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Abstract: 4-Vinylpyridine molecularly imprinted polymer (4-VPMIP) microparticles for mandelic
acid (MA) metabolite as a major biomarker of exposure to styrene (S) were synthesized by bulk
polymerization with a noncovalent approach. A common mole ratio of 1:4:20 (i.e., metabolite template:
functional monomer: cross-linking agent, respectively) was applied to allow the selective solid-phase
extraction of MA in a urine sample followed by high-performance liquid chromatography–diode
array detection (HPLC-DAD). In this research, the 4-VPMIP components were carefully selected: MA
was used as a template (T), 4-Vinylpyridine (4-VP) as a functional monomer (FM), ethylene glycol
dimethacrylate (EGDMA) as a cross-linker (XL), and azobisisobutyronitrile (AIBN) as an initiator
(I) and acetonitrile (ACN) as a porogenic solvent. Non-imprinted polymer (NIP) which serves as
a “control” was also synthesized simultaneously under the same condition without the addition of
MA molecules. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy
(SEM) were used to characterize the imprinted and nonimprinted polymer to explain the structural
and morphological characteristics of the 4-VPMIP and surface NIP. The results obtained from SEM
depicted that the polymers were irregularly shaped microparticles. Moreover, MIPs surfaces had
cavities and were rougher than NIP. In addition, all particle sizes were less than 40 µm in diameter.
The IR spectra of 4-VPMIPs before washing MA were a little different from NIP, while 4-VPMIP
after elution had a spectrum that was almost identical to the NIP spectrum. The adsorption kinetics,
isotherms, competitive adsorption, and reusability of 4-VPMIP were investigated. 4-VPMIP showed
good recognition selectivity as well as enrichment and separation abilities for MA in the extract of
human urine with satisfactory recoveries. The results obtained in this research imply that 4-VPMIP
might be used as a sorbent for MA solid-phase extraction (MISPE), for the exclusive extraction of MA
in human urine.

Keywords: molecularly imprinted polymer (MIP); solid-phase extraction (SPE); urine sample;
mandelic acid (MA); urinary metabolite

1. Introduction

It is crucial to keep an eye on the toxic chemical compounds and their metabolites
in order to monitor what hazards they represent and what issues they could create given
the rising worries about harmful substances such as styrene in the environment and
workplace [1]. Styrene, commonly known as vinyl-benzene (C6H5CH=CH2), is a significant
chemical in many manufacturing processes that is used to manufacture a variety of products
such as polystyrene, latex paint and coatings, and synthetic rubber [2,3]. The use of products
made with styrenes, such as packaging, electrical and thermal insulation, fiberglass, pipes,
automobile components, and carpet backing, exposes many people to these chemicals
on a daily basis [3]. Furthermore, styrene may also contaminate the food that has been
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packaged in polystyrene materials [4]. When it comes to absorbing styrene, inhalation
is more effective than skin contact [5,6]. An amount of 3.5–76.2 g of styrene is typically
present in the smoke from traditional cigarettes. Around 90% of the styrene in the body
is predominantly converted to styrene-7,8-oxide (7,8-SO), which subsequently transforms
to styrene glycol, can then be oxidized to produce MA, and then to phenyl glyoxylic acid
(PGA) and is eliminated in the urine [6]. Eye irritation, respiratory symptoms, and nausea
were seen after inhalation exposure to styrene (at concentrations >1600 mg/m3), whereas
exposure to a dosage of >17 mg/m3 resulted in a reduction in color discrimination. As
stated by the International Agency for Research on Cancer IARC (1985), it is considered to
be “probably carcinogenic to humans” (category 2B) [4,5,7,8]. These metabolites represent
the entire dosage taken from all exposure modes, including inhalation, skin, and oral
absorptions, making them markers of internal exposure. As a result, these metabolites have
seen widespread use in the biological monitoring of exposure to this solvent in the interest
of protecting employees from developing occupational illnesses [9]. Moreover, owing to its
non-invasive collection and abundance in metabolites, urine is a practical bio-fluid [10]. MA
is a major metabolite of styrene with an excretion half-time of about 5–10 h in urine [2,11].
As stated by the American Congress of Governmental Industrial Hygienists (ACGIH), the
threshold limit value (TLV) for MA metabolite as a result of exposure to styrene is 86 mg/m3

