Polyvinylidene Fluoride/Aromatic Hyperbranched Polyester of Third-Generation-Based Electrospun Nanofiber as a Self-Powered Triboelectric Nanogenerator for Wearable Energy Harvesting and Health Monitoring Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of P-Ar.HBP-3 Electrospun Nanofibers
2.3. Nanogenerator Fabrication
2.4. Characterization
3. Results and Discussion
3.1. Working Principle
3.2. Electrical Measurements
3.3. Energy Harvesting Applications
3.4. Wearable Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, G.; Xu, L.; Cheng, X.; Li, Y.; Huang, X.; Guo, W.; Liu, S.; Wang, Z.L.; Wu, H. Bioinspired triboelectric nanogenerators as self-powered electronic skin for robotic tactile sensing. Adv. Funct. Mater. 2020, 30, 2023. [Google Scholar] [CrossRef]
- Ding, W.; Wang, A.; Wu, C.; Guo, H.; Wang, Z.L. Human-machine interfacing enabled by triboelectric nanogenerators and tribotronics. Adv. Mater. Technol. 2019, 4, 1800487. [Google Scholar] [CrossRef]
- Meng, K.; Zhao, S.; Zhou, Y.; Wu, Y.; Zhang, S.; He, Q.; Wang, X.; Zhou, Z.; Fan, W.; Tan, X.; et al. A wireless textile-based sensor system for self-powered personalized health care. Matter 2020, 2, 896–907. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, J.; Li, X.; Zhou, Z.; Meng, K.; Wei, W.; Yang, J.; Wang, Z.L. Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 2017, 11, 8830–8837. [Google Scholar] [CrossRef]
- Fahad, M.M.; Reza, M.S.; Prasad, G.; Jaisankar, S.N.; Kim, K.J.; Kim, H. Polysomnographic observation using triboelectric pressure sensor composed of polymer-pairs having coarse surface. Fibers Polym. 2022, 23, 1490–1499. [Google Scholar] [CrossRef]
- Prasad, G.; Graham, S.A.; Yu, J.S.; Kim, H.; Lee, D.-W. Investigated a PLL surface-modified Nylon 11 electrospun as a highly tribo-positive frictional layer to enhance output performance of triboelectric nanogenerators and self-powered wearable sensors. Nano Energy 2023, 108, 108178. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, J.; Han, L.; Dai, S.; Zhu, H.; Hua, J.; Cheng, G.; Ding, J. High-performance flexible self-powered triboelectric pressure sensor based on chemically modified micropatterned PDMS film. Sens. Actuators A Phys. 2023, 349, 114013. [Google Scholar] [CrossRef]
- Shi, K.; Sun, B.; Huang, X.; Jiang, P. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 2018, 52, 153–162. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Zhang, H.; Wang, H.; Hu, Z.; Xuan, W.; Dong, S.; Luo, J. A portable triboelectric nanogenerator for real-time respiration monitoring. Nanoscale Res. Lett. 2019, 14, 354. [Google Scholar] [CrossRef]
- Vu, D.L.; Le, C.D.; Ahn, K.K. Polyvinylidene fluoride surface polarization enhancement for liquid-solid triboelectric nanogenerator and its application. Polymers 2022, 14, 960. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Z.; Shao, Y.; Xu, J.; Wang, X.; Hu, J.; Zhang, K.-Q. A review of recent development of wearable triboelectric nanogenerators aiming at human clothing for energy conversion. Polymers 2023, 15, 508. [Google Scholar] [CrossRef] [PubMed]
- Van Tran, V.; Lee, S.; Lee, D.; Le, T.-H. Recent developments and implementations of conductive polymer-based flexible devices in sensing applications. Polymers 2022, 14, 3730. [Google Scholar] [CrossRef] [PubMed]
