemiacetal end groups on both sides of the molecular chain begin to
break down when POM decomposes into formaldehyde gas once heated above 100 ◦C [5].
Therefore, in practical applications POM must be treated with appropriate processing. The
prerequisite for processing is the knowledge of its pyrolytic behavior, and the study of
pyrolysis of combustible solids is the basis for its combustion. Therefore, the study of the
pyrolysis process of POM can provide recommendations for its processing as well as for
further studies of its combustion properties. Studies on pyrolysis of POM have appeared
in a number of works. Most of these studies have been developed with the calculation of

Polymers 2023, 15, 2286. https://doi.org/10.3390/polym15102286 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15102286
https://doi.org/10.3390/polym15102286
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-1527-3373
https://doi.org/10.3390/polym15102286
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15102286?type=check_update&version=2


Polymers 2023, 15, 2286 2 of 14

kinetic parameters. The thermal degradation profiles of POM/thermoplastic polyurethane
(TPU) blends were investigated using TG and FTIR by Pielichowski et al. It was found
that the incorporation of TPU into the POM matrix improved the thermal stability of the
blends compared to the original material, and it was found that the thermal degradation of
POM is basically a one-step process [6]. Fayolle et al. investigated the thermal oxidation of
unstable POM using gravimetric and infrared spectroscopic methods at 90, 110, and 130 ◦C
and at various oxygen pressures from 0 to 2.0 Mpa [7]. Studies on reaction models of POM
had been relatively sparse until Lüftl S et al. confirmed the applicability of the Flynn-Wall
method, and thus determined the kinetics of the pyrolysis reaction of POM [8].

But identification of reaction models using the Coats–Redfern and Criado methods has
not been performed. In addition, few researchers have studied the estimated lifetime and
degradation mechanism of POM under different atmospheres. In this paper, the pyrolysis
process and kinetic analysis of POM are investigated with thermogravimetric tests and
Fourier transform infrared spectroscopy (FTIR) tests under nitrogen and air.

Combustion is the next step in the thermal decomposition of the material, and some
research has been carried out on the combustion properties of POM. Shaklein et al. explored
the effect of reactor geometry on polymer combustion [9]. Korobeinichev et al. investigated
the thermal decomposition and combustion of horizontally placed POM sheets, and de-
termined the kinetic parameters of thermal degradation of POM assuming two parallel
reactions [10]. By using temperature profiles measured in the gas phase with the micro
thermocouple technique, the combustion surface temperature and mass burning rate of
POM were determined by Glaznev et al. [11]. It is necessary to improve the combustion
performance of POM in order to make it better for use; flame retardants are often used in the
field of materials to improve the combustion properties of materials. Commonly used flame
retardants are boron and molybdenum system, nitrogen system, and phosphorus–nitrogen
mixed flame retardants [12–14]. Phosphorus–nitrogen flame retardant is a compound of
phosphorus and amine, and the nitrogen oxide released during combustion can play the
role of flame suppression, as well as prevent contact between oxygen and carbon, which
is more suitable for POM; therefore, phosphorus–nitrogen flame retardant was chosen in
this study.

Research on the application of flame retardants in the combustion behavior of POM
is still relatively sparse, so this paper selects phosphorus–nitrogen flame retardant to
investigate the combustion performance of two kinds of polyacetal materials (with and
without flame retardants added) to supplement some experimental data for research in
the field of polyacetal. This paper can provide references and suggestions in terms of
pyrolysis reaction model, lifetime estimation, combustion behavior of POM, and the effect
of flame retardants.

2. Experimental Procedure

The POM ingredient (density: 1.43 g cm−3, purity: ≥99%) used was a commercial
product of high purity manufactured by the DuPont Co. of Wilmington, DE, USA. TG tests
were obtained by using a SDT-Q600 thermal analyzer (TA Co., New Castle, DE, USA) with
a microbalance sensitivity of 0.1 µg and a temperature sensitivity of 0.001 ◦C. The sample
mass of each experiment was 2 mg and the initial mass error of the sample did not exceed
0.1 mg. Conventional constant heating rate TG measurements were run at 5, 10, 15, and
20 ◦C min−1. The flowing gas was N2 and air at a flowing rate of 100 mL min−1. The FTIR
technique (PerkinElmer TL8000, Waltham, MA, USA) with a purge flow of 35 mL min−1

nitrogen or air at 20 ◦C min−1 heating rate was employed to analyze the evolved gas. The
combustion performance of two different types of POM was studied by using a conical
calorimeter model 0007 from FTT (Fire Testing Technology), UK, with three settings of
thermal radiation intensity (25 kW/m2, 35 kW/m2, and 50 kW/m2).
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3. Theoretical Consideration

