The Potential Applications of Reinforced Bioplastics in Various Industries: A Review
Abstract
:1. Introduction
2. Bioplastics
2.1. Reinforced Bioplastics
2.2. Reinforcing Materials
2.2.1. Natural Resources and Biomass Materials
2.2.2. Synthetic Materials
2.3. Comparison between Bioplastics and Conventional Plastics
Physical and Mechanical Properties
3. Applications of Bioplastics and Reinforced Bioplastics in Various Industries
3.1. Healthcare Industry
3.2. Electrical and Electronic Industry
3.3. Architecture and Construction Industry
3.4. Agricultural Industry
3.5. Packaging Industry
4. Advantages and Limitations of Reinforced Bioplastics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Applications/Sectors—European Bioplastics, e.V. Available online: https://www.european-bioplastics.org/ (accessed on 27 January 2023).
- Okunola, A.A.; Kehinde, I.O.; Oluwaseun, A.; Olufiropo, E.A. Public and Environmental Health Effects of Plastic Wastes Disposal: A Review. J. Toxicol. Risk Assess. 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Li, S.; Zhang, X.; Wang, T.; Wang, Q. Fully Closed-Loop Recyclable Thermosetting Shape Memory Polyimide. ACS Sustain. Chem. Eng. 2020, 8, 18869–18878. [Google Scholar] [CrossRef]
- Vieyra, H.; Molina-Romero, J.M.; Calderon-Najera, J.D.; Santana-Diaz, A. Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review. Polymers 2022, 14, 3412. [Google Scholar] [CrossRef] [PubMed]
- Faraca, G.; Astrup, T. Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Manag. 2019, 95, 388–398. [Google Scholar] [CrossRef]
- Tang, X.; Chen, E.Y.X. Toward Infinitely Recyclable Plastics Derived from Renewable Cyclic Esters. Chem 2019, 5, 284–312. [Google Scholar] [CrossRef]
- Rudin, A.; Choi, P. Biopolymers. In The Elements of Polymer Science & Engineering; Academic Press: London, UK, 2013; pp. 521–535. [Google Scholar]
- Harnkarnsujarit, N.; Wongphan, P.; Chatkitanan, T.; Laorenza, Y.; Srisa, A. Bioplastic for Sustainable Food Packaging. In Sustainable Food Processing and Engineering Challenges; Elsevier: Amsterdam, The Netherlands, 2021; pp. 203–277. [Google Scholar]
- Narancic, T.; Cerrone, F.; Beagan, N.; O’connor, K.E. Review Recent Advances in Bioplastics: Application and Biodegradation. Polymers 2020, 12, 920. [Google Scholar] [CrossRef]
- Europe, P. Bioplastic Market Development Update 2020. In Proceedings of the European Bioplastics Conference, Berlin Online, 30 November–3 December 2020; pp. 2019–2020. [Google Scholar]
- Siracusa, V.; Blanco, I. Bio-polyethylene (Bio-PE), Bio-polypropylene (Bio-PP) and Bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef]
- Rosenboom, J.G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Kalia, S.; Kaith, B.S.; Vashistha, S. Cellulose Nanofibers Reinforced Bioplastics and Their Applications. In Handbook of Bioplastics and Biocomposites Engineering Applications; Pilla, S., Ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 452–470. [Google Scholar]
- Hagen, R. Polylactic Acid. Polym. Sci. A Compr. Ref. 2012, 10, 231–236. [Google Scholar] [CrossRef]
- García Ibarra, V.; Sendón, R.; Rodríguez-Bernaldo De Quirós, A. Antimicrobial Food Packaging Based on Biodegradable Materials. In Antimicrobial Food Packaging; Academic Press: London, UK, 2016; pp. 363–384. [Google Scholar]
- Davachi, S.M.; Kaffashi, B. Polylactic Acid in Medicine. Polym. Plast. Technol. Eng. 2015, 54, 944–967. [Google Scholar] [CrossRef]