- Gajula, P.; Muhammad, F.M.; Reza, M.S.; Jaisankar, S.N.; Kim, K.J.; Kim, H. Fabrication of a silicon elastomer-based self-powered flexible triboelectric sensor for wearable energy harvesting and biomedical applications. ACS Appl. Electron. Mater. 2023, 5, 1750–1760. [Google Scholar] [CrossRef]
- Gunasekhar, R.; Prabu, A.A. Polyvinylidene fluoride/aromatic hyperbranched polyester 2nd generation based triboelectric sensor for polysomnographic and health monitoring applications. Sensors Actuators A Phys. 2023, 355, 114311. [Google Scholar] [CrossRef]
- Ha, M.; Lim, S.; Cho, S.; Lee, Y.; Na, S.; Baig, C.; Ko, H. Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano 2018, 12, 3964–3974. [Google Scholar] [CrossRef]
- Bai, P.; Zhu, G.; Jing, Q.; Yang, J.; Chen, J.; Su, Y.; Ma, J.; Zhang, G.; Wang, Z.L. Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 2014, 24, 5807–5813. [Google Scholar] [CrossRef]
- Yang, B.; Chen, W.; Zhou, X.; Meng, F.; Chen, C.; Liu, Q.; Li, Q.; Wang, X.; Xu, P.; Lei, Y.; et al. Strong and crack-resistant hydrogel derived from pomelo peel for highly sensitive wearable sensors. Chem. Eng. J. 2022, 431, 134094. [Google Scholar] [CrossRef]
- Claver, U.P.; Zhao, G. Recent progress in flexible pressure sensors based electronic skin. Adv. Eng. Mater. 2021, 23, 2001187. [Google Scholar] [CrossRef]
- Ho, D.H.; Han, J.; Huang, J.; Choi, Y.Y.; Cheon, S.; Sun, J.; Lei, Y.; Park, G.S.; Wang, Z.L.; Sun, Q.; et al. β-Phase-Preferential blow-spun fabrics for wearable triboelectric nanogenerators and textile interactive interface. Nano Energy 2020, 77, 105262. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, Y.; Dai, S.; Zhu, H.; Wu, L.; Gu, F.; Cheng, G.; Ding, J. Ag Nanowire/CPDMS dual conductive layer dome-based flexible pressure sensor with high sensitivity and a wide linear range. ACS Appl. Nano Mater. 2022, 5, 13227–13235. [Google Scholar] [CrossRef]
- Selleri, G.; Mongioì, F.; Maccaferri, E.; D’anniballe, R.; Mazzocchetti, L.; Carloni, R.; Fabiani, D.; Zucchelli, A.; Brugo, T.M. Self-sensing soft skin based on piezoelectric nanofibers. Polymers 2023, 15, 280. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhao, G. Recent progress in electronic skin: Materials, functions and applications. J. Univ. Sci. Technol. China 2021, 51, 725–746. [Google Scholar] [CrossRef]
- Mekbuntoon, P.; Kaeochana, W.; Prada, T.; Appamato, I.; Harnchana, V. Power Output enhancement of natural rubber based triboelectric nanogenerator with cellulose nanofibers and activated carbon. Polymers 2022, 14, 4495. [Google Scholar] [CrossRef]
- Ciobanu, R.C.; Schreiner, C.; Aradoaei, M.; Hitruc, G.E.; Rusu, B.-G.; Aflori, M. Characteristics of composite materials of the type: TPU/PP/BaTiO3 powder for 3D printing applications. Polymers 2023, 15, 73. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, M.; Huang, J.; Bian, J.; Jie, Y.; Willander, M.; Cao, X.; Wang, N.; Wang, Z.L. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor. Adv. Energy Mater. 2018, 8, 1702671. [Google Scholar] [CrossRef]
- Yamklang, W.; Prada, T.; Bunriw, W.; Kaeochana, W.; Harnchana, V. Fe3O4-Filled cellulose paper for triboelectric nanogenerator application. Polymers 2023, 15, 94. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Prabu, A.A.; Chang, Y.M.; Kim, K.J. Ultrathin ferroelectric P (VDF/TrFE) Copolymer film in low-cost non-volatile data storage applications. In Proceedings of the Macromolecular Symposia; Wiley Online Library: New York, NY, USA, 2007; Volume 249, pp. 13–20. [Google Scholar]