(20 ppm), and its Biological Exposure Index (BEI) is 400 mg/g creatinine in urine collected
at the end of a work shift [5,6,11,12]. Chemical analysis requires precision equipment
with pure samples completely isolated from interferents [13]. A crucial stage in the study
of chemicals in biological samples is sample preparation. The most common cleaning
method used to separate MA from urine samples is solid-phase extraction (SPE), which is
preferred mainly to its ease, ability to save time, and use of a small quantity of solvent [14].
High-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS)
coupled with solid-phase extraction (SPE) was utilized by Ren J. Wei et al. (2020) to identify
the metabolites of aromatic chemicals in urine samples. The linearity of MA was evaluated
throughout a concentration range of 1–100 ng/mL and found to be high, with a correlation
factor of >0.995 and a relative precision deviation (RSD) of 6.51%. Importantly, 80.1% of
MA was recovered, and the method detection limit (MDL) was 0.092 ng/m [15]. Despite
their advantages, SPE sorbents may not consistently exhibit strong selectivity for specific
metabolites. In certain cases, matrix chemicals or interferents may be eluted alongside the
target analytes and subsequently retained by the sorbent, leading to complications during
the analytical process. To solve these issues, molecularly imprinted polymers (MIPs) can be
employed as SPE sorbents, providing enhanced selectivity and enrichment to the target
analyte from other similar compounds. The novel strategy is built on MISPE a hybrid of
MIP and SPE [16]. MIPs are artificial polymers that have a chosen analyte imprinted on
them. These polymers are created by covalent bonds. In this process, the initiator is meant
to break down when exposed to light or heat to make free radicals. The polymerization
process is started by free radicals, and the cross-linking agent brings together the template
molecules and the functional monomers to make MIPs. To improve the effect of pre-
polymerization, ultrasonic help may be used to speed up the process of dissolving and
getting rid of dissolved oxygen, which can slow down the polymerization [4,10]. In our case,
acidic organic solvents are used to get the target analyte out of the MIP after polymerization.
Through chemical interactions, functional monomers with the same analyte or compounds
with a similar structure may rebind to the 3D cavity left behind [14,17]. The noncovalent
approach is the most common way to make MIPs for environmental analytes such as pure
organic solvents and biological fluids because it is simple, the template molecule can be
easily removed, and there are many commercially available functional monomers [17–19].
The vast majority of reported MIPs were made using bulk preparation techniques because
of their many advantageous features. These include the ability to manufacture high-
quality MIPs with little to no waste and no costly or complicated equipment. Then, the
bulk polymer monolith is crushed, powdered, and sieved to produce irregularly shaped
particles, mostly in the 25–100 m size range. After that, an elution process is carried out
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to remove tiny particles [20,21]. In 1973, Wulff and his team made a covalently bound
MIP to separate racemic chemicals. In 1988, Mosbach et al. synthesized the first MIP
with noncovalent interactions for L-phenylamine compounds. To restrict the number of
experimental MIPs to be generated and evaluated, a computational technique such as
response surface design attributes (RSDA), can be employed to assist in determining the
template/monomer/cross-linker mole ratio [17,21,22]. In the present study, we utilized
a conventional molar ratio of 1:4:20 to produce 4-vinylpyridine molecularly imprinted
polymers (4-VPMIPs) of MA. These proportions have been previously shown to exhibit
optimum values for imprinting factor, adsorption capacity, and binding efficiency [23,24].
The maximum adsorption capacity and binding kinetics of the MIP and non-imprinted
polymer (NIP) were comparatively assessed through binding experiments. The study
also investigated the binding selectivity and specificity of 4-VPMIP for MA and urine
metabolites phenylglyoxylic acid (PGA) and hippuric acid (Hip) as competitive adsorption
molecules. Furthermore, this study thoroughly examined the reusability of the 4-VPMIP to
gain a deeper understanding of its capabilities.

Functional group compatibility is the strategy used to choose the functional monomer.
Accordingly, basic functional monomers (such as 4-VP) are recommended for templates
containing an acidic group (such as MA), while acidic functional monomers (such as
Methacrylic acid; MAA) are employed to target bases [25]. Templates with active groups
such as carboxyl and hydroxyl have been shown to improve MIP efficiency. Designing
and building a high-performance MIP would be simplified by the presence of highly
polar groups since more stable molecular combinations would be the result. Even though
hydrogen bonds lead to positional accuracy, saturation, and strength, polymers that form
them with functional monomers may have great specificity and affinity. For these reasons,
4-VP (base) was chosen as a monomer that can form a hydrogen bond with MA (N . . . OH).
The ease of imprinting and extracting analytes shows that these noncovalent bonds are
likely to happen. Larger templates are not as rigid, so they do not make well-defined
binding cavities when they are imprinted. Because of this, most routine MIPs use small
organic molecules as templates [23,26,27].

During the polymerization process, porogenic solvents are used to dissolve all of the
ingredients used to make MIPs. This keeps the interaction between MA and 4-VP stable and
helps create the porous structure of the 4-VPMIP. Additionally, the polarity of the porogen
might influence interactions between the MA and 4-VP. It has an impact on an MIP’s
adsorption characteristics, particularly in noncovalent interactions. A non-polar or less
polar organic porogen, such as ACN, is employed to provide high printing efficiency for
a noncovalent imprinting process. Hence, the adsorption and morphological characteristics
of the produced polymer will depend on the kind of porogen or solvent utilized. Since
ACN can dissolve all of the polymerization’s ingredients and has a low polarity (0.460), it
was thought that it would make an MIP with a high imprinting efficiency. Water, on the
other hand, might be the best solvent if hydrophobic forces are used to make the complex
form [26,27].

The purpose of a cross-linker is to stabilize the imprinted binding site to create a cross-
linked stiff polymer, arrange the functional monomers over template molecules in the
polymerization process (control the morphology of the polymer matrix), and provide
mechanical stability to the polymer matrix. For the recognition sites to remain stable,
a cross-linker concentration of 80% is required. In this case, the 4-VPMIP may be able to
“recognize” the original material because its functional groups are retained in an appropriate
arrangement for rebinding the analyte after its removal, thanks to the microcavities’ highly
cross-linked structures that preserve a 3D structure sequence similar in shape and chemical
functionality to that of the template. Lastly, the cross-linker should make polymers that
are stable at high temperatures and under stress, have good porosity, and are easy to
create [26,27]. For these features, EGDMA was selected as a cross-linker.

An initiator is a chemical that promotes rapid polymerization by starting the formation
of new polymer chains. In comparison to the monomer, they are typically utilized at low
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amounts (1 weight percent or 1 mole percent of the total mass) [26,28]. If the azoinitia-
tor (AIBN) is heated, it breaks down into carbon-centered radicals, which might initiate
polymerization by adding a vinyl group (CH=CH2) to the monomer [23,26]. To speed
up the growth of monomers and make sure that polymerizations can happen again, it is
recommended to remove all dissolved oxygen from monomer solutions by ultrasonication
or by sparging the monomer solution with an inert gas (such as N2) [26]. The chemical
structures of all optimum components used in the 4-VPMIP synthesis are shown in Figure 1.
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Figure 1. The molecular structures of MA-MIP components. (a) MA; C6H5CH(OH)CO2H;
(b) 4-VP; CH2CHC5H4N; (c) EGDMA; CH2=C(CH3) COOCH2CH2OCOC(CH3)=CH2; (d) AIBN;
(CH3)2(CN)CN=NC(CN)(CH3)2; and (e) ACN; CH3CN.

To extract gliclazide (GCZ) from human plasma specimens, Ingrid V. et al. developed
a new and specific MIP as a sorbent using the MISPE technique. SEM and FTIR were also
used to further describe the polymers. Both MIP and NIP were found to have a fine-grained
part, irregular surface morphology, and a complex configuration of internal tiny holes at
a magnification of 1000, but the MIP structure was found to have larger, more regular,
and more available micropores, all of which are good attributes in a sorbent for use in the
MISPE process. The FT-IR spectra shows that GCZ-MIP and NIP are chemically the same,
but their structures are ordered differently [29].

