Selective Adsorption Behavior and Mechanism for Cd(II) in Aqueous Solution with a Recoverable Magnetie-Surface Ion-Imprinted Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Fe3O4@SiO2@IIP
2.3. Adsorption Experiments
2.4. Selectivity Study
2.5. DFT Calculations
3. Results
3.1. Characterization
3.1.1. TEM
3.1.2. EDS
3.1.3. XRD
3.1.4. Surface Area and Pore Size Analysis
3.1.5. FTIR Spectroscopic Analysis
3.1.6. Magnetic Separation Performance
3.1.7. Thermal Stability Analysis
3.2. Effect of pH on Adsorption
3.3. Adsorption Kinetics
3.4. Adsorption Isotherms
3.5. Adsorption Thermodynamic
3.6. Selectivity Study and Reusability
3.7. Selective Adsorption Mechanism
3.8. Comparison with Other Adsorbents for Cadmium Adsorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Olympio, K.P.K.; Silva, J.P.d.R.; da Silva, A.S.; Souza, V.C.d.O.; Buzalaf, M.A.R.; Barbosa, F., Jr.; Cardoso, M.R.A. Blood Lead and Cadmium Levels in Preschool Children and Associated Risk Factors in São Paulo, Brazil. Environ. Pollut. 2018, 240, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Perera, P.C.T.; Sundarabarathy, T.V.; Sivananthawerl, T.; Kodithuwakku, S.P.; Edirisinghe, U. Arsenic and Cadmium Contamination in Water, Sediments and Fish Is a Consequence of Paddy Cultivation: Evidence of River Pollution in Sri Lanka. Achiev. Life Sci. 2016, 10, 144–160. [Google Scholar] [CrossRef]
- Shen, X.; Chen, X. Membrane-Free Electrodeionization Using Phosphonic Acid Resin for Nickel Containing Wastewater Purification. Sep. Purif. Technol. 2019, 223, 88–95. [Google Scholar] [CrossRef]
- Islam, M.A.; Awual, M.R.; Angove, M.J. A Review on Nickel(II) Adsorption in Single and Binary Component Systems and Future Path. J. Environ. Chem. Eng. 2019, 7, 103305. [Google Scholar] [CrossRef]
- Cao, H.; Yang, P.; Ye, T.; Yuan, M.; Yu, J.; Wu, X.; Yin, F.; Li, Y.; Xu, F. Recognizing Adsorption of Cd(Ⅱ) by a Novel Core-Shell Mesoporous Ion-Imprinted Polymer: Characterization, Binding Mechanism and Practical Application. Chemosphere 2021, 278, 130369. [Google Scholar] [CrossRef]
- Zhu, F.; Li, L.; Xing, J. Selective Adsorption Behavior of Cd(II) Ion Imprinted Polymers Synthesized by Microwave-Assisted Inverse Emulsion Polymerization: Adsorption Performance and Mechanism. J. Hazard. Mater. 2017, 321, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Xi, C.; Zhang, Y.; Zhang, F. Preparation and Characterization of Cadmium(II) -Ion-Imprinted Composites Based on Epoxy Resin. ACS Appl. Polym. Mater. 2022, 4, 9284–9293. [Google Scholar] [CrossRef]
- Jakavula, S.; Biata, N.R.; Dimpe, K.M.; Pakade, V.E.; Nomngongo, P.N. A Critical Review on the Synthesis and Application of Ion-Imprinted Polymers for Selective Preconcentration, Speciation, Removal and Determination of Trace and Essential Metals from Different Matrices. Crit. Rev. Anal. Chem. 2022, 52, 314–326. [Google Scholar] [CrossRef]
- Zhu, C.; Hu, T.; Tang, L.; Zeng, G.; Deng, Y.; Lu, Y.; Fang, S.; Wang, J.; Liu, Y.; Yu, J. Highly Efficient Extraction of Lead Ions from Smelting Wastewater, Slag and Contaminated Soil by Two-Dimensional Montmorillonite-Based Surface Ion Imprinted Polymer Absorbent. Chemosphere 2018, 209, 246–257. [Google Scholar] [CrossRef]