- Li, G.; Zhao, M.; Xu, F.; Yang, B.; Li, X.; Meng, X.; Teng, L. Synthesis and Biological Application of Polylactic acid. Molecules 2020, 25, 5023. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.X.; Kim, H.S.; Kim, E.S.; Yoon, J.S. Synthesis of high-molecular-weight poly(l-lactic acid) through the direct condensation polymerization of l-lactic acid in bulk state. Eur. Polym. J. 2006, 42, 468–472. [Google Scholar] [CrossRef]
- Ren, J. Synthesis and Manufacture of PLA. In Biodegradable Poly (Lactic Acid): Synthesis, Modification, Processing and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 15–37. [Google Scholar]
- Rudnik, E. Compostable Polymer Properties and Packaging Applications. In Plastic Films in Food Packaging: Materials, Technology and Applications; William Andrew Publishing: Norwich, NY, USA, 2013; pp. 217–248. [Google Scholar]
- Laura, A.; Seggiani, M.; Lazzeri, A.; Vito, G.; Patrizia, C. A Brief Review of Poly (Butylene Succinate) (PBS) and Its Main Copolymers: Synthesis, Blends, Composites, Biodegradability, and Applications. Polymers 2022, 14, 844. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, J. Biodegradable and Biobased Polymers. In Applied Plastics Engineering Handbook, 2nd ed.; Kutz, M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 127–143. [Google Scholar]
- Yang, S.-t.; Liu, X.; Zhang, Y. Metabolic Engineering—Applications, Methods, and Challenges. In Bioprocessing for Value-Added Products from Renewable Resources: New Technologies and Applications; Elsevier B.V.: Amsterdam, The Netherlands, 2007; pp. 73–118. [Google Scholar]
- Baidya, P.K.; Sarkar, U.; Villa, R.; Sadhukhan, S. Liquid-phase hydrogenation of bio-refined succinic acid to 1,4-butanediol using bimetallic catalysts. BMC Chem. Eng. 2019, 1, 10. [Google Scholar] [CrossRef]
- Othman, N.A.; Adam, F.; Mat Yasin, N.H. Reinforced bioplastic film at different microcrystalline cellulose concentration. Mater. Today Proc. 2020, 41, 77–82. [Google Scholar] [CrossRef]
- Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers 2021, 13, 2484. [Google Scholar] [CrossRef]
- Chong, T.Y.; Law, M.C.; Chan, Y.S. The Potentials of Corn Waste Lignocellulosic Fibre as an Improved Reinforced Bioplastic Composites. J. Polym. Environ. 2021, 29, 363–381. [Google Scholar] [CrossRef]
- Chotiprayon, P.; Chaisawad, B.; Yoksan, R. Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. Int. J. Biol. Macromol. 2020, 156, 960–968. [Google Scholar] [CrossRef]
- Endres, H.J. Bioplastics. In Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2019; Volume 166, pp. 427–468. [Google Scholar]
- Ouali, A.A.; Rinberg, R.; Kroll, L.; Nendel, W.; Todorov, A.; Cebulla, H. Natural Fibre Reinforced Bioplastics—Innovative Semi-Finished Products for Series Production. Key Eng. Mater. 2017, 742, 255–262. [Google Scholar] [CrossRef]
- Jethoo, A.S. Effect of fiber reinforcement on tensile strength and flexibility of corn starch-based bioplastic. IOP Conf. Ser. Mater. Sci. Eng. 2019, 652, 012035. [Google Scholar] [CrossRef]
- Hamid, L.; Elhady, S.; Abdelkareem, A.; Fahim, I. Fabricating Starch-Based Bioplastic Reinforced with Bagasse for Food Packaging. Circ. Econ. Sustain. 2022, 2, 1065–1076. [Google Scholar] [CrossRef]
- Jangong, O.S.; Gareso, P.L.; Mutmainna, I.; Tahir, D. Fabrication and characterization starch/chitosan reinforced polypropylene as biodegradable. J. Phys. Conf. Ser. 2019, 1341, 082022. [Google Scholar] [CrossRef]