- Liu, Z.; Zhao, Z.; Zeng, X.; Fu, X.; Hu, Y. Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for respiratory and pulse monitoring. Nano Energy 2019, 59, 295–301. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, L.; Yuan, M.; Wang, Z.; Zhang, L.; Qin, Y.; Jing, T. An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale 2014, 6, 7842–7846. [Google Scholar] [CrossRef]
- Lee, H.J.; Chun, K.-Y.; Oh, J.H.; Han, C.-S. Wearable triboelectric strain-insensitive pressure sensors based on hierarchical superposition patterns. ACS Sens. 2021, 6, 2411–2418. [Google Scholar] [CrossRef]
- Cheng, K.; Wallaert, S.; Ardebili, H.; Karim, A. Advanced triboelectric nanogenerators based on low-dimension carbon materials: A review. Carbon 2022, 194, 81–103. [Google Scholar] [CrossRef]
- Mi, Y.; Lu, Y.; Shi, Y.; Zhao, Z.; Wang, X.; Meng, J.; Cao, X.; Wang, N. Biodegradable polymers in triboelectric nanogenerators. Polymers 2023, 15, 222. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.S.; Lee, C.H.; Kim, N.K.; An, T.; Kim, G.H. Review: Sensors for bio signal/health monitoring in electronic Skin. Polymers 2021, 13, 2478. [Google Scholar] [CrossRef] [PubMed]
- Toto, E.; Laurenzi, S.; Santonicola, M.G. Recent trends in Graphene/Polymer nanocomposites for sensing devices: Synthesis and applications in environmental and human health monitoring. Polymers 2022, 14, 1030. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, H.; Jia, N.; Li, Y.; Zhu, L.; Sun, Z. A Highly sensitive, ultra-durable, eco-friendly ionic skin for human motion monitoring. Polymers 2022, 14, 1902. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, Z.; Wang, Y. Progress in microtopography optimization of polymers-based pressure/strain sensors. Polymers 2023, 15, 764. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-G.; Kim, D.-W.; Tcho, I.-W.; Kim, J.-K.; Kim, M.-S.; Choi, Y.-K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef]
- Nie, S.; Cai, C.; Lin, X.; Zhang, C.; Lu, Y.; Mo, J.; Wang, S. Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustain. Chem. Eng. 2020, 8, 18678–18685. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 2016, 9, 514–530. [Google Scholar] [CrossRef]
- Diaz, A.; Felix-Navarro, R. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J. Electrost. 2004, 62, 277–290. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, S.; Shi, Z.; Wang, Y.; Lei, Y.; Han, J.; Xiong, Y.; Sun, J.; Zheng, L.; Sun, Q.; et al. Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 2021, 89, 106354. [Google Scholar] [CrossRef]
- Lone, S.A.; Lim, K.C.; Kaswan, K.; Chatterjee, S.; Fan, K.-P.; Choi, D.; Lee, S.; Zhang, H.; Cheng, J.; Lin, Z.-H. Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy 2022, 99, 107318. [Google Scholar] [CrossRef]
- Li, W.; Hu, Y.; Shi, L.; Zhang, X.; Xiong, L.; Zhang, W.; Ullah, I. Electrospinning of Polycaprolactone/Pluronic F127 dissolved in glacial acetic acid: Fibrous scaffolds fabrication, characterization and in vitro evaluation. J. Biomater. Sci. Polym. Ed. 2018, 29, 1155–1167. [Google Scholar] [CrossRef]
- Baji, A.; Mai, Y.-W.; Li, Q.; Liu, Y. Electrospinning induced ferroelectricity in poly (vinylidene fluoride) fibers. Nanoscale 2011, 3, 3068–3071. [Google Scholar] [CrossRef]