- Ding, C.; Deng, Y.; Merchant, A.; Su, J.; Zeng, G.; Long, X.; Zhong, M.-E.; Yang, L.; Gong, D.; Bai, L.; et al. Insights into Surface Ion-Imprinted Materials for Heavy Metal Ion Treatment: Challenges and Opportunities. Sep. Purif. Rev. 2023, 52, 123–134. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.; Luo, M.; Meng, M.; Ni, L.; Qiu, J.; Hu, Z.; Liu, F.; Zhong, G.; Liu, Z.; et al. Synthesis of Hydrophilic Surface Ion-Imprinted Polymer Based on Graphene Oxide for Removal of Strontium from Aqueous Solution. J. Mater. Chem. A 2015, 3, 1287–1297. [Google Scholar] [CrossRef]
- Msaadi, R.; Ammar, S.; Chehimi, M.M.; Yagci, Y. Diazonium-Based Ion-Imprinted Polymer/Clay Nanocomposite for the Selective Extraction of Lead (II) Ions in Aqueous Media. Eur. Polym. J. 2017, 89, 367–380. [Google Scholar] [CrossRef]
- Mishra, S.; Verma, N. Surface Ion Imprinting-Mediated Carbon Nanofiber-Grafted Highly Porous Polymeric Beads: Synthesis and Application towards Selective Removal of Aqueous Pb(II). Chem. Eng. J. 2017, 313, 1142–1151. [Google Scholar] [CrossRef]
- Sebastian, M.; Mathew, B. Ion Imprinting Approach for the Fabrication of an Electrochemical Sensor and Sorbent for Lead Ions in Real Samples Using Modified Multiwalled Carbon Nanotubes. J. Mater. Sci. 2018, 53, 3557–3572. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Asgharinezhad, A.A.; Moazzen, E.; Amini, M.M.; Sadeghi, O. A Magnetic Ion-Imprinted Polymer for Lead(II) Determination: A Study on the Adsorption of Lead(II) by Beverages. J. Food Compos. Anal. 2015, 41, 74–80. [Google Scholar] [CrossRef]
- Büyüktiryaki, S.; Keçili, R.; Hussain, C.M. Functionalized Nanomaterials in Dispersive Solid Phase Extraction: Advances & Prospects. TrAC Trends Anal. Chem. 2020, 127, 115893. [Google Scholar] [CrossRef]
- Xu, Z.-B.; Wang, W.-L.; Huang, N.; Wu, Q.-Y.; Lee, M.-Y.; Hu, H.-Y. 2-Phosphonobutane-1,2,4-Tricarboxylic Acid (PBTCA) Degradation by Ozonation: Kinetics, Phosphorus Transformation, Anti-Precipitation Property Changes and Phosphorus Removal. Water Res. 2019, 148, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, S.; Wang, G.; Li, T.; Xu, X.; Deng, O.; Zhang, Y.; Pu, Y. Enhancing the Soil Heavy Metals Removal Efficiency by Adding HPMA and PBTCA along with Plant Washing Agents. J. Hazard. Mater. 2017, 339, 33–42. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, H.; Li, H.; Zhao, C.; Zhao, R.; Li, S. Highly Selective Uranium Adsorption on 2-Phosphonobutane-1,2,4-Tricarboxylic Acid-Decorated Chitosan-Coated Magnetic Silica Nanoparticles. Chem. Eng. J. 2020, 388, 124349. [Google Scholar] [CrossRef]