- Väkiparta, M.; Yli-urpo, A.; Vallittu, P.K. Flexural properties of glass fiber reinforced composite with multiphase biopolymer matrix. J. Mater. Sci. Mater. Med. 2004, 15, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Mathijsen, D. Cellulose as reinforcing material for plastics: An alternative between talcum and glass fiber. Reinf. Plast. 2016, 60, 151–153. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Wypych, F.; Woehl, M.A.; Ramos, L.P.; Marangoni, R. Nanocomposites Based on Starch and Fibers of Natural Origin. In Handbook of Bioplastics and Biocomposites Engineering Applications; Pilla, S., Ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 471–509. [Google Scholar]
- Dufresne, A.; Castaño, J. Polysaccharide nanomaterial reinforced starch nanocomposites: A review. Starch-Stärke 2017, 69, 1500307. [Google Scholar] [CrossRef]
- Gao, F. Clay/polymer composites: The story. Mater. Today 2004, 7, 50–55. [Google Scholar] [CrossRef]
- Harunsyah; Sariadi; Raudah. The effect of clay nanoparticles as reinforcement on mechanical properties of bioplastic base on cassava starch. J. Phys. Conf. Ser. 2018, 953, 012021. [Google Scholar] [CrossRef]
- Tan, S.X.; Ong, H.C.; Andriyana, A.; Lim, S.; Pang, Y.L.; Kusumo, F.; Ngoh, G.C. Characterization and Parametric Study on Mechanical Properties Enhancement in Biodegradable Chitosan-Reinforced Starch-Based Bioplastic Film. Polymers 2022, 14, 278. [Google Scholar] [CrossRef]
- Yang, J.; Chee Ching, Y.; Hock Chuah, C. Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers 2014, 11, 751. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; Satheeshkumar, S.; Naveen, J. Glass fiber-reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 1258–1275. [Google Scholar] [CrossRef]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of Wasted Bioplastics in Natural and Industrial Environment: A Review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Hoque, M.B.; Hossain, M.S.; Nahid, A.M.; Bari, S.; Khan, R.A. Fabrication and Characterization of Pineapple Fiber-Reinforced Polypropylene Based Composites. Nano Hybrids Compos. 2018, 21, 31–42. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. In Plastics and Environmental Sustainability; Wiley: Hoboken, NJ, USA, 2020; Volume 8, pp. 145–184. [Google Scholar]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Dilkes-Hoffman, L.S.; Lant, P.A.; Laycock, B.; Pratt, S. The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Mar. Pollut. Bull. 2019, 142, 15–24. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Lavoine, N.; Lucia, L.A.; Dou, C. Formulating bioplastic composites for biodegradability, recycling, and performance: A review. BioResources 2020, 16, 2021–2083. [Google Scholar] [CrossRef]
- Barillari, F.; Chini, F. Biopolymers—Sustainability for the Automotive Value-added Chain. ATZ Worldw. 2020, 122, 36–39. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications —A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Gabriel, A.A.; Solikhah, A.F.; Rahmawati, A.Y. Tensile Strength and Elongation Testing for Starch-Based Bioplastics using Melt Intercalation Method: A Review. J. Phys. Conf. Ser. 2021, 1858, 012028. [Google Scholar] [CrossRef]
- Balani, K.; Verma, V.; Agarwal, A.; Narayan, R. Physical, Thermal, and Mechanical Properties of Polymers. In Biosurfaces; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 329–344. [Google Scholar]