The objective of this study was to create a novel molecularly imprinted polymer
(4-VPMIP) for MA as a solid-phase extraction (SPE) sorbent using a conventional molar
ratio of 1:4:20 to achieve optimal imprinting efficiency. The goal was to use the 4-VPMIP
in selective urine sample preparation to eliminate the matrix effects [30]. The MIP and
non-imprinted polymer (NIP) were characterized using Fourier transform infrared (FI-IR)
spectroscopy to identify different functional groups and chemical bonds. The morphologies
of the polymers were studied by scanning electron microscopy (SEM). In addition, the
proper elution of MA from the MIP was ensured. This study also evaluated the mechanisms
of selective adsorption, as well as the thermodynamics and kinetics of adsorption, to
determine the specific recognition of the MIP.

2. Materials and Methods
2.1. Reagents and Solvents

Ultra-pure water was utilized throughout the whole proposed study, and all of the
chemicals and solvents used in this research were of the analytical reagent grade. MA (99+%,
CAS:90-64-2) was purchased from Thermo Scientific Co.,Ltd. (Shangai, China). EGDMA
(98%, CAS NO. 97-90-5) was provided by Merk. KGaA (Darmstadt, Germany), 4-VP
(95%, 100 ppm hydroquinone as inhibitor), AIBN solution, and MAA (99%) were bought
from Sigma-Aldrich Co. Ltd. (St. Louis, MO, USA). ACN, HPLC-grade was provided
by Fisher Scientific Co. (Hampton, NH, USA), and methanol (MeOH, HPLC-grade) was
provided by Chem-Lab NV (Zedelgem, Belgium). Acetic acid glacial (AA, CH3COOH,
100%) was from PanReac AppliChem (Castellar del Vallès, Spain). Acetone was obtained
from Prolabec (Laval, QC, Canada). The Environmental Sciences Department’s industrial
waste treatment lab (KAU) has a Millipore purification system with an MPK01 filter from
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Millipore (Fontenay-sous-Bois, France) that supplies ultrapure water. N2 of 10 L steel syl.
(99.999%, NG01RTN02) as provided by ASG (KSA) was used to remove O2 gas. EGDMA
was vacuum distilled to get rid of the inhibitors. In addition, AIBN was recrystallized
from MeOH before usage, and 4-VP was purified by running over a straightforward Al2O3
column to get rid of inhibitors. Urine samples were provided by one of the research team.
Morning spot urine samples were collected and kept in sterile containers, at a temperature
of −20 ◦C, until analysis.

2.2. Pre-Treatment of Urine

One milliliter of the urine specimen was placed in a test tube, and its pH was adjusted
to 2.0 with hydrochloric acid. MA, PGA, and Hip in urine were extracted with 4 mL of
a mixture of ethyl ether and methanol (9/1, by vol.). The resulting extract was dehydrated
by the addition of anhydrous sodium sulfate. One milliliter of extract was transferred
to another test tube, after which approximately 0.2 mL of methanol was added, and the
solution was injected into the HPLC.

2.3. Analytical Instruments

Analytical separations were performed using high-performance liquid chromatog-
raphy (HPLC, Agilent Technologies 1200 series, Santa Clara, CA, USA) equipped with a
diode array detector (DAD). A digital ultrasonic cleaner (JPS-24AD, 3 L, Moscow, Russia)
was used to disperse the mixtures or remove O2 from the solution. An oil bath was used to
carry out the polymerization. A Fisher Scientific centrifuge (accuSpinTM Micro, Schwerte,
Germany) with 24 tube positions was used for better separation of analytes subjected to
chromatographic analysis. An IRAffinty-1 Spectroscopy was used to investigate the IR
spectra of polymer particles in the range of 4000–400 cm−1 (SHIMADZU, Kyoto, Japan).
To examine the morphology of polymer particles, a scanning electron microscope (SEM,
Quanta 250, Waltham, MA, USA) was used. We used a 250 µL syringe gas chromatographic
injector with a sharp tip to inject a micro quantity of MIP components during synthesis
(JVLAB, Shanghai, China). MAX 3 mL empty SPE cartridges solid-phase extraction (JVLAB,
Shanghai, China) with two frits were used to wash MA from MIPs during the elution step.
We used a 0.4 L Laboratory Pulverizer Ball Mill Small Planetary, Ball Grinding Mill Machine
(DECO, Hunan Yueyang, China) with compatible grinding jars (ball; PTFE; Teflon) and
balls (ZrO2; Zirconium oxide) where the minimum granularity of ground MIP can be as
small as 0.1 um. A standard test sieve (55 × 28 mm) of 400 mesh stainless steel screen cell
strainer (Shijiazhuang, China) with handle was used to obtain a particle size of ≤38 µm.
The Environmental Science Department’s Food Safety and Quality Lab has an SPE vacuum
manifold (CHROMABOND®) of 18 positions that was used to extract the MA throughout
the elution process, while the Water Pollution Lab has both a dryer oven (Heraeus, Hanau,
Germany) and an analytical balance (Mettler Toledo AL204, Columbus, OH, USA) that
were used to dry the polymers and weigh the exact mass of MIP components, respectively.

2.4. Synthesis of MA-MIP and NIP

A noncovalent bulk polymerization strategy with a common molar ratio of 1:4:20 was
used to generate MIP and NIP for MA. An initial 3 mL of ACN was used to dissolve 1 mmol
(0.1522 g) of MA in a 10 mL test tube, and then 4 mmol (427 µL) of 4-VP was added. For
30 min, the mixture was ultrasonicated at room temperature to perform pre-polymerization.
To prevent oxidation, the test tube was quickly shut, and the solution was purged with N2
to eliminate any dissolved O2 as shown in Figure 2.