The kinetics of polymer degradation are described by Equation (1) [15], where α is
the level of conversion, T means the environmental temperature, β means the heating
rate, A the pre-exponential factor, Ea the activation energy, f (α) the different function of
conversion, and R the gas constant. The conversion, α, is calculated in terms of weight loss
by Equation (2) [16], where W0 is the initial weight of the sample, Wt is the weight of the
sample at time t, and Wf is the weight of the completely decomposed sample. The algebraic
expression for kinetic models commonly used [17] are exhibited in Table 1.

β
dα

dT
= A f (α) exp

(
− Ea

RT

)
(1)

α =
W0 −Wt

W0 −W f
(2)

Table 1. Algebraic relationships for f (α) and g (α) for kinetic models.

Model f (α) g (α)

P2 2α1/2 α1/2

P3 3α2/3 α1/3

P4 4α3/4 α1/4

A2 2(1 − α)[−ln(1 − α)]1/2 [−ln(1 − α)]1/2

A3 3(1 − α)[−ln(1 − α)]2/3 [−ln(1 − α)]1/3

A4 4(1 − α)[−ln(1 − α)]3/4 [−ln(1 − α)]1/4

R2 2(1 − α)1/2 [1 − (1 − α)−1/2]
R3 3(1 − α)2/3 [1 − (1 − α)−1/3]
D1 1/2α α2

D2 [−ln(1 − α)]−1 [(1 − α)ln(1 − α)] + α

D3 3(1 − α)2/3[2(1 − (1 − α)−1/3] [1 − (1 − α)−1/3]2

D4 3/2((1 − α)−1/3 − 1) 1 − (2α/3) − (1 − α)2/3

F1 (1 − α) −ln(1 − α)
n + m = 2; n = 1.9 α0.1(1 − α)1.9 [(1 − α)α−1]−0.9(0.9)−1

n + m = 2; n = 1.5 α0.5(1 − α)1.5 [(1 − α)α−1]−0.5(0.5)−1

n = 1.5 (1 − α)1.5 2[−1 + (1 − α)−1/2]
n = 2 (1 − α)2 −1 + (1 − α)−1

n = 3 (1 − α)3 2−1[−1 + (1 − α)−2]

Without any assumption on the decomposition model, the isoconversional methods
(Friedman (FR), Flynn–Wall–Ozawa (FWO), and Kissinger–Akahira–Sunose (KAS) meth-
ods) can give activation energy E as a function of conversion by using different heating
rates. The Friedman method [18] utilizes the TG data of different heating rates to calculate
Ea. As the mathematical plot of ln(dα/dt) against 1/T shows in Equation (3), a linear
relationship could be obtained with a slope equal to −Ea/R. The FWO method [19] is an
integral method, which is independent of the degradation mechanism. The logarithmic
form can be given as Equation (4). The activation energy can be obtained from plot of lnβ
versus 1/T at a fixed conversion with the slope being 0.4567 Ea/RT. Analogous to the FWO
method, KAS [20] is an integral calculation method and the equation of it can be given as
Equation (5). Plotting ln(β/T2) against 1/T allows Ea to be calculated for each degree of
conversion value.

ln
dα

dt
= ln[A f (α)]− Ea

RT
(3)
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lgβ = ln
AEa

Rg(α)
− 2.315− 0.4567

Ea

RT
(4)

ln
β

T2 = ln
AR

Eag(α)
− Ea

RT
(5)

The Criado model is applied to further confirm reaction mechanism through compar-
ing the fitting degree of curves. By combining Equations (1), (5) and (6) is obtained [21],
where 0.5 refers to the conversion of 0.5. The left side of Equation (6), Z(α)/Z(0.5), is a
reduced theoretical curve which is characteristic of each reaction mechanism, whereas the
right side of Equation (6) is associated with reduced rate. Through comparing the coinci-
dence degree of plots, we can conclude that the kinetic model describes an experimental
reactive process. Once a reaction mechanism is determined, the reaction order (n) could be
quantitative, which is essential to predicting thermal lifetime.