- Attallah, O.A.; Mojicevic, M.; Garcia, E.L.; Azeem, M.; Chen, Y.; Asmawi, S.; Fournet, M.B. Macro and Micro Routes to High Performance Bioplastics: Properties. Polymers 2021, 13, 2155. [Google Scholar] [CrossRef]
- Gamero, S.; Jiménez-Rosado, M.; Romero, A.; Bengoechea, C.; Guerrero, A. Reinforcement of Soy Protein-Based Bioplastics Through Addition of Lignocellulose and Injection Molding Processing Conditions. J. Polym. Environ. 2019, 27, 1285–1293. [Google Scholar] [CrossRef]
- Kumar, S.; Shamprasad, M.S.; Varadarajan, Y.S. Mechanical properties of natural fiber reinforced polylactide composites: A review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1065, 012001. [Google Scholar] [CrossRef]
- Ochi, S. Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech. Mater. 2008, 40, 446–452. [Google Scholar] [CrossRef]
- Ayu, R.S.; Khalina, A.; Harmaen, A.S.; Zaman, K.; Mohd Nurrazi, N.; Isma, T.; Lee, C.H. Effect of Empty Fruit Brunch reinforcement in PolyButylene-Succinate/Modified Tapioca Starch blend for Agricultural Mulch Films. Sci. Rep. 2020, 10, 1166. [Google Scholar] [CrossRef]
- Risyon, N.P.; Othman, S.H.; Basha, R.K.; Talib, R.A. Effect of halloysite nanoclay concentration and addition of glycerol on mechanical properties of bionanocomposite films. Polym. Polym. Compos. 2016, 24, 795–802. [Google Scholar] [CrossRef]
- Tarique, J.; Sapuan, S.M.; Khalina, A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci. Rep. 2021, 11, 13900. [Google Scholar] [CrossRef]
- Hazrol, M.D.; Sapuan, S.M.; Zainudin, E.S.; Zuhri, M.Y.M. Corn Starch (Zea mays) Biopolymer Plastic Reaction in Combination of Sorbitol and Glycerol. Polymers 2021, 13, 242. [Google Scholar] [CrossRef] [PubMed]
- Harmaen, A.S.; Khalina, A.; Faizal, A.R.; Jawaid, M. Effect of Triacetin on Tensile Properties of Oil Palm Empty Fruit Bunch Fiber-Reinforced Polylactic Acid Composites. Polym. Plast. Technol. Eng. 2013, 52, 400–406. [Google Scholar] [CrossRef]
- Rasheed, M.; Jawaid, M.; Parveez, B.; Hussain Bhat, A.; Alamery, S. Morphology, Structural, Thermal, and Tensile Properties of Bamboo Microcrystalline Cellulose/Poly(Lactic Acid)/Poly(Butylene Succinate) Composites. Polymers 2021, 13, 465. [Google Scholar] [CrossRef] [PubMed]
- Azmin, S.N.H.M.; Hayat, N.A.b.M.; Nor, M.S.M. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J. Bioresour. Bioprod. 2020, 5, 248–255. [Google Scholar] [CrossRef]
- Pérez Davila, S.; González Rodríguez, L.; Chiussi, S.; Serra, J.; González, P. How to sterilize polylactic acid based medical devices? Polymers 2021, 13, 2115. [Google Scholar] [CrossRef]
- Sastri, V.R. Material Requirements for Plastics Used in Medical Devices. In Plastics in Medical Devices; Elsevier: Amsterdam, The Netherlands, 2010; pp. 33–54. [Google Scholar]
- Bano, K.; Pandey, R.; Jamal-e-Fatima, R. New Advancements of Bioplastics in Medical Applications. Int. J. Pharm. Sci. Res. 2018, 9, 402–416. [Google Scholar] [CrossRef]
- Saini, P.; Arora, M.; Kumar, M. Poly(lactic acid) blends in biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lei, L.; Hou, J.W.; Tang, M.F.; Guo, S.R.; Wang, Z.M.; Chen, K.M. Evaluation of two polymeric blends (EVA/PLA and EVA/PEG) as coating film materials for paclitaxel-eluting stent application. J. Mater. Sci. Mater. Med. 2011, 22, 327–337. [Google Scholar] [CrossRef]