- Chang, C.; Tran, V.H.; Wang, J.; Fuh, Y.-K.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Sathiyanathan, P.; Prabu, A.A.; Kim, K.J. Electrospun polyvinylidene fluoride-polyoctafluoropentyl acrylate blend based piezocapacitive pressure sensors. Macromol. Res. 2016, 24, 670–674. [Google Scholar] [CrossRef]
- Sathiyanathan, P.; Dhevi, D.M.; Prabu, A.A.; Kim, K.J. Electrospun polyvinylidene fluoride-polyoctafluoropentyl acrylate-hydroxyapatite blend based piezoelectric pressure sensors. Macromol. Res. 2019, 27, 743–749. [Google Scholar] [CrossRef]
- Ponnan, S.; Schmidt, T.W.; Li, T.; Gunasekaran, H.B.; Ke, X.; Huang, Y.; Mubarak, S.; Prabu, A.A.; Weng, Z.; Wu, L. Electrospun polyvinylidene fluoride–magnesiochromite nanofiber-based piezoelectric nanogenerator for energy harvesting applications. ACS Appl. Polym. Mater. 2021, 3, 4879–4888. [Google Scholar] [CrossRef]
- Prasad, G.; Sathiyanathan, P.; Prabu, A.A.; Kim, K.J. Piezoelectric characteristics of electrospun PVDF as a function of phase-separation temperature and metal salt content. Macromol. Res. 2017, 25, 981–988. [Google Scholar] [CrossRef]
- Liu, R.; Hou, L.; Yue, G.; Li, H.; Zhang, J.; Liu, J.; Miao, B.; Wang, N.; Bai, J.; Cui, Z.; et al. Progress of fabrication and applications of electrospun hierarchically porous nanofibers. Adv. Fiber Mater. 2022, 4, 604–630. [Google Scholar] [CrossRef]
- Rana, S.M.S.; Rahman, M.T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J.Y. Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 2021, 13, 4955–4967. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Wu, X.; Oh, J.H. Fabrication of triboelectric nanogenerators based on electrospun polyimide nanofibers membrane. Sci. Rep. 2020, 10, 2742. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.A.; Patnam, H.; Manchi, P.; Paranjape, M.V.; Kurakula, A.; Yu, J.S. Biocompatible electrospun fibers-based triboelectric nanogenerators for energy harvesting and healthcare monitoring. Nano Energy 2022, 100, 107455. [Google Scholar] [CrossRef]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF nanofibers for piezoelectric applications: A Review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Dou, H.; You, C.; Yang, J.; Fan, W. Enhancement of piezoelectric properties of flexible nanofibrous membranes by hierarchical structures and nanoparticles. Polymers 2022, 14, 4268. [Google Scholar] [CrossRef]
- Abutaleb, A.; Maafa, I.M.; Zouli, N.; Yousef, A.; El-Halwany, M.M. Electrospun Co nanoparticles@PVDF-HFP nanofibers as efficient catalyst for dehydrogenation of sodium borohydride. Polymers 2023, 15, 597. [Google Scholar] [CrossRef]
- dos Santos, G.G.; Malherbi, M.S.; de Souza, N.S.; César, G.B.; Tominaga, T.T.; Miyahara, R.Y.; Mendonça, P.D.S.B.D.; Faria, D.R.; Rosso, J.M.; Freitas, V.F.; et al. 4th Generation biomaterials based on PVDF-Hydroxyapatite composites produced by electrospinning: Processing and characterization. Polymers 2022, 14, 4190. [Google Scholar] [CrossRef]
- Pu, X.; Guo, H.; Chen, J.; Wang, X.; Xi, Y.; Hu, C.; Wang, Z.L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 2017, 3, e1700694. [Google Scholar] [CrossRef]
- Paranjape, M.V.; Graham, S.A.; Patnam, H.; Manchi, P.; Yu, J.S. 3D printed bidirectional rotatory hybrid nanogenerator for mechanical energy harvesting. Nano Energy 2021, 88, 106250. [Google Scholar] [CrossRef]