Z(α)
Z(0.5)

=
f (α)g(α)

f (0.5)g(0.5)
=

(
Tα

T0.5

)2 (dα/dt)α

(dα/dt)0.5
(6)

Then, based on a single heating rate measurement, the Chang method is used to eval-
uate the activation energy Ea and the frequency factor A without making any assumptions.
The Chang method [22] is a one-heating-rate treatment method. As shown in Equation (7),
a plot of ln[(dα/dt)/(1 − α)n] versus 1/T yields a straight line if the decomposition order is
right. The slope and intercept of this line can provide the Ea and lnA values, respectively.

ln
[
(dα/dt)
(1− α)n

]
= ln A− Ea

RT
(7)

After the three necessary parameters (n, Ea, and A) are obtained, the half-life time t1/2
and estimated lifetime tf can be predicted eventually. The tf and estimated t1/2 are defined
to be the time when weight losses reach 0.5 and 0.05 as shown in Equations (8) and (9),
respectively [23].

t f =

(
0.951−n − 1

)
Z(n− 1)

exp
(

E
RT

)
(n 6= 1) (8)

t1/2 =

(
0.51−n − 1

)
Z(n− 1)

exp
(

Ea

RT

)
(n 6= 1) (9)

Data such as ignition time, heat release rate, total heat release, smoke release rate, and
total smoke release can be obtained using a cone calorimeter, and repeatability of operation
can also be achieved [24]. Time to ignition (TTI) is one of the main parameters used to
characterize the fire hazard of a material. TTI reflects the ease with which a material can
be ignited. A longer ignition time indicates that it is harder for the material to be ignited,
and that it is less of a fire hazard and has better resistance to fire [25]. The heat release rate
(HRR) represents the rate of heat release per unit area after ignition of a sample under a
certain heat flow intensity. HRR can be further subdivided into peak rate (PkHRR) and
mean rate (MHRR) [26]. The total heat release refers to the heat released per unit area of
the material combustion process [27], and the total heat release is almost independent of
the value of other external factors when ventilation is adequate, so the total heat release
is usually used as one of the parameters to evaluate the fire hazard of a material. Smoke
release rate and total smoke release can reflect the degree of pollution of the material to the
environment, and can also reflect the degree of combustion of the material [28].



Polymers 2023, 15, 2286 5 of 14

4. Results and Discussion
4.1. Thermal Degradation Behaviour

The TG–DTG curves of POM in nitrogen and air are shown in Figure 1. The trend of
the curves of mass loss is almost the same, and the curve of DTG data exhibits only one
degradation peak. It can be speculated that the effects of different atmospheres on the
pyrolysis of POM are relatively similar. This is due to the same chemical bond molecular
structure. Consulting the data listed in Table 2, it can be seen that the onset degradation
temperature (Tonset), the end temperature (Tend), and the peak temperature (Tp) in air are
reduced by 60–120 ◦C compared to those in nitrogen, indicating that POM in air begins
degradation at lower temperature. Results imply that the thermostability of POM is a little
better in nitrogen than in air. Various arguments have been proposed by researchers to
explain the mechanism of atmosphere effects on thermal behavior for polymers [29,30].
One of the popular explanations is that a change in reaction mechanism occurs when there
is a change in atmosphere [31].
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Figure 1. TG−DTG curve s of POM at different heating rates under N2 (a) and Air (b) atmospheres.

Table 2. Parameters of mass-loss stages at different heating rates in TG–DTG curves.