- Pellicer, E.; Nikolic, D.; Sort, J.; Baró, M.D.; Zivic, F.; Grujovic, N.; Grujic, R.; Pelemis, S. Advances in Applications of Industrial Biomaterials; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 1–214. [Google Scholar]
- Ibrahim, N.I.; Shahar, F.S.; Sultan, M.T.H.; Shah, A.U.M.; Safri, S.N.A.; Yazik, M.H.M. Overview of Bioplastic Introduction and Its Applications in Product Packaging. Coatings 2021, 11, 1423. [Google Scholar] [CrossRef]
- Kai, D.; Zhang, K.; Liow, S.S.; Loh, X.J. New Dual Functional PHB-Grafted Lignin Copolymer: Synthesis, Mechanical Properties, and Biocompatibility Studies. ACS Appl. Bio Mater. 2019, 2, 127–134. [Google Scholar] [CrossRef]
- Connolly, M.; Zhang, Y.; Brown, D.M.; Ortuño, N.; Jordá-Beneyto, M.; Stone, V.; Fernandes, T.F.; Johnston, H.J. Novel polylactic acid (PLA)-organoclay nanocomposite bio-packaging for the cosmetic industry; migration studies and in vitro assessment of the dermal toxicity of migration extracts. Polym. Degrad. Stab. 2019, 168, 108938. [Google Scholar] [CrossRef]
- Rayung, M.; Min Aung, M.; Christirani Azhar, S.; Chuah Abdullah, L.; Sukor Su, M.; Ahmad, A.; Nurul Ain Md Jamil, S. Bio-Based Polymer Electrolytes for Electrochemical Devices: Insight into the Ionic Conductivity Performance. Materials 2020, 13, 838. [Google Scholar] [CrossRef]
- Arrieta, A.A.; Gañán, P.F.; Márquez, S.E.; Zuluaga, R. Electrically conductive bioplastics from cassava starch. J. Braz. Chem. Soc. 2011, 22, 1170–1176. [Google Scholar] [CrossRef]
- Sidek, I.S.; Draman, S.F.S.; Abdullah, S.R.S.; Anuar, N. Current Development on Bioplastics and Its Future Prospects: An Introductory Review. INWASCON Technol. Mag. 2019, 1, 3–8. [Google Scholar] [CrossRef]
- Atiwesh, G.; Mikhael, A.; Parrish, C.C.; Banoub, J.; Le, T.A.T. Environmental impact of bioplastic use: A review. Heliyon 2021, 7, e07918. [Google Scholar] [CrossRef]
- Va Bozó, E.; Ervasti, H.; Halonen, N.; Hossein, S.; Shokouh, H.; Tolvanen, J.; Pitkänen, O.; Järvinen, T.; Pálvölgyi, P.S.; Kos Szamosvölgyi, A.; et al. Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics. ACS Appl. Mater. Interfaces 2021, 13, 49301–49312. [Google Scholar] [CrossRef]
- Imran, K.A.; Lou, J.; Shivakumar, K.N. Enhancement of electrical and thermal conductivity of polypropylene by graphene nanoplatelets. J. Appl. Polym. Sci. 2018, 135, 45833. [Google Scholar] [CrossRef]
- Bhat, A.H.; Khan, I.; Amil Usmani, M.; Rather, J.A. Bioplastics and Bionanocomposites Based on Nanoclays and Other Nanofillers. In Nanoclay Reinforced Polymer Composites; Springer: Berlin/Heidelberg, Germany, 2016; pp. 115–139. [Google Scholar]
- Luo, X.; Yu, Z.; Cai, Y.; Wu, Q.; Zeng, J. Facile Fabrication of Environmentally-Friendly Hydroxyl-Functionalized Multiwalled Carbon Nanotubes/Soy Oil-Based Polyurethane Nanocomposite Bioplastics with Enhanced Mechanical, Thermal, and Electrical Conductivity Properties. Polymers 2019, 11, 763. [Google Scholar] [CrossRef] [PubMed]
- Bustillos, J.; Montero, D.; Nautiyal, P.; Loganathan, A.; Boesl, B.; Agarwal, A. Integration of Graphene in Poly(Lactic) Acid by 3D Printing to Develop Creep and Wear-Resistant Hierachical Nanocomposites. Polym. Compos. 2017, 16, 3877–3888. [Google Scholar] [CrossRef]
- Cataldi, P.; Athanassiou, A.; Bayer, I. Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications. Appl. Sci. 2018, 8, 1438. [Google Scholar] [CrossRef]