- Fan, J.-P.; Yu, J.-X.; Yang, X.-M.; Zhang, X.-H.; Yuan, T.-T.; Peng, H.-L. Preparation, Characterization, and Application of Multiple Stimuli-Responsive Rattle-Type Magnetic Hollow Molecular Imprinted Poly (Ionic Liquids) Nanospheres (Fe3O4@void@PILMIP) for Specific Recognition of Protein. Chem. Eng. J. 2018, 337, 722–732. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, X.; Peng, J. Highly Selective Removal and Recovery of Ni(II) from Aqueous Solution Using Magnetic Ion-Imprinted Chitosan Nanoparticles. Carbohydr. Polym. 2021, 271, 118435. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Yang, C.; Rao, X.; Hu, L.; Bao, Y.; Gao, Y.; Zhu, X. Fabrication of Recoverable Magnetic Surface Ion-Imprinted Polymer Based on Graphene Oxide for Fast and Selective Removal of Lead Ions from Aqueous Solution. Colloids Surf. Physicochem. Eng. Asp. 2021, 625, 126949. [Google Scholar] [CrossRef]
- Zhao, H.; Liang, Q.; Yang, Y.; Liu, W.; Liu, X. Magnetic Graphene Oxide Surface Lithium Ion-Imprinted Material towards Lithium Extraction from Salt Lake. Sep. Purif. Technol. 2021, 265, 118513. [Google Scholar] [CrossRef]
- Kutluay, S.; Horoz, S.; Şahin, Ö.; Ekinci, A.; Ece, M.Ş. Highly Improved Solar Cell Efficiency of Mn-doped Amine Groups-functionalized Magnetic Fe3O4@SiO2 Nanomaterial. Int. J. Energy Res. 2021, 45, 20176–20185. [Google Scholar] [CrossRef]
- Nikmah, A.; Taufiq, A.; Hidayat, A.; Sunaryono; Susanto, H. Excellent Antimicrobial Activity of Fe3O4/SiO2/Ag Nanocomposites. Nano 2021, 16, 2150049. [Google Scholar] [CrossRef]
- He, H.; Gan, Q.; Feng, C. Synthesis and Characterization of a Surface Imprinting Silica Gel Polymer Functionalized with Phosphonic Acid Groups for Selective Adsorption of Fe(III) from Aqueous Solution: ARTICLE. J. Appl. Polym. Sci. 2017, 134, 45165. [Google Scholar] [CrossRef]
- Cheng, Y.; Nie, J.; Li, J.; Liu, H.; Yan, Z.; Kuang, L. Synthesis and Characterization of Core–Shell Magnetic Molecularly Imprinted Polymers for Selective Recognition and Determination of Quercetin in Apple Samples. Food Chem. 2019, 287, 100–106. [Google Scholar] [CrossRef]
- Khalid, A.; Ahmed, R.M.; Taha, M.; Soliman, T.S. Fe3O4 Nanoparticles and Fe3O4 @SiO2 Core-Shell: Synthesize, Structural, Morphological, Linear, and Nonlinear Optical Properties. J. Alloys Compd. 2023, 947, 169639. [Google Scholar] [CrossRef]
- Hussain, M.; Rehan, T.; Goh, K.W.; Shah, S.I.; Khan, A.; Ming, L.C.; Shah, N. Fabrication of a Double Core–Shell Particle-Based Magnetic Nanocomposite for Effective Adsorption-Controlled Release of Drugs. Polymers 2022, 14, 2681. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Yuan, X.; Wu, L.; Peng, Z.; Feng, W.; Liu, N.; Xu, D.; Li, S.; Sengupta, A.; Mohapatra, P.K.; et al. Ditopic CMPO-Pillar[5]Arenes as Unique Receptors for Efficient Separation of Americium(III) and Europium(III). Chem. Commun. 2015, 51, 4263–4266. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Lei, R.; Xu, J.; Kundu, S.C.; Cai, Y.; Yao, J.; Ni, Q. Fabricated Porous Silk Fibroin Particles for PH-Responsive Drug Delivery and Targeting of Tumor Cells. J. Mater. Sci. 2019, 54, 3319–3330. [Google Scholar] [CrossRef]
- Eskandari, E.; Kosari, M.; Davood Abadi Farahani, M.H.; Khiavi, N.D.; Saeedikhani, M.; Katal, R.; Zarinejad, M. A Review on Polyaniline-Based Materials Applications in Heavy Metals Removal and Catalytic Processes. Sep. Purif. Technol. 2020, 231, 115901. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, H.; Ding, J.; Ma, J.; Jiang, J.; Huang, Z.; Li, J.; Pang, S.; Guan, C.; Gao, Y. Cadmium Removal with Thiosulfate/Permanganate (TS/Mn(VII)) System: MnO2 Adsorption and/or CdS Formation. Chem. Eng. J. 2020, 380, 122585. [Google Scholar] [CrossRef]