Atmospheres Heating Rates/◦C min−1 Tonset/◦C Tend/◦C Tp/◦C

N2

5 333 418 361
10 354 430 373
15 359 438 380
20 365 449 397

Air

5 269 299 276
10 277 312 288
15 283 319 297
20 294 329 307

4.2. Kinetics Calculation with Isoconversional Kinetic Methods

To calculate activation energy, four heating rates (5, 10, 15, and 20 ◦C min−1) and
three isoconversional kinetic methods (the FR, FWO, and KAS methods) are applied here.
According to Equations (3)–(5), plots of ln(dα/dT) against 1/T, log (β) against 1/T, and
ln(β/T2) against 1/T are used, respectively, as shown in Figure 2. According to the linear
relationship between the different variables, the corresponding activation energy (Eα) is
obtained at each conversion.
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Figure 2. Plots of determination of activation energy at different conversions using different methods.

As shown in Figure 3, Ea for POM in nitrogen is 151.0–156.6 kJ mol−1, while that in air
is 80.9–127.3 kJ mol−1 (varying with the kinetic methods). The derived Ea in air is much less
than that in inert gas, reflecting that the purge gas has a great effect on reactivity for POM.
Therefore, compared to an inert atmosphere, the POM requires lower temperature and
less energy to decompose in an oxidizing atmosphere. Generally speaking, Ea values are
continuous from α = 0.1 to 0.9, showing that there is no change in the reaction mechanism.
However, Ea values obtained using the Friedman method are obviously smaller than the
other two methods, which is mainly due to the conservative property of the Friedman
method [32].
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4.3. Degradation Mechanism Determination

Figure 4 compares the theoretical master curves to the experimental curves obtained
from TG curves at 10 ◦C min−1 under two kinds of atmospheres. The experimental curves
for POM degradation in nitrogen and in air are almost totally covered by the master curves
of Z (n + m = 2; n = 1.5)/Z (0.5) and Z(A3)/Z (0.5), respectively. Once confirming the kinetic
models for POM degradation in nitrogen and in air, the decomposition order (n) for POM
degradation then can be determined to be 3/2 in nitrogen and 1/3 in air.
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4.4. Kinetics Calculation with the Chang Model

Figure 5 shows the relationship given by Equation (7) of the Chang method. Acti-
vation energy (Ea) and frequency factor (A) for POM at 10 ◦C min−1 heating rate can be
quantitatively calculated, as summarized in Table 3. From the above calculation with the
Friedman, FWO, and KAS methods, it can be indicated that kinetic parameters change
more or less with the temperature. Despite this, it is believed that this variation is less in the
Chang method, as Table 3 shows that all correlation coefficients R2 for POM are above 0.98,
indicating good linearity through a wide range of temperatures. Ea for POM in nitrogen is
276.1 kJ mol−1, while that in air is 244.3 kJ mol−1, representing that degradation reactions
under nitrogen are more difficult to process. In addition, when the value of degradation
reaction order (n) is higher, degradation reaction occurs more slowly, reflecting higher ther-
mal stability for POM in nitrogen than in air. Unlike the model-free method, which reveals
complexity of the process in the form of a functional dependence of Ea on α, the Chang
method has the ability to yield a single effective value of Ea for the whole process. Although
the Ea value using the Chang method is different from that using model-free methods, the
Chang method is capable of reasonably predicting estimated lifetime for polymers.

Table 3. Thermal degradation kinetic parameters for POM in nitrogen and air atmosphere according
to the Chang model.

Atmosphere E/kJ mol−1 n lnA/min−1 R2

N2 276.1 3/2 50.4 0.9878
air 244.3 1/3 50.3 0.9841

4.5. Thermal Lifetime Prediction

Calculating the thermal kinetic parameters can be used to estimate the maximum
useable temperature, the optimum processing temperature regions, and the estimated
lifetime of polymer materials [33]. The decomposition kinetics at high temperatures can
predict the lifetime under service conditions [34]. The important lifetime parameters for
POM at different temperatures in nitrogen and air have been calculated, as summarized in
Table 4, reflecting that the lifetime parameters decrease progressively with the increasing
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temperature. The lifetime of the POM under 250 ◦C in nitrogen could reach 18 days, but
this would be sharply reduced to 3 h in air. The static processing time for POM at 350 ◦C
will last for 0.944 min in nitrogen but for 0.002 min in air. The evaluated values suggest
the optimum processing temperature range to be between 250 to 300 ◦C in nitrogen and
between 200 to 250 ◦C in air. The lifetime parameters would provide a simple approach for
quality-control experiments by using an accelerating aging process.
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and Air (b) atmospheres.