- Dallaev, R.; Pisarenko, T.; Sobola, D.; Orudzhev, F.; Ramazanov, S.; Trčka, T. Brief review of PVDF properties and applications potential. Polymers 2022, 14, 4793. [Google Scholar] [CrossRef]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1610–1633. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tan, L.; Pan, X.; Liu, G.; He, Y.; Jin, W.; Li, M.; Hu, Y.; Gu, H. Self-Powered viscosity and pressure sensing in microfluidic systems based on the piezoelectric energy harvesting of flowing droplets. ACS Appl. Mater. Interfaces 2017, 9, 28586–28595. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, Y.; Lv, H.; Shi, H.; Zhou, W.; Liu, Y.; Yu, D.-G. Processes of electrospun polyvinylidene fluoride-based nanofibers, their piezoelectric properties, and several fantastic applications. Polymers 2022, 14, 4311. [Google Scholar] [CrossRef] [PubMed]
- Dhevi, D.M.; Ahn, Y.J.; Kim, K.J.; Prabu, A.A. Electrospun PVDF-TrFE-based piezoelectric sensors. In Advances in Polymer Materials and Technology; CRC Press: Boca Raton, FL, USA, 2016; pp. 241–270. ISBN 1315371057. [Google Scholar]
- Prasad, G.; Prabu, A.A. Effect of stirring on hydrophobicity of PVDF/CNT nanocomposite coatings. Adv. Mater. Res. 2014, 938, 199–203. [Google Scholar] [CrossRef]
- Bae, J.H.; Oh, H.J.; Song, J.; Kim, D.K.; Yeang, B.J.; Ko, J.H.; Kim, S.H.; Lee, W.; Lim, S.J. Nano- and microfiber-based fully fabric triboelectric nanogenerator for wearable devices. Polymers 2020, 12, 658. [Google Scholar] [CrossRef]
- Graham, S.A.; Dudem, B.; Mule, A.R.; Patnam, H.; Yu, J.S. Engineering squandered cotton into eco-benign microarchitectured triboelectric films for sustainable and highly efficient mechanical energy harvesting. Nano Energy 2019, 61, 505–516. [Google Scholar] [CrossRef]
- Magnani, A.; Capaccioli, S.; Azimi, B.; Danti, S.; Labardi, M. Local piezoelectric response of polymer/ceramic nanocomposite fibers. Polymers 2022, 14, 5379. [Google Scholar] [CrossRef] [PubMed]
- Gunasekhar, R.; Sathiyanathan, P.; Dhevi, D.M.; Reza, M.S.; Prabu, A.A.; Kim, H. Studies on electrospun polyvinylidene fluoride/aromatic hyperbranched polyester (gen-1) blend nanoweb for energy harvesting applications. Mater. Today Proc. 2021, 47, 885–888. [Google Scholar] [CrossRef]
- Sathiyanathan, P.; Wu, L.; Schmidt, T.W.; Li, T.; Bhuvaneswari, G.H.; Kim, H.; Arun, A.P.; Kim, K.J. Piezoelectric-piezocapacitive hybrid sensor based on electrospun Poly(vinylidene fluoride)-Poly(octafluoropentyl acrylate)-sulphonated Poly(phenylene sulfide) blend nanofiber. Sens. Actuators A Phys. 2021, 331, 112993. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Gui, Y.; Chen, T.; Xu, H.; Huang, X.; Ma, X. Flexible stretchable, dry-resistant MXene nanocomposite conductive hydrogel for human motion monitoring. Polymers 2023, 15, 250. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Prabu, A.A.; Kim, K.J.; Park, C. Metal salt-induced ferroelectric crystalline phase in poly (vinylidene fluoride) films. Macromol. Rapid Commun. 2008, 29, 1316–1321. [Google Scholar] [CrossRef]
- Choi, C.W.; Prabu, A.A.; Kim, Y.M.; Yoon, S.; Kim, K.J.; Park, C. Comparative electrical bistable characteristics of ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer based nonvolatile memory device architectures. Appl. Phys. Lett. 2008, 93, 182902. [Google Scholar] [CrossRef]