Subsequently, 20 mmol (3.8 mL) of EGDMA and 2.5 mmol (478 µL) of AIBN were
injected. For a further 20 min, the solution was sonicated. To finish the polymerization
operation, the resultant reaction mixture was heated in an oil bath at 60 ◦C for 24 h while
being purged with N2 gas. The polymer was dried in an oven at 60 ◦C for 24 h, and then
crushed and sieved at room temperature to yield particles that measured 38 µm or less
using a test sieve of mesh size 400 (≤38 µm) as shown in Figure 3.
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Figure 3. Synthesized MIP and NIP. (a) The obtained bulk polymers. (b) Crushed vial that contains
polymer to be ground. (c) The finished MA-MIP powder. The presence of 4-VP as a functional
monomer gives polymers their characteristic yellow-brown color.

Figure 4 illustrates the MIP preparation process schematically.
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In a similar manner, but without the inclusion of the template molecule, the NIP
was produced. The processes used to create MIP and NIP of MA, which have identical
compositions of 4-VP and EGDMA throughout bulk polymerization protocol, are shown in
Table 1.

Table 1. Synthesis of 4-VPMIP and NIP for mandelic acid (MA) by bulk polymerization protocol.

Code 4-VPMIP NIP

Template (mmole) MA (1) - - - - - - - -
Functional Monomer (mmole) 4-VP (4) 4-VP (4)

Cross-linker (mmole) EGDMA (20) EGDMA (20)
Porogen (mL) ACN (3 mL) ACN (3 mL)

2.5. MA Elution

The analyte (MA) was eliminated by subjecting MIPs to a series of washes in a solution
of MeOH and AA (90:10, v/v). The remaining AA was removed from MIP by washing
it twice with MeOH, and the powdered MIP was then dried in an oven at 60 ◦C for
6 h. The 3 mL SPE cartridge was used to complete the elution process including packing
around 100 mg of MA-MIP between two polyethylene frits as shown in Figure 5. The
packed powder sample was pulled through the stationary phase (9 MeOH:1 AA v/v/)
using a manifold tool at a regulated extraction rate and sample flow. The sample was then
inserted into the HPLC-DAD at 200 nm to measure the peak area of MA in milli-absorbance
units (mAUxS) at RT ≈ 7.2 mints. The above procedure was repeated three times in which
the MA was no longer detectable.
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Figure 5. Preparation of 3 mL MISPE cartridge for MA elution process.

The mobile phase for the HPLC consisted of ACN, ultra water, and AA in the following
proportions: 60:39.5:0.5, v/v/v, respectively. The C18 column (250 × 4 mm, 5 µm) was used.
The injection volume was set at 20 µL, the flow rate was set at 0.7 mL/min with DAD
detection at 225 nm wavelength, and the injection volume was set at 20 µL. The calibration
curve showed that the retention time (RT) of MA was 5.17 ± 0.09 min.

2.6. Adsorption Experiments

To monitor the amount of MA adsorbed onto the synthesized polymer, HPLC-DAD
was employed. Specifically, 2 mg of the polymer was added into 10 mL, with initial
concentrations of MA ranging from 10 to 220 mg.L−1. These mixtures were shaken at
different times (1–60 min), temperatures (293–313 K), and pH values (5–8) followed by
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centrifugation at 4000 rpm. The resulting supernatant was analyzed using HPLC-DAD to
determine the concentration of free MA. The amount of MA adsorbed onto the polymer
(Qe, mg.g−1) was calculated using the following equations:

Qe =
(C0 − Ce)V

m
(1)

Qt =
(C0 − Ct)V

m
(2)

where C0 (mg.L−1), Ce (mg.L−1), and Ct (mg.L−1) represent the initial concentration, the
equilibrium concentration, and the concentration of MA at each time, respectively. Qe
(mg.g−1) is the adsorption amount, V (L) is the volume of the solution, and m (g) represents
the weight of the polymer.

2.7. Adsorptive Selectivity

To carry out selectivity studies, the template desorbed polymer was mixed with
solutions of equal volumes. These solutions contained the template (MA) and other styrene
metabolites found in urine, such as phenylglyoxylic acid (PGA) and hippuric acid (Hip),
each at the same concentration.

The extent of binding was then determined using HPLC-DAD, and the differences
in binding between the compounds were compared. Scheme 1 illustrates the structural
similarities between the selected urine metabolites.
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Scheme 1. Chemical structure of urinary metabolites.

To conduct the experiment, 2 mg of either MIP or NIP was introduced into 10 mL
of binary mixtures containing MA/PGA and MA/Hip. PGA and Hip were selected as
competitive adsorption molecules and were formed into a binary mixture with MA at the
same concentration (200 mg/L) for adsorption under optimal conditions.

The levels of the free analyte and other urine metabolites in the supernatant were
analyzed using HPLC-DAD. The equations used to calculate the partition coefficient Kd
(mL.g−1) [31], imprinting factor (IF), and selectivity coefficient (α) were as follows:

Kd =
C0 − Ce

C0
×

Vs(mL)

(Mass o f MIP or NIP(g))
(3)

IF =
Kd(MIP)
Kd(NIP)

(4)

α =
IFT
IFM

(5)

where C0 and Ce are the initial and equilibrium concentrations of the analyte, respectively,
and Vs is the solution volume. IFT and IFM are the imprinting factors for the template
molecule MA and its metabolites (PGA and Hip).

2.8. Solid-phase Extraction Experiments

To prepare a solid-phase extraction column using a molecularly imprinted polymer
(SPEMIP), a 3 mL small column was filled with 100 mg of the 4-VPMIP, and polyethy-
lene frits were used to seal both ends of the column. SPEMIP was activated using 3 mL
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of methanol and 3 mL of water. Following this, the cartridge was loaded with 5 mL of
an aqueous solution containing MA at different initial concentrations (ranging from 20
to 100 mgL−1) and pH values (between 4 and 8). To elute the target analyte, a mixed
solvent of methanol and acetic acid (9:1, v/v) was used in a volume of 4 mL. The concentra-
tion of the eluate was determined using high-performance liquid chromatography with
diode array detection (HPLC-DAD). The extraction efficiency was calculated using the
following equation:

E% =
C0 − Ct

C0
× 100 (6)

where C0 (mg.L−1) and Ct (mg.L−1) are the concentration of MA before and after extraction,
respectively.