Table 4. Half-life time t1/2 and estimated lifetime tf for the POM.

Temperature/◦C t1/2 in N2/min t1/2 in Air/min tf in N2/min tf in Air/min

100 4.856 × 1016 1.254 × 1012 3.045 × 1015 1.139 × 1011

150 1.314 × 1012 1.141 × 108 8.240 × 1010 1.036 × 107

200 3.283 × 108 7.417 × 104 2.059 × 107 6.738 × 103

250 4.004 × 105 196.106 2.511 × 104 17.816
300 1.574 × 103 1.460 98.745 0.133
350 15.058 0.024 0.944 0.002
400 0.287 0.001 0.018 0.000

4.6. Evolved Gas Analysis

The 3D and 2D infrared spectrum of evolved gas, and identified IR frequency of
functional groups, are presented in Figure 6. As the temperature rises, the stretching
vibration absorption of the carbonyl group within 1800–1680 cm−1 gradually increases.
This indicates that the degradation reaction of POM goes on under heating, and the effects
of the carbonyl group enhance this. The broad band of saturated fatty acid (2900–2700 cm−1)
possibly indicates the existence of formic acid (HCOOH). The significant difference is in the
IR spectrum that emerged around 2300 cm−1. Under N2 atmosphere, the isocyanate group
will be generated and reaches its peak at 400 ◦C. At the temperature range of 150–400 ◦C,
the dehydration reaction will take place in POM, thereby forming the C≡C bond. However,
under O2 atmosphere, the obvious absorption peak of CO2 represents the occurrence of
redox reaction, and reaches its peak value at 200 ◦C, which shows the reaction process is
advanced dramatically.
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4.7. Combustion Performance Analysis

To further investigate the combustion performance of POM, a cone calorimeter was
used to perform combustion tests on POM without and with added flame retardants (re-
ferred to as NPOM and RPOM), and three radiation intensity values (25 kW/m2, 35 kW/m2,
and 50 kW/m2) were set. The data obtained are the results of three repetitions. The ig-
nition times (TTIs) of NPOM and RPOM under the three radiation intensities are shown
in Tables 5 and 6. From the results of the two tables, it can be seen that the TTI of NPOM
and RPOM gradually decreases with the increase in thermal radiation intensity, and the
decrease of TTI shows a trend of gradual decrease. The TTI data of both samples are further
compared in Table 7 and Figure 7. It can be found that the TTI of RPOM is significantly
higher than that of NPOM when the thermal radiation intensity is less than 35 kW/m2, in-
dicating that RPOM exhibits a less easily ignited performance. However, when the thermal
radiation intensity is higher than 35 kW/m2, the difference in ignition time between the
two is not obvious. Thus, it is assumed that the flame retardant used in this paper does not
play a significant role after the thermal radiation intensity exceeds 35 kW/m2.

Table 5. The ignition time (TTI) of NPOM at different radiation intensities.

Thermal Radiation Intensity (kW/m2) TTI (s) Average Value (s)

25
108

9797
86

35
42

3434
28

50
10

1313
16
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Table 6. The TTI of RPOM at different radiation intensities.

Thermal Radiation Intensity kW/m2 TTI (s) Average Value (s)

25
205

164127
161

35
38

3732
40

50
18

1616
14

Table 7. Comparison of mean values of TTI of RPOM and NPOM.

Average TTI Value (s)
Thermal Radiation Intensity (kW/m2)

25 35 50

NPOM 97 34 13
RPOM 164 37 16
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Figure 7. Comparison of thermal radiation intensity–ignition time of NPOM and RPOM.

