Influences of TPU Content on the Weld Line Characteristics of PP and ABS Blends
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. PP/TPU Blends
3.2. ABS/TPU Blends
4. Conclusions
- –
- In PP/TPU blends, increasing TPU polymer mostly leads to a significant decline in the UTS and elongation values of the PP/TPU composite. Blends with 10 wt%, 15 wt%, and 20 wt% TPU and pure PP gain higher UTS values than blends with recycled PP. The blend with 10 wt% TPU and pure PP achieves the highest UTS value of 21.85 MPa. While the blend with recycled PP achieves a UTS value of 14.4 MPa, the reason is the pure PP’s higher strength than recycled PP. Moreover, with 20–30 wt% TPU, mixing with 25–50 wt% recycled PP mostly leads to higher elongation values than in other cases. SEM results show that PP and TPU are distinct phases; the PP matrix surrounds the TPU phase. As a significantly higher elongation value, the TPU area mainly appears dimly on the fracture surface. Taguchi’s analysis indicates that the TPU factor has a more substantial impact on the mechanical characteristic of the PP/TPU blends than the recycled PP factor.
- –
- In ABS/TPU blends, the sample with 15 wt% TPU achieves the highest UTS value of 35.7 MPa, indicating good compatibility between ABS and TPU. At the same time, the sample with 20 wt% TPU has the lowest UTS value of 21.2 MPa. Additionally, the elongation-changing pattern is most consistent with the UTS value. Notably, SEM results show that the fracture surface of the ABS/TPU blends is flatter than the PP/TPU blend due to a higher compatibility rate. The sample with 30 wt% TPU presents a higher rate of dimple area than the sample with 10 wt% TPU. The TPU phase in the 30 wt% TPU sample is more uniformly distributed than the 10 wt% TPU. Notably, ABS/TPU blends gain a higher UTS value than PP/TPU blends. Increasing the TPU ratio mainly decreases the elastic modulus of both ABS/TPU blends and PP/TPU blends. Both ABS/TPU blends and PP/TPU blends especially experience a decrease in the elastic modulus due to the increasing TPU ratio. The poor bonding in the weld line area results in a drop in the elongation of the blend.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maddah, H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar]
- Khalid, M.Y.; Arif, Z.U.; Ahmed, W.; Arshad, H. Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustain. Mater. Technol. 2021, 31, e00382. [Google Scholar] [CrossRef]
- Jariwala, H.; Jain, P. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J. Reinf. Plast. Compos. 2019, 38, 441–453. [Google Scholar] [CrossRef]
- Subash, A.; Kandasubramanian, B. 4D printing of shape memory polymers. Eur. Polym. J. 2020, 134, 109771. [Google Scholar] [CrossRef]
- Jaafar, I.H.; LeBlon, C.E.; Wei, M.-T.; Ou-Yang, D.; Coulter, J.P.; Jedlicka, S.S. Improving fluorescence imaging of biological cells on biomedical polymers. Acta Biomater. 2011, 7, 1588–1598. [Google Scholar] [CrossRef]
- Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A.M. Conductive polymers: Opportunities and challenges in biomedical applications. Chem. Rev. 2018, 118, 6766–6843. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; Patel, A.; Purohit, R. An overview of polymeric materials for automotive applications. Mater. Today Proc. 2017, 4, 3807–3815. [Google Scholar] [CrossRef]
- Saleh Alghamdi, S.; John, S.; Roy Choudhury, N.; Dutta, N.K. Additive manufacturing of polymer materials: Progress, promise and challenges. Polymers 2021, 13, 753. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Wang, W.; Zhang, H.; Dai, Y.; Dong, H.; Hou, H. Effects of high starch content on the physico-chemical properties of starch/PBAT nanocomposite films prepared by extrusion blowing. Carbohydr. Polym. 2020, 239, 116231. [Google Scholar] [CrossRef]