2.9. Adsorption Kinetics

Two commonly used models, the pseudo-first-order (Equation (7)) and pseudo-second-
order kinetic models (Equation (8)), were employed to analyze solid–liquid adsorption and
investigate the mechanism of the adsorption process of MIP for MA. The models used are
listed in Table 2.

Table 2. Equations of the kinetic models for the theoretical analysis of sorption data.

Equation * Definition Equation Number

ln(Qe − Qt) = lnQ1cal − k1 t Pseudo-first-order model (PFO) (7)
t

Qt
= 1

k2(Q2cal )
+ t

Q2cal
Pseudo-second-order model (PSO) (8)

* Qe and Qt (mg.g−1) amount of MA sorbed at equilibrium and at time t (min), respectively; Q1cal and Q2cal are the
adsorption capacity calculated according to the pseudo-first-order kinetic equation and the pseudo-second-order
kinetic equation, respectively; kl—rate constant of the PFO kinetic model (min−1); k2—rate constant of the PSO
kinetic model (g.mg−1.min−1).

Both the kinetic models discussed above have limitations in accurately describing
the diffusion mechanism of MA on SPE-4-VPMIP. To further understand the adsorption
mechanism, the intraparticle diffusion and liquid film diffusion models were investigated.
Equations (9) and (10) depict the intraparticle diffusion equation and liquid film diffusion
equation, respectively:

qt = kt
1
2 + c (9)

ln(1 − F) = −k f t (10)

where kd (g·mg−1·min1/2) is the rate constant of the intraparticle diffusion model, it can
be obtained from the slope of the line qt~t1/2; c is constant, kf is the liquid film diffusion
coefficient, min−1; F = Q/Qe is the adsorption saturation.

2.10. Adsorption Isotherm

Adsorption isotherms [32–34] play a critical role in the theoretical evaluation and
interpretation of thermodynamic parameters as they provide information about the inter-
action of molecules with adsorbents. These isotherms establish a correlation between the
concentration of molecules in the solution and the quantity of ions adsorbed on the solid
phase when both phases reach equilibrium [32–35]. The Langmuir and Freundlich isotherm
models were used to study the adsorption performance of MA on SPE4-VPMIP, and the
isothermal equations of the two models are expressed by the Equations (11) and (12).

Ce

Qe
=

1
Qmk

+
Ce

Qm
(11)

lnQe = lnk f +
lnCe

n
(12)
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where Ce is the equilibrium concentration, Qe the amount of MA adsorbed at equilibrium,
Qm is amount of MA adsorbed for a complete monolayer, k is a constant related to the
energy or net enthalpy of sorption. The Freundlich adsorption model employs Kf and n
as isotherm constants [33,34,36]. To assess the suitability of the Freundlich model, a plot
of log Qe against log Ce was created and Kf and n were derived from the plot. In our MIP
systems, both Langmuir and Freundlich isotherms were employed, and their outcomes
were compared to ascertain the appropriate isotherm for our system.

3. Results and Discussion
3.1. Characterization of Physical Properties of 4-VPMIP and NIP
3.1.1. Scanning Electron Microscopy (SEM)

The form and size of polymer particles may be determined from an SEM investigation,
making it a crucial tool in morphological research. Figure 6 shows that µm-sized irregular
particles are generated. This is due to the fact that bulk polymerization was used in the
synthesis of the polymer particles [37]. These microscopic particles provide extensive
template–MIP surface contact, which ultimately results in a high concentration of MA.

Polymers 2023, 15, x FOR PEER REVIEW 11 of 23 
 

 

 
 

Figure 6. SEM images of MA-MIP and NIP sizes at different magnifications: (a) ×12E2; (b) ×6E2; (c) 

and (d) ×10E3. 

As can be seen in Figure 7, the presence of the template molecule in the imprinting 

process is responsible for the difference in particle size that exists between the MIP and 

NIP particles. The addition of MA to the reaction medium led to an increase in the for-

mation and expansion of the particle surfaces, which allowed the MIP particles to become 

more sizeable. Moreover, MIP surfaces are rougher and have a higher porosity structure 

than NIP surfaces as a result of the elution of the MA compounds in the MIPs, which left 

a huge range of cavities. This is proof that the MA was effectively removed from MIP, 

leaving its imprint on the polymers when MA was used as the molecular template and 4-

VP was used as a functional monomer to prepare MIP particles by bulk polymerization 

[38]. In fact, MA-MIP adsorbs analytes (MA) significantly better than NIP due to the MA-

MIP particles’ pores, which led to a greater surface area than that of NIP [16]. While the 

imprinted holes could not be seen because of the MA molecule’s tiny size, differences seen 

in SEM images would suggest the existence of MA molecules during bulk polymerization, 

leading to a distinct polymeric development in terms of structure [39]. All the polymers 

that have been made seem to be hard. These morphologically unique characteristics may 

indicate that the MIP and NIP were effectively created [40]. 

Figure 6. SEM images of MA-MIP and NIP sizes at different magnifications: (a) ×1200; (b) ×600;
(c,d) ×10,000.

As can be seen in Figure 7, the presence of the template molecule in the imprinting
process is responsible for the difference in particle size that exists between the MIP and NIP
particles. The addition of MA to the reaction medium led to an increase in the formation
and expansion of the particle surfaces, which allowed the MIP particles to become more
sizeable. Moreover, MIP surfaces are rougher and have a higher porosity structure than
NIP surfaces as a result of the elution of the MA compounds in the MIPs, which left a huge
range of cavities. This is proof that the MA was effectively removed from MIP, leaving
its imprint on the polymers when MA was used as the molecular template and 4-VP was
used as a functional monomer to prepare MIP particles by bulk polymerization [38]. In fact,
MA-MIP adsorbs analytes (MA) significantly better than NIP due to the MA-MIP particles’
pores, which led to a greater surface area than that of NIP [16]. While the imprinted holes
could not be seen because of the MA molecule’s tiny size, differences seen in SEM images
would suggest the existence of MA molecules during bulk polymerization, leading to
a distinct polymeric development in terms of structure [39]. All the polymers that have
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been made seem to be hard. These morphologically unique characteristics may indicate
that the MIP and NIP were effectively created [40].
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Figure 7. SEM images of (a,c,e) NIP and (b,d,f) MA-MIP, at a magnitude of 600×, 10,000× and
50,000×, respectively.