The heat release rate (HRR) curves of NPOM and RPOM under the three heat radiation
intensities are shown in Figure 8. As can be seen from Figure 8, the heat release rates of
NPOM and RPOM show similar trends: as the heat radiation intensity increases, the peak
of HRR increases continuously; meanwhile, the time to reach the peak of heat release rate
decreases gradually. For further analysis, the average heat release rate (MHRR), time to
peak heat release rate (TpkHRR), peak heat release rate (PHRR), and total heat release (THR)
parameters of NPOM and RPOM are compared, as shown in Tables 8–11. It can be seen that
RPOM is significantly lower than NPOM in terms of MHRR, PHRR, and THR, indicating
that NPOM gives off more heat than RPOM during combustion, and it is presumed that
NPOM is more dangerous than RPOM [35]. The difference between the TpkHRR values of
the two is minor, especially after the thermal radiation intensity is higher than 35 KW/m2; it
is presumed that the flame retardant has little effect on the burning rate of POM at this time.
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Table 8. Comparison of MHRR of RPOM and NPOM under three radiation intensities.

MHRR (kW/m2)
Thermal Radiation Intensity (kW/m2)

25 35 50

NPOM 267 278.6 342
RPOM 68.27 93.15 131.26

Table 9. Comparison of PHRR–thermal radiation intensity of RPOM and NPOM.

PHRR (kW/m2)
Thermal Radiation Intensity (kW/m2)

25 35 50

NPOM 443.8 467.5 752.3
RPOM 91.2 157.8 293.23

Table 10. Thermal radiation intensity–THR of RPOM and NPOM comparison table.

THR (MJ/m2)
Thermal Radiation Intensity (kW/m2)

25 35 50

NPOM 32.27 31.52 33.88
RPOM 19.21 15.42 18.64

Table 11. Comparison of thermal radiation intensity–TpkHRR of RPOM and NPOM.

TpkHRR (s)
Thermal Radiation Intensity (kW/m2)

25 35 50

NPOM 172 92 67
RPOM 142 109 63

The release smoke rate (RSR) plots of NPOM and RPOM are shown in Figure 9; the
relevant data statistics are shown in Table 12. It can be seen that the peak smoke release
rate of both NPOM and RPOM increases with the growth of thermal radiation intensity,
and the peak smoke release rate of NPOM is significantly higher than that of RPOM in the
case of the same thermal radiation intensity. Further analysis of the smoke-release-related
parameters of NPOM and RPOM are summarized as shown in Tables 13 and 14. It can
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be seen from Table 13 that the total smoke release of NPOM is significantly higher than
that of RPOM under the same thermal radiation intensity. It can be seen from Table 14
that there is almost no difference in the time to reach the peak smoke release rate between
the two samples, thus it is presumed that the flame retardant can only improve the smoke
release parameters of POM and has little effect on the combustion performance parameters,
which is consistent with the above inference [36].
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Table 12. Comparison of peak smoke release rate of RPOM and NPOM.

Peak Smoke Release Rate (m2·m−2·s−1)
Thermal Radiation Intensity (kW/m2)

25 35 50

NPOM 17.32 19.24 29.21
RPOM 4.29 7.31 12.43

Table 13. Comparison of the total smoke release of RPOM and NPOM.

Total Smoke Release (m2·m−2)
Thermal Radiation Intensity (kW/m2)

25 35 50

NPOM 927.33 993.22 913.28
RPOM 503.46 483.33 562.14

Table 14. Comparison of the time to reach the peak smoke release rate of RPOM and NPOM under
three radiation intensities.

Time to Reach the Peak Smoke Rate (s)
Thermal Radiation Intensity (kW/m2)

25 35 50

NPOM 146 58 44
RPOM 149 56 41

5. Conclusions

The pyrolytic properties as well as the combustion properties of POM have been
investigated with TG–FTIR and combustion tests. The activation energy Eα was calculated
with three isoconversional methods (the Friedman, FWO, and KAS methods); it was found
that the Eα values are almost constant in the 0.1–0.9 conversion range, showing that thermal
degradation for POM is a single-step process. The degradation of POM has been found to
obey the “n + m = 2; n = 1.5” mechanism in nitrogen, but the “A3” mechanism in air, as
analyzed with the Criado method. The thermostability of POM polymer in air is greatly
reduced because the thermal degradation is accompanied by thermo-oxidative degradation,
and much better thermal stabilities are revealed for POM samples under inert nitrogen.
According to the experimental data of the two types of POM in the conical calorimeter, it
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was found that the addition of flame retardant effectively reduces the total heat release,
thus effectively reducing the fire hazard. This paper can provide references and suggestions
for the safe use of POM as well as engineering applications.
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