- Solafide, W.; Murakami, R.-I. Effect of moisture absorption and fiber orientation on electrical conductivity and electromagnetic interference shielding of carbon fiber reinforced bioplastic composites. Int. J. Mod. Phys. B 2019, 33, 1950082. [Google Scholar] [CrossRef]
- Gökçe, E. Rethinking sustainability: A research on starch based bioplastic. J. Sustain. Constr. Mater. Technol. 2018, 3, 249–260. [Google Scholar] [CrossRef]
- Vdovin, E.; Safin, R.; Galyavetdinov, N.; Salimgaraeva, R.; Ilalova, G.; Saerova, K. Use of Filled Bioplastics in Construction. E3S Web Conf. 2021, 274, 04013. [Google Scholar] [CrossRef]
- Ivanov, V.; Stabnikov, V. Construction Biotechnological Plastics. In Construction Biotechnology; Springer: Singapore, 2017; pp. 51–75. [Google Scholar]
- Friedrich, D. How building experts evaluate the sustainability and performance of novel bioplastic-based textile façades: An analysis of decision making. Build. Environ. 2022, 207, 108485. [Google Scholar] [CrossRef]
- Monticelli, C.; Zanelli, A. Life Cycle Design and Efficiency Principles for Membrane Architecture: Towards a New Set of Eco-design Strategies. Procedia Eng. 2016, 155, 416–425. [Google Scholar] [CrossRef]
- Verma, D.; Dogra, V.; Chaudhary, A.K.; Mordia, R. Advanced biopolymer-based composites: Construction and structural applications. In Sustainable Biopolymer Composites: Biocompatibility, Self-Healing, Modeling, Repair and Recyclability: A Volume in Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2021; pp. 113–128. [Google Scholar]
- Oberti, I.; Paciello, A. Bioplastic as a Substitute for Plastic in Construction Industry. Encyclopedia 2022, 2, 1408–1420. [Google Scholar] [CrossRef]
- Stabnikov, V.; Ivanov, V.; Chu, J. Construction Biotechnology: A new area of biotechnological research and applications. World J. Microbiol. Biotechnol. 2015, 31, 1303–1314. [Google Scholar] [CrossRef]
- Léon Jansen, M.H.; Hiemstra, F. Report on Use of Plastics in Agriculture; Rabobank NL96RABO0146172477; Schuttelaar & Partners: Den Haag, The Netherlands, 2019; pp. 1–19. [Google Scholar]
- FAO. Theory into Practice. In Assessment of Agricultural Plastics and Their Sustainability—A Call for Action; FAO: Rome, Italy, 2021; Volume 9. [Google Scholar] [CrossRef]
- Harmaen, A.S.; Khalina, A.; Ali, H.M.; Azowa, I.N. Thermal, Morphological, and Biodegradability Properties of Bioplastic Fertilizer Composites Made of Oil Palm Biomass, Fertilizer, and Poly(hydroxybutyrate-co-valerate). Int. J. Polym. Sci. 2016, 2016, 3230109. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Pascale, R.; Martelli, G.; Bondoni, M.; Bianco, G. Natural polymeric materials: A solution to plastic pollution from the agro-food sector. Polymers 2021, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Sen, B.; Das, S.; Abbas, S.J.; Pradhan, S.N.; Sen, K.; Ali, S.I. Incarnation of bioplastics: Recuperation of plastic pollution. Int. J. Environ. Anal. Chem. 2021, 1–24. [Google Scholar] [CrossRef]
- Garbeva, P.; White, R.A.; He, J.; Debruyn, J.M.; Bandopadhyay, S.; Martin-Closas, L.; Pelacho, A.M. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions. Front. Microbiol. 2018, 9, 819. [Google Scholar] [CrossRef]
- George, N.; Debroy, A.; Bhat, S.; Singh, S.; Bindal, S. Biowaste to bioplastics: An ecofriendly approach for a sustainable future. J. Appl. Biotechnol. Rep. 2021, 8, 221–233. [Google Scholar] [CrossRef]