- Sala, G.; Di Landro, L.; Cassago, D. A numerical and experimental approach to optimise sheet stamping technologies: Polymers thermoforming. Mater. Des. 2002, 23, 21–39. [Google Scholar] [CrossRef]
- Huynh, T.T.; Nguyen, T.V.; Nguyen, Q.M.; Nguyen, T.K. Minimizing warpage for macro-size fused depo-sition modeling parts. CMC Comput. Mater. Contin. 2021, 68, 2913–2923. [Google Scholar]
- Xie, L.; Ziegmann, G. A visual mold with variotherm system for weld line study in micro injection molding. Microsyst. Technol. 2008, 14, 809–814. [Google Scholar] [CrossRef]
- Gohn, A.M.; Brown, D.; Mendis, G.; Forster, S.; Rudd, N.; Giles, M. Mold inserts for injection molding prototype applications fabricated via material extrusion additive manufacturing. Addit. Manuf. 2022, 51, 102595. [Google Scholar] [CrossRef]
- Davis, C.S.; Hillgartner, K.E.; Han, S.H.; Seppala, J.E. Mechanical strength of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf. 2017, 16, 162–166. [Google Scholar] [CrossRef]
- Seppala, J.E.; Migler, K.D. Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf. 2016, 12, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Minh, P.S.; Nguyen, V.-T.; Nguyen, V.T.; Uyen, T.M.T.; Do, T.T.; Nguyen, V.T.T. Study on the Fatigue Strength of Welding Line in Injection Molding Products under Different Tensile Conditions. Micromachines 2023, 13, 1890. [Google Scholar] [CrossRef] [PubMed]
- The Uyen, T.M.; Truong Giang, N.; Do, T.T.; Anh Son, T.; Son Minh, P. External Gas-Assisted Mold Temperature Control Improves Weld Line Quality in the Injection Molding Process. Materials 2020, 13, 2855. [Google Scholar] [CrossRef]
- Kagitci, Y.C.; Tarakcioglu, N. The effect of weld line on tensile strength in a polymer composite part. Int. J. Adv. Manuf. Technol. 2016, 85, 1125–1135. [Google Scholar] [CrossRef]
- Leong, Y.W.; Umemura, T.; Hamada, H. Film insert molding as a novel weld-line inhibition and strengthening technique. Polym. Eng. Sci. 2008, 48, 2147–2158. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, S.; Muniappan, A.; Pimenov, D.Y.; Wojciechowski, S.; Jha, K.; Dwivedi, S.P.; Li, C.; Królczyk, J.B.; Walczak, D.; et al. In Situ Micro-Observation of Surface Roughness and Fracture Mechanism in Metal Microforming of Thin Copper Sheets with Newly Developed Compact Testing Apparatus. Materials 2022, 15, 1368. [Google Scholar] [CrossRef]
- Baradi, M.B.; Cruz, C.; Riedel, T.; Régnier, G. Mechanical and microstructural characterization of flowing weld lines in injection-molded short fiber-reinforced PBT. Polym. Test. 2019, 74, 152–162. [Google Scholar] [CrossRef]
- Uyen, T.M.T.; Do, T.T.; Minh, P.S. Internal Gas-Assisted Mold Temperature Control for Improving the Filling Ability of Polyamide 6 + 30% Glass Fiber in the Micro-Injection Molding Process. Polymers 2022, 14, 2218. [Google Scholar] [CrossRef] [PubMed]
- Do, T.T.; Uyen, T.M.T.; Minh, P.S. The Feasibility of an Internal Gas-Assisted Heating Method for Improving the Melt Filling Ability of Polyamide 6 Thermoplastic Composites in a Thin Wall Injection Molding Process. Polymers 2021, 13, 1004. [Google Scholar] [CrossRef] [PubMed]
- Boros, R.; Rajamani, P.K.; Kovács, J.G. Thermoplastic Overmolding onto Injection-Molded and In Situ Polymerization-Based Polyamides. Materials 2018, 11, 2140. [Google Scholar] [CrossRef] [PubMed]
- Minh, P.S.; Le, M.-T. Improving the Melt Flow Length of Acrylonitrile Butadiene Styrene in Thin-Wall Injection Molding by External Induction Heating with the Assistance of a Rotation Device. Polymers 2021, 13, 2288. [Google Scholar] [CrossRef]
- De León, A.S.; Domínguez-Calvo, A.; Molina, S.I. Materials with enhanced adhesive properties based on acrylonitrile-butadiene-styrene (ABS)/thermoplastic polyurethane (TPU) blends for fused filament fabrication (FFF). Mater. Des. 2019, 182, 108044. [Google Scholar] [CrossRef]