- Lee, J.S.; Prabu, A.A.; Kim, K.J. UCST-Type phase separation and crystallization behavior in poly (vinylidene fluoride)/poly (methyl methacrylate) blends under an external electric field. Macromolecules 2009, 42, 5660–5669. [Google Scholar] [CrossRef]
- Wolff, S.; Jirasek, F.; Beuermann, S.; Türk, M. Crystal phase transformation of α into β phase poly (vinylidene fluoride) via particle formation caused by rapid expansion of supercritical solutions. RSC Adv. 2015, 5, 66644–66649. [Google Scholar] [CrossRef]
- Ye, H.-J.; Shao, W.-Z.; Zhen, L. Crystallization kinetics and phase transformation of poly (vinylidene fluoride) films incorporated with functionalized baTiO3nanoparticles. J. Appl. Polym. Sci. 2013, 129, 2940–2949. [Google Scholar] [CrossRef]
- Bodkhe, S.; Turcot, G.; Gosselin, F.P.; Therriault, D. One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interfaces 2017, 9, 20833–20842. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Lim, J.Y.; Hong, S.M.; Lee, J.; Ha, J.; Choi, H.J.; Seo, Y. Enhanced piezoelectric properties of electrospun poly (vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly (vinylidene fluoride). J. Phys. Chem. C 2013, 117, 11791–11799. [Google Scholar] [CrossRef]
- Widakdo, J.; Lei, W.-C.; Anawati, A.; Manjunatha, S.T.; Austria, H.F.M.; Setiawan, O.; Huang, T.-H.; Chiao, Y.-H.; Hung, W.-S.; Ho, M.-H. Effects of Co-Solvent-induced self-assembled graphene-PVDF composite film on piezoelectric application. Polymers 2023, 15, 137. [Google Scholar] [CrossRef]
- Orudzhev, F.; Sobola, D.; Ramazanov, S.; Částková, K.; Papež, N.; Selimov, D.A.; Abdurakhmanov, M.; Shuaibov, A.; Rabadanova, A.; Gulakhmedov, R.; et al. Piezo-enhanced photocatalytic activity of the electrospun fibrous magnetic PVDF/BiFeO3 membrane. Polymers 2023, 15, 246. [Google Scholar] [CrossRef]
- Dhevi, D.M.; Prabu, A.A.; Pathak, M. Miscibility, crystallization and annealing studies of poly (vinylidene fluoride)/hyperbranched polyester blends. Polymer 2014, 55, 886–895. [Google Scholar] [CrossRef]
- Salauddin; Toyabur, R.; Maharjan, P.; Rasel, M.; Kim, J.; Cho, H.; Park, J.Y. Miniaturized springless hybrid nanogenerator for powering portable and wearable electronic devices from human-body-induced vibration. Nano Energy 2018, 51, 61–72. [Google Scholar] [CrossRef]
- Karan, S.K.; Mandal, D.; Khatua, B.B. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: An excellent material for a piezoelectric energy harvester. Nanoscale 2015, 7, 10655–10666. [Google Scholar] [CrossRef] [PubMed]
- Paul, T.; Maiti, S.; Mukherjee, U.; Mondal, S.; Sahoo, A.; Chattopadhyay, K.K. Cube shaped FAPbBr3 for piezoelectric energy harvesting devices. Mater. Lett. 2021, 301, 130264. [Google Scholar] [CrossRef]
- Singh, H.H.; Khare, N. Improved performance of ferroelectric nanocomposite flexible film based triboelectric nanogenerator by controlling surface morphology, polarizability, and hydrophobicity. Energy 2019, 178, 765–771. [Google Scholar] [CrossRef]
- Chen, H.-J.; Han, S.; Liu, C.; Luo, Z.; Shieh, H.-P.D.; Hsiao, R.-S.; Yang, B.-R. Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement. Sens. Actuators A Phys. 2016, 245, 135–139. [Google Scholar] [CrossRef]