- Iriany, A.; Chanan, M.; Djoyowasito, G. Organic mulch sheet formulation as an effort to help plants adapt to climate change. Int. J. Recycl. Org. Waste Agric. 2018, 7, 41–47. [Google Scholar] [CrossRef]
- Cinelli, P.; Seggiani, M.; Mallegni, N.; Gigante, V.; Lazzeri, A. Processability and Degradability of PHA-Based Composites in Terrestrial Environments. Int. J. Mol. Sci. 2019, 20, 284. [Google Scholar] [CrossRef] [PubMed]
- María Díez-Pascual, A. Synthesis and Applications of Biopolymer Composites. Int. J. Mol. Sci. 2019, 20, 2321. [Google Scholar] [CrossRef]
- Iriani, E.S.; Permana, A.W.; Yuliani, S.; Kailaku, S.I.; Sulaiman, A.A. The effect of agricultural waste nanocellulose on the properties of bioplastic for fresh fruit packaging. IOP Conf. Ser. Earth Environ. Sci. 2019, 309, 012035. [Google Scholar] [CrossRef]
- Lorite, G.S.; Rocha, J.M.; Miilumäki, N.; Saavalainen, P.; Selkälä, T.; Morales-Cid, G.; Gonçalves, M.P.; Pongrácz, E.; Rocha, C.M.R.; Toth, G. Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging. LWT-Food Sci. Technol. 2017, 75, 305–315. [Google Scholar] [CrossRef]
- Jariyasakoolroj, P.; Leelaphiwat, P.; Harnkarnsujarit, N. Advances in research and development of bioplastic for food packaging. J. Sci. Food Agric. 2020, 100, 5032–5045. [Google Scholar] [CrossRef] [PubMed]
- Kakadellis, S.; Harris, Z.M. Don’t scrap the waste: The need for broader system boundaries in bioplastic food packaging life-cycle assessment—A critical review. J. Clean. Prod. 2020, 274, 122831. [Google Scholar] [CrossRef]
- Hong, L.G.; Yuhana, N.Y.; Zawawi, E.Z.E. Review of bioplastics as food packaging materials. AIMS Mater. Sci. 2021, 8, 166–184. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Hilliou, L.; Melendez-Rodriguez, B.; Figueroa-Lopez, K.J.; Madalena, D.; Cabedo, L.; Covas, J.A.; Vicente, A.A.; Lagaron, J.M. Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packag. Shelf Life 2018, 17, 39–49. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Das, A.; Mahanwar, P.A.; Gadekar, P.T. Starch Based Bio-Plastics: The Future of Sustainable Packaging. Open J. Polym. Chem. 2018, 8, 21–33. [Google Scholar] [CrossRef]
- Boudreau, R.A. Packaging for optoelectronic interconnections. JOM 1994, 46, 41–45. [Google Scholar] [CrossRef]
- Kuciel, S.; Mazur, K.; Jakubowska, P. Novel Biorenewable Composites Based on Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with Natural Fillers. J. Polym. Environ. 2019, 27, 803–815. [Google Scholar] [CrossRef]
- Mtibe, A.; Motloung, M.P.; Bandyopadhyay, J.; Ray, S.S. Synthetic Biopolymers and Their Composites: Advantages and Limitations—An Overview. Macromol. Rapid Commun. 2021, 42, 2100130. [Google Scholar] [CrossRef]
- Boey, J.Y.; Lee, C.K.; Tay, G.S. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers 2022, 14, 3737. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, A. Mechanical properties of lignocellulosic fiber composites. In Lignocellulosic Fibre and Biomass-Based Composite Materials: Processing, Properties and Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 193–223. [Google Scholar]
Synthesis Process | ||
---|---|---|
Process | Product | |
Bio-PE | Anaerobic fermentation of glucose | Bioethanol |
Distillation of bioethanol | Azeotropic mixture of hydrous ethanol and vinasse | |
Dehydration at high temperature with catalyst | Bio-ethylene | |
Polymerization of bio-ethylene | Bio-PE | |
Bio-PP | Fermentation of glucose | Iso-butanol |
Dehydration of iso-butanol | Iso-butylene | |