3.1.2. FT-IR Spectroscopy

Polymeric materials can change in their molecular structure or composition when they
are mixed, heated, or exposed to light, among other things. These updates can be completed
in a matter of seconds, or they can take several hours. Figure 8 shows the IR spectra used
to find out what functional groups were in the MIP before (a) and after elution (b), as
well as in the NIP (c), and to ensure the interaction among MA, 4-VP, and EGDMA. The
presence of MA as an analyte in the matrix material of MIPs causes the IR spectra of MIPs
with MA (before wash) to be semi-similar to those of NIP, while the spectra of MIP (after
wash) showed compositions and absorption peaks that were very similar to those of NIP,
demonstrating that all MA were totally eliminated after the extraction phase [41]. For all
polymers, the polymerization was confirmed by the presence of C-O-C and C=O bounds of
EGDMA, which caused the bands at 1147 cm−1 and 1728 cm−1 to be seen. The EGDMA
characteristic peaks were observed by Can Zhou et al. at 1718 cm−1 for C=O and 1637 cm−1

for C=C stretching vibrations [42]. In contrast, the IRs of MIP (before wash), MIP (after
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wash), and NIP show stronger C=O stretching vibrations at 1728 cm−1 and weaker C=C
stretching vibrations at 1633 cm−1. This demonstrates that EGDMA has been effectively
cross-linked among the polymer monoliths. Moreover, around 2954 cm−1 to 2995 cm−1, the
aliphatic compound’s C-H stretching vibration mode may be seen. There are two peaks that
are indicative of 4-VP: a stretching vibration peak at 1633 cm−1 due to the C=N functional
group in the aromatic ring and a very weak signal due to the C=C functional group in the
vinyl at 1521 cm−1. The results demonstrate that 4-VP was successfully polymerized into
the MIPs. The presence of the template, which formed hydrogen bonds with 4-VP, probably
caused a relatively broad peak at 3629 cm−1 compared to the NIP and MIP infrared spectra
(after washing) [43]. Therefore, the results from the FT-IR spectra suggest that the MIPs
were properly synthesized.
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3.2. Effect of Initial Concentration on Adsorption Capacity

Equilibrium binding analysis was conducted to observe the binding performance of
surface-imprinted 4-VPMIP compared to that of the control NIP. The functional monomer
4-VP and template molecule MA interact through hydrogen bonding and π–π interactions.
The binding isotherm displayed a saturation curve, indicating the presence of a finite num-
ber of binding sites in the imprinted polymer. As shown in Figure 9, the adsorption capacity
of 4-VPMIP was significantly higher than that of NIP, demonstrating MIP’s unique capacity
of the 4-VPMIP for MA, which can be attributed to the complementary cavities present in
the 4-VPMIP materials. The 4-VPMIP imprinted surface exhibited a greater binding capac-
ity than the NIP. The weak adsorption of MA to the NIP was likely due to a non-specific
interaction with the polymer matrix. Figure 9 illustrates that the adsorption capacity of
the 4-VPMIP increased with the initial concentration of MA. Specifically, the adsorption
amount of 4-VPMIP went up from 18.79 mg.g−1 to 130.84 mg.g−1 as the concentration of
MA increased from 10 mg.L−1 to 200 mg.L−1. However, the adsorption amounts of the



Polymers 2023, 15, 2398 13 of 22

4-VPMIP did not show significant changes when the concentration of MA was increased
beyond 200 mg.L−1. This is because the number of imprinted pores on the surface of
the MIP remains constant, and as the concentration of MA increases, the imprinted pores
gradually become occupied and saturated. The adsorption amount of 4-VPMIP reached its
maximum when the concentration of MA was 200 mg.L−1. As a result, 200 mg.L−1 was
determined as the optimal concentration of MA in the subsequent experiments.
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Figure 9. Adsorption capacity studies for the 4-VPMIP and NIP.

3.3. Effect of pH on Adsorption Capacity

Several factors affect the strength of the hydrogen bond between mandelic acid, which
is the target molecule, and pyridine, which is anchored on the polymeric support. These
factors include the distance and orientation of the functional groups, solvent polarity, and
temperature. Mandelic acid and pyridine have hydrogen bond donors and acceptors,
respectively, in their structures. When in close proximity, they can form hydrogen bonds
between their functional groups. The interaction between pyridine and the hydroxyl groups
is primarily governed by hydrogen bonding. The effect of pH on this interaction bond can
be significant because the protonation state of these functional groups can change with
the pH.

Figure 10 demonstrates that the pH of the solution does not have a significant impact
on the duration required for the 4-VPMIP to attain adsorption equilibrium. Based on our
experimental results, when the solution pH was 6, the adsorption capacity of the 4-VPMIP
rapidly increased to 130.84 mg.g−1 within 60 min and then reached its maximum value.
Furthermore, as time progressed, the number of imprinted sites on the polymer surface
declined, leading to a reduction in the adsorption rate of the target molecule, ultimately
resulting in adsorption equilibrium being reached after 60 min. Consequently, 60 min was
chosen as the optimal adsorption time to enhance the adsorption efficacy of the 4-VPMIP.
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Figure 10. Effect of pH on adsorption capacity of MIP(4-VP).

At pH 6, the carboxylic acid group of mandelic acid (pKa~3.5) is completely deproto-
nated (-COO-), whereas the phenolic groups of MA are in their protonated state (pKa~9.8).
In contrast, the pyridine molecule is in a neutral state (pKa~5.25). Under these conditions,
the interaction between mandelic acid and pyridine was mainly driven by the formation
of hydrogen bonds between the partially negative oxygen atom of the carboxylate group
in mandelic acid and the partially positive nitrogen atom in the pyridine ring. When the
adsorption time was 60 min and the MA solution changed from pH = 6 to pH = 8, the
adsorption amount of MIP decreased from 130.84 mg.g−1 to 100.46 mg.g−1. At pH values
higher than 6, the carboxylic acid group in mandelic acid is mostly deprotonated and in
its anionic form (-COO-), while the pyridine molecule is mostly in its neutral state. Under
these conditions, the interaction between mandelic acid and pyridine is primarily driven by
the formation of weak hydrogen bonds between the partially negative oxygen atom of the
carboxylate group in mandelic acid and the partially positive nitrogen atom in the pyridine
ring. Therefore, at pH > 6, the interaction between mandelic acid and pyridine is weak.