- Luo, J.-S.; Xu, B.-P.; Yu, H.-W.; Du, Y.-X.; Feng, Y.-H. Thermoplastic polyurethane/polypropylene blends in a co-rotating non-twin screws extruder. Fibers Polym. 2015, 16, 95–104. [Google Scholar] [CrossRef]
- Kannan, M.; Bhagawan, S.S.; Jose, T.; Thomas, S.; Joseph, K. Effect of sequence of nanoclay addition in TPU/PP blends: Thermomechanical properties. J. Mater. Sci. 2010, 45, 1078–1085. [Google Scholar] [CrossRef]
- He, Y.; Wang, F.; Du, G.; Pan, L.; Wang, K.; Gerhard, R.; Plath, R.; Rozga, P.; Trnka, P. Revisiting the thermal ageing on the metallised polypropylene film capacitor: From device to dielectric film. High Volt. 2022, 8, 305–314. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Xu, J.-Y.; Lee, C.-H. Weld Strength of Friction Welding of Dissimilar Polymer Rods Fabricated by Fused Deposition Modeling. Polymers 2022, 14, 2582. [Google Scholar] [CrossRef]
- Li, L.; Liu, W.; Wang, Y.; Zhao, Z. Mechanical performance and damage monitoring of CFRP thermo-plastic laminates with an open hole repaired by 3D printed patches. Compos. Struct. 2023, 303, 116308. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, J.; Gou, G.; Chen, H.; Li, P. Ameliorated longitudinal critically refracted—Attenuation velocity method for welding residual stress measurement. J. Mater. Process. Technol. 2017, 246, 267–275. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Lu, J.; Ding, M.; Chen, Y. Synthesis and properties of Poly(vinyl alcohol) hydrogels with high strength and toughness. Polym. Test. 2022, 108, 107516. [Google Scholar] [CrossRef]
Molding Parameters | Unit | Value for PP/TPU Blend | Value For ABS/TPU Blend |
---|---|---|---|
Melt temperature | °C | 220 | 220 |
Injection pressure | MPa | 35 | 65 |
Injection time | s | 2 | 2 |
Drying time (85 °C) | hour | 6 | 12 |
Holding time to avoid shrinkage | s | 0.5 | 0.8 |
Holding pressure | MPa | 30 | 50 |
Injection speed | mm/s | 40 | 35 |
Cooling time | s | 20 | 20 |
Group | Case | Pure PP (wt%) | Recycled PP (wt%) | TPU (wt%) |
---|---|---|---|---|
Group 1: 100 wt% pure PP—0 wt% recycled PP | 1 | 90 | 0 | 10 |
2 | 85 | 0 | 15 | |
3 | 80 | 0 | 20 | |
4 | 75 | 0 | 25 | |
5 | 70 | 0 | 30 | |
Group 2: 75 wt% pure PP—25 wt% recycled PP | 6 | 67.5 | 22.5 | 10 |
7 | 63.75 | 21.25 | 15 | |
8 | 60 | 20 | 20 | |
9 | 56.25 | 18.75 | 25 | |
10 | 52.5 | 17.5 | 30 | |
Group 3: 50 wt% pure PP—50 wt% recycled PP | 11 | 45 | 45 | 10 |
12 | 42.5 | 42.5 | 15 | |
13 | 40 | 40 | 20 | |
14 | 37.5 | 37.5 | 25 | |
15 | 35 | 35 | 30 | |
Group 4: 25 wt% pure PP—75 wt% recycled PP | 16 | 22.5 | 67.5 | 10 |
17 | 21.25 | 63.75 | 15 | |
18 | 20 | 60 | 20 | |
19 | 18.75 | 56.25 | 25 | |
20 | 17.5 | 52.5 | 30 | |
Group 5: 100 wt% recycle PP—0 wt% pure PP | 21 | 0 | 90 | 10 |
22 | 0 | 85 | 15 | |
23 | 0 | 80 | 20 | |
24 | 0 | 75 | 25 | |
25 | 0 | 70 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, T.T.; Nguyen, V.-T.; Song Toan, H.D.; Minh, P.S.; Uyen, T.M.T.; Huynh, T.H.; Nguyen, V.T.; Nguyen, V.T.T. Influences of TPU Content on the Weld Line Characteristics of PP and ABS Blends. Polymers 2023, 15, 2321. https://doi.org/10.3390/polym15102321
Do TT, Nguyen V-T, Song Toan HD, Minh PS, Uyen TMT, Huynh TH, Nguyen VT, Nguyen VTT. Influences of TPU Content on the Weld Line Characteristics of PP and ABS Blends. Polymers. 2023; 15(10):2321. https://doi.org/10.3390/polym15102321
Chicago/Turabian StyleDo, Thanh Trung, Van-Thuc Nguyen, Huynh Do Song Toan, Pham Son Minh, Tran Minh The Uyen, Trung H. Huynh, Vinh Tien Nguyen, and Van Thanh Tien Nguyen. 2023. "Influences of TPU Content on the Weld Line Characteristics of PP and ABS Blends" Polymers 15, no. 10: 2321. https://doi.org/10.3390/polym15102321
APA StyleDo, T. T., Nguyen, V. -T., Song Toan, H. D., Minh, P. S., Uyen, T. M. T., Huynh, T. H., Nguyen, V. T., & Nguyen, V. T. T. (2023). Influences of TPU Content on the Weld Line Characteristics of PP and ABS Blends. Polymers, 15(10), 2321. https://doi.org/10.3390/polym15102321