- Tong, W.; Zhang, Y.; Zhang, Q.; Luan, X.; Lv, F.; Liu, L.; An, Q. Energy Storage: An all-solid-state flexible piezoelectric high-kFilm functioning as both a generator and in situ storage unit (Adv. Funct. Mater. 45/2015). Adv. Funct. Mater. 2015, 25, 7028. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Li, Y.; Xu, J.-T.; Fan, Z.-Q. Cooperative Effect of electrospinning and Nano clay on formation of polar crystalline phases in poly (vinylidene fluoride). ACS Appl. Mater. Interfaces 2010, 2, 1759–1768. [Google Scholar] [CrossRef]
- Roy, K.; Ghosh, S.K.; Sultana, A.; Garain, S.; Xie, M.; Bowen, C.R.; Henkel, K.; Schreiber, D.; Mandal, D. A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Appl. Nano Mater. 2019, 2, 2013–2025. [Google Scholar] [CrossRef]
- Dhevi, D.M.; Prabu, A.A.; Kim, K.J. FTIR studies on polymorphic control of PVDF ultrathin films by heat-controlled spin coater. J. Mater. Sci. 2015, 51, 3619–3627. [Google Scholar] [CrossRef]
- Tofel, P.; Částková, K.; Říha, D.; Sobola, D.; Papež, N.; Kaštyl, J.; Ţălu, Ş.; Hadaš, Z. Triboelectric response of electrospun stratified PVDF and PA structures. Nanomaterials 2022, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Zhu, Y.; Wang, W.; Zhai, J. Progress in triboelectric materials: Toward high performance and widespread applications. Adv. Funct. Mater. 2019, 29, 1900098. [Google Scholar] [CrossRef]
- Garain, S.; Jana, S.; Sinha, T.K.; Mandal, D. Design of In Situ poled Ce3+-doped electrospun PVDF/Graphene composite nanofibers for fabrication of Nano pressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl. Mater. Interfaces 2016, 8, 4532–4540. [Google Scholar] [CrossRef] [PubMed]
- Kil Yun, B.; Kim, J.W.; Kim, H.S.; Jung, K.W.; Yi, Y.; Jeong, M.-S.; Ko, J.-H.; Jung, J.H. Base-treated polydimethylsiloxane surfaces as enhanced triboelectric nanogenerators. Nano Energy 2015, 15, 523–529. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunasekhar, R.; Sathiyanathan, P.; Reza, M.S.; Prasad, G.; Prabu, A.A.; Kim, H. Polyvinylidene Fluoride/Aromatic Hyperbranched Polyester of Third-Generation-Based Electrospun Nanofiber as a Self-Powered Triboelectric Nanogenerator for Wearable Energy Harvesting and Health Monitoring Applications. Polymers 2023, 15, 2375. https://doi.org/10.3390/polym15102375
Gunasekhar R, Sathiyanathan P, Reza MS, Prasad G, Prabu AA, Kim H. Polyvinylidene Fluoride/Aromatic Hyperbranched Polyester of Third-Generation-Based Electrospun Nanofiber as a Self-Powered Triboelectric Nanogenerator for Wearable Energy Harvesting and Health Monitoring Applications. Polymers. 2023; 15(10):2375. https://doi.org/10.3390/polym15102375
Chicago/Turabian StyleGunasekhar, Ramadasu, Ponnan Sathiyanathan, Mohammad Shamim Reza, Gajula Prasad, Arun Anand Prabu, and Hongdoo Kim. 2023. "Polyvinylidene Fluoride/Aromatic Hyperbranched Polyester of Third-Generation-Based Electrospun Nanofiber as a Self-Powered Triboelectric Nanogenerator for Wearable Energy Harvesting and Health Monitoring Applications" Polymers 15, no. 10: 2375. https://doi.org/10.3390/polym15102375
APA StyleGunasekhar, R., Sathiyanathan, P., Reza, M. S., Prasad, G., Prabu, A. A., & Kim, H. (2023). Polyvinylidene Fluoride/Aromatic Hyperbranched Polyester of Third-Generation-Based Electrospun Nanofiber as a Self-Powered Triboelectric Nanogenerator for Wearable Energy Harvesting and Health Monitoring Applications. Polymers, 15(10), 2375. https://doi.org/10.3390/polym15102375