At pH = 4, both mandelic acid and pyridine will be predominantly in their proto-
nated form. At this time, the adsorption amount of 4-VPMIP is reduced to 86.21 mg.g−1.
At this time, the adsorption capacity of 4-VPMIP is relatively strong, but when the so-
lution changes from neutral to weakly alkaline, the adsorption amount of 4-VPMIP is
reduced to 86.21 mg.g−1. The prevailing factor in the interaction between mandelic acid
and pyridine under these conditions is the creation of a salt bridge. This occurs between
the positively charged pyridinium cation (C5H5NH+) and negatively charged carboxylate
anion (C8H7O2

−) of mandelic acid. The current conditions did not promote the adsorption
of MA by 4-VPMIP. As a result, for the following experiments, a pH of 6 was determined
as the optimal condition.

3.4. Effect of Temperature on Adsorption Capacity

The graph in Figure 11 demonstrates that as the temperature increased, the Qe of
MIP(4-VP) decreased, suggesting that the adsorption process was exothermic in nature.
This performance was ascribed to the hydrogen bond interaction between the adsorbent
and MA, which weakened at higher temperatures owing to the weak hydrogen bond
force. Furthermore, variations in the external temperature achieved within 60 min did not
noticeably affect the time required for the 4-VPMIPMIP to attain adsorption equilibrium.



Polymers 2023, 15, 2398 15 of 22

With a duration of 60 min for the adsorption process, increasing the temperature from 293
to 303 K resulted in a reduction of 30.30 mg.g−1 in the adsorption capacity of the 4-VPMIP.
Nonetheless, as the temperature was further increased to 313 K, the adsorption capacity
dropped by 16.44 mg.g−1 relative to that at 303 K, indicating that the temperature has
a relatively notable impact on the adsorption capacity. This is because, as the temperature
rises, the imprinted sites on the imprinted materials are disrupted, leading to the collapse
of the imprinted pores and a decrease in the adsorption capacity. Thus, 293 K was chosen
as the optimal temperature for adsorption.
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3.5. Adsorptive Selectivity

To explore the selective adsorption capacity of 4-VPMIP for mandelic acid (MA),
a binary mixed solution containing phenylglyoxylic acid (PGA) and hippuric acid (Hip),
both of which are urine metabolites, was created to serve as a competitive adsorption
molecule. The distribution coefficient Kd (mL.g−1), imprinting factor IF, and relative selec-
tivity coefficient (α) were computed using Equations (3)–(5) outlined in the Experimental
section. The results of the cross-selectivity assessment of MIP are presented in Table 3,
indicating a successful imprinting effect on the polymer and its selectivity. The greater
selectivity for MA can be justified by the following findings: Initially, the distribution
coefficients of MA in the 4-VPMIP were higher compared to the interferents, with values of
654.18 vs. 219.25 for PGA and 654.18 vs. 154.25 for Hip. Second, the imprinting factor (IF)
values for MA were higher in MIP than those for the interferents, which reveals that MIP
possesses a higher degree of selectivity and affinity for the target molecule MA. Third, the
relative selectivity coefficient α values for the binary mixtures of MA/PGA and MA/Hip
were 2.91 and 4.21, respectively; both were greater than 1, indicating that the 4-VPMIP
exhibits an excellent affinity for MA adsorption.
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Table 3. Selectivity parameters of 4-VPMIP (distribution coefficient (Kd), imprinting factor (IF), and
relative selectivity coefficient (α)).

Target and
Metabolites Solution Polymer Kd (mL/g) IF

αT/M

αMA/PGA αMA/Hip

MA
MIP 654.18

2.31

2.91 4.21

NIP 283.60

PGA
MIP 219.25

0.79NIP 276.75

Hip MIP 154.25
0.54NIP 281.75

3.6. Adsorption Kinetics and Isotherms
3.6.1. Adsorption Kinetics

Kinetic equations were utilized to fit the experimental data, and the corresponding
fitting graphs and parameters are presented in Table 4 and Figure 12, respectively. The
comparison between Figure 12a,b reveals that the pseudo-second-order kinetic model
provides a more suitable description of the adsorption process than the pseudo-first-order
kinetic model. The correlation coefficient (R2

2) of the pseudo-second-order kinetic model
was 0.9980, which was higher than that of the pseudo-first-order kinetic model (R2

1). These
results suggest that the binding of MA to 4-VPMIP is primarily controlled by chemisorption
rather than by the material transport step. Figure 13 displays a linear representation of the
intraparticle diffusion model for MA adsorption onto the 4-VPMIP.

Table 4. Parameters of pseudo-first-order and pseudo-second-order models.

Qexp (mg.g−1)
Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model

Q1,cal R2
1 k1 (min−1) Q2,cal R2

2 k2 (g.mg−1.min−1)

130.84 234.042 0.7754 0.134 142.857 0.998 1.357.10–3
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Figure 12. Fitting curves of pseudo-first-order (a) and pseudo-second-order models (b).

Table 5 presents the coefficients obtained from the intraparticle and liquid film dif-
fusion equations. The graphical representation in Figure 13 shows that the intraparticle
diffusion model of the 4-VPMIP does not originate from the origin, suggesting that the
adsorption process is not a single-step mechanism. The initial rapid adsorption stage
occurred within the first 9 min, followed by a slow adsorption stage between 20 and 40 min,
which was controlled by both intraparticle diffusion and liquid film diffusion modes. The
third stage of adsorption, the equilibrium stage, occurred between 50 and 70 min. This is
evident from the gradual reduction in kd1, kd2, and kd3 in Table 5. Furthermore, it can
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be observed from the gradual increases in c1, c2, and c3 (Figure 13) that the impact of the
liquid film diffusion model becomes progressively more significant with time.
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Figure 13. Fitting curves of intraparticle diffusion (a) and liquid film diffusion models (b).