Intermediate steps | Bio-propylene | |
Polymerization of bio-propylene | Bio-PP | |
PBS | Bacterial fermentation of glucose | Succinic acid |
Hydrogenation of succinic acid | 1-4-butanediol | |
Esterification between diacid (succinic acid) and diol (1–4, butanediol) | Butylene succinate | |
Polycondensation at high temperature | PBS | |
PLA | ROP method | |
Fermentation of glucose or sucrose | Lactic acid | |
Removal of condensed water, mesolactic acid, and low MW polymer | ||
Recrystallization | High MW pure lactide | |
Addition of coordination/insertion, cation, and anion (mechanisms initiators) to induce polymerization | Polylactic acid |
Properties | Conventional Plastics | Bioplastics | Reinforced Bioplastics | References |
---|---|---|---|---|
Biodegradability | Non-biodegradable | Biodegradable and non-biodegradable (depends on the material) | Biodegradable and non-biodegradable (depends on the material) | [12,14,37,46,50] |
Sustainability | No (Fossil-fuel based) | Yes (Renewable resources/ biomass) | Yes (Depends on the materials) | [33,34,51,52] |
Mechanical strength | High (Can withstand heavy workload) | Low | Moderate—High (Depending on the reinforcement) | [27,52,53,54] |
Water permeability | Low | High | Low—Moderate (Depending on the reinforcement) | [27,37,55,56,57] |
Thermal stability | High | Low | Moderate—High (Depending on the reinforcement) | [27,52,53,58,59] |
Brittleness | Low | High | Low | [52,53,54,59,60] |
Industries | Types | Applications | References |
---|---|---|---|
Healthcare | Reinforced PLA | Gene delivery | [66,67,68] |
Tissue engineering | |||
Implants | |||
Shape memory | |||
Controlled-release drug delivery | |||
Electrical and electronic | Bioplastics reinforced with CNT/cellulose nanofibre | Flexible photovoltaic cells (Solar cell) | [79,80] |
Sensors | |||
Substrate in roll-to-roll fabrication techniques | |||
Graphene reinforced PLA | Three-dimensional printing filament | [81] | |
Architecture and construction | Lignocellulosic fibre reinforced bioplastics | Window frames and doors | [89] |
Stabilisers for earthen construction materials | [90] | ||
Agricultural | EFB reinforced bioplastics | Mulch film | [57,99] |
Plant nursery bags or pots | [100,101] | ||
Agricultural products packaging | [102] | ||
Packaging | Bio-based ethylene glycol | PepsiCo packaging | [101,103] |
PHA, PLA and starch | Food packaging | [104] | |
EFB or rice straw reinforced bioplastics | Fresh fruit packaging | [102] | |
Fibre reinforced PHBV | Active food packaging | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, U.; Mohammad Rawi, N.F.; Tay, G.S. The Potential Applications of Reinforced Bioplastics in Various Industries: A Review. Polymers 2023, 15, 2399. https://doi.org/10.3390/polym15102399
Kong U, Mohammad Rawi NF, Tay GS. The Potential Applications of Reinforced Bioplastics in Various Industries: A Review. Polymers. 2023; 15(10):2399. https://doi.org/10.3390/polym15102399
Chicago/Turabian StyleKong, Uwei, Nurul Fazita Mohammad Rawi, and Guan Seng Tay. 2023. "The Potential Applications of Reinforced Bioplastics in Various Industries: A Review" Polymers 15, no. 10: 2399. https://doi.org/10.3390/polym15102399
APA StyleKong, U., Mohammad Rawi, N. F., & Tay, G. S. (2023). The Potential Applications of Reinforced Bioplastics in Various Industries: A Review. Polymers, 15(10), 2399. https://doi.org/10.3390/polym15102399