Table 5. Parameters of intraparticle diffusion and liquid film diffusion models for MA adsorption on
the 4-VPMIP.

Intraparticle Diffusion Model Liquid Film Diffusion Model

Kd1 Kd2 Kd3 c1 c2 c3 kf Intercept

27.353 9.255 2.296 2.149 67.899 112.8 0.086 0.138

3.6.2. Adsorption Isotherm

Isothermal adsorption experiments were conducted to investigate the adsorption
capacities of 4-VPMIP and NIP. As shown in Figure 14 and Table 6, it is evident that the
Langmuir model provides a better fit than the Freundlich model. The linear correlation
coefficients obtained from the Langmuir isotherm equation were 0.9983 and 0.9943 for
the adsorption of MA on the 4-VPMIP and NIP, respectively, while those from the Fre-
undlich isotherm equation were relatively small. Hence, the adsorption behavior of MA on
4-VPMIP and NIP can be effectively described by the Langmuir isotherm model, which as-
sumes that the adsorption process occurs through a limited number of adsorption sites with
identical properties. Furthermore, the values of 1/n obtained from the Freundlich isotherm
model for the adsorption of MA on 4-VPMIP and NIP were 0.5627 and 0.9926, respectively,
indicating that the adsorption process is a typical single-molecule adsorption process.
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Figure 14. Linear fit plot of Langmuir (a) and Freundlich (b) isotherm models.
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Table 6. The parameters of the Langmuir and the Freundlich isotherm models for 4-VPMIP and NIP.

Polymer
Langmuir Parameters Freundlich Parameters

Qm (mg.g−1) k (L.mg−1) R2 1/n kf [(mg.g−1)1/n] R2

MIP 163.93 0.0821 0.9983 0.5627 8.1327 0.9631

NIP 136.98 0.0043 0.9943 0.9926 0.8814 0.9926

3.7. Reusability of SPE-4-VPMIP

Ten complete cycles were used to evaluate the reusability of the 4-VPMIP cartridges.
Between cycles, the MIP cartridge was reconditioned with methanol/acetic acid (9:1, v/v)
until MA was undetectable in the filtrate. Figure 15 shows the adsorption efficiency of SPE4-
VPMIP over 10 consecutive adsorption–desorption cycles with an initial MA concentration
of 100 ppm. This test was critical for demonstrating the possible reusability of SPE4-VPMIP.
The results showed that SPE4-VPMIP displayed a constant efficiency over six adsorption–
desorption cycles, with the removal efficiency maintaining 81% of the initial efficiency after
six cycles (Figure 15). The efficiency decreased in cycle 9, reaching 60%. This decrease in
uptake may be due to the progressive saturation of 4-VPMIP active sites, preventing more
template uptake.
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Figure 15. SPEMIP adsorption efficiency for MA after 10 regeneration cycles.

3.8. Application of the Proposed SPE4-VPMIP to the Extraction of MA from Human Urine
with HPLC-DAD

To evaluate the applicability of the developed SPE4-VPMIP for the extraction of
MA from urine samples provided by one of our research team’s researchers, the SPE4-
VPMIP-HPLC-DAD procedure was employed for detecting MA in spiked urine samples.
Urine samples were spiked with MA at 50, 100, and 150 mg.L−1. Table 7 shows the results
obtained for each sample after extraction by SPE4-VPMIP. The urine samples were analyzed
in triplicate, and the results are presented in Table 7. The recovery of MA concentrations in
the spiked urine samples was within 96–98% with %RSD < 5.2.
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Table 7. Efficiency of SPEMIPS urine samples spiked with 50, 100, and 150 mg/L of MA.

Spiked Urine (mg.L−1) Recovery (%) RSD (%)

50 96 4.8
100 98 5.1
150 98 4.5

Because of the specificity of the extraction provided by 4-VPMIP, very clean chro-
matograms were obtained, thus allowing for a lower detection limit. Figure 16 shows
a chromatogram of a urine sample spiked with MA at 50 µg/mL (a), a standard mixture of
urinary metabolites (b), and desorption of MA from a spiked urine sample after MIMEPS
extraction (c). No interfering peaks were detected at the retention time of MA when the
standards and quality control samples were analyzed. Moreover, in the presence of interfer-
ents (PGA and Hip), as explained in the study of the imprinting effect and selectivity of the
4-VPMIP section, there was no overlap in the chromatogram (Figure 16c), indicating that
MIMEPS had good selectivity and could eliminate interfering compounds while enriching
MA to a sufficient level. These results also imply that MA in human urine is quantifiable.
The ability of our polymer to be selectively extracted in only one step allows for increased
sensitivity. Additionally, initial testing suggests that these polymers could be used for the
exclusive extraction of MA in other biological fluids.
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4. Conclusions

In our study, for the first time, a new sample preparation technique using the combina-
tion of MIP and SPE was introduced for the analysis of MA in human urine. In this method,
bulk polymerization protocol and a noncovalent approach, which are the most widely
used, were applied in the synthesis of MIPs under the optimum mole ratio of 1:4:20 using
MA as templates with 4-VP functional monomers and EGDMA cross-linking agent. The
synthesized MIP was characterized by two distinctive techniques (FTIR spectra and SEM)
showing morphological and physicochemical characteristics suitable to be used as sorbent
in SPE, especially the presence of permanently porous microparticles that can be applied as
sorbents for effective removal and preconcentration of MA from a complex sample. The
adsorption kinetic study showed that the adsorption process of 4-VPMIP was well fitted
by the pseudo-second-order model. The isotherm was thermodynamically feasible and
could occur spontaneously, and the equilibrium adsorption data were well fitted by the
Freundlich model. The selective recognition and enrichment experiment indicated that
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4-VPMIP could be used to enrich MA from the urine sample. The findings show that MIPs
were synthesized successfully, and the MA was removed completely. The method we used
is simple, inexpensive, and both user-friendly and environmentally friendly. It could be
used for the analysis of MA as a biomarker of exposure to styrene in a complex matrix
such as urine.
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