- Li, M.; Zhao, C.; Feng, Q.-Z.; Feng, J.; Meng, X.-J. Experimental and DFT Studies on the Adsorption of Cd(II) Ions from Aqueous Solutions by Nanofiber Modified Thiourea Groups. Chem. J. Chin. U. 2021, 42, 3680–3691. [Google Scholar] [CrossRef]
- Hu, H.; Ren, Z.; Xi, Y.; Fang, L.; Fang, D.; Yang, L.; Shao, P.; Shi, H.; Yu, K.; Luo, X. Insights into the Role of Cross-Linking Agents on Polymer Template Effect: A Case Study of Anionic Imprinted Polymers. Chem. Eng. J. 2021, 420, 129611. [Google Scholar] [CrossRef]
- He, H.; Gan, Q.; Feng, C. Preparation and Application of Ni(II) Ion-Imprinted Silica Gel Polymer for Selective Separation of Ni(II) from Aqueous Solution. RSC Adv. 2017, 7, 15102–15111. [Google Scholar] [CrossRef]
- Ni, C.; Liu, Q.; Ren, Z.; Hu, H.; Sun, B.; Liu, C.; Shao, P.; Yang, L.; Pavlostathis, S.G.; Luo, X. Selective Removal and Recovery of La(III) Using a Phosphonic-Based Ion Imprinted Polymer: Adsorption Performance, Regeneration, and Mechanism. J. Environ. Chem. Eng. 2021, 9, 106701. [Google Scholar] [CrossRef]
- Ren, Z.; Zhu, X.; Du, J.; Kong, D.; Wang, N.; Wang, Z.; Wang, Q.; Liu, W.; Li, Q.; Zhou, Z. Facile and Green Preparation of Novel Adsorption Materials by Combining Sol-Gel with Ion Imprinting Technology for Selective Removal of Cu(II) Ions from Aqueous Solution. Appl. Surf. Sci. 2018, 435, 574–584. [Google Scholar] [CrossRef]
- Lee, H.M.; Lee, S.G.; Park, H.R.; Chough, S.H. Sorption Behaviors and Relation between Selectivity and Possible Cavity Shapes of the Molecularly Imprinted Materials. Microporous Mesoporous Mater. 2017, 251, 42–50. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, M.; Deng, Y.; Khan, Z.H.; Liu, X.; Song, Z.; Qiu, W. Efficient Oxidation and Adsorption of As(III) and As(V) in Water Using a Fenton-like Reagent, (Ferrihydrite) -Loaded Biochar. Sci. Total Environ. 2020, 715, 136957. [Google Scholar] [CrossRef]
- He, H.-X.; Gan, Q.; Feng, C.-G. An Ion-Imprinted Silica Gel Polymer Prepared by Surface Imprinting Technique Combined with Aqueous Solution Polymerization for Selective Adsorption of Ni(II) from Aqueous Solution. Chin. J. Polym. Sci. 2018, 36, 462–471. [Google Scholar] [CrossRef]
- Khan, M.I.; Nadeem, I.; Majid, A.; Shakil, M. Adsorption Mechanism of Palbociclib Anticancer Drug on Two Different Functionalized Nanotubes as a Drug Delivery Vehicle: A First Principle’s Study. Appl. Surf. Sci. 2021, 546, 149129. [Google Scholar] [CrossRef]
- He, X.; Deng, F.; Shen, T.; Yang, L.; Chen, D.; Luo, J.; Luo, X.; Min, X.; Wang, F. Exceptional Adsorption of Arsenic by Zirconium Metal-Organic Frameworks: Engineering Exploration and Mechanism Insight. J. Colloid Interface Sci. 2019, 539, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.-B.; Yu, G.; Xu, L.; Fu, M.-L. Porous Walnut-like La2O2CO3 Derived from Metal-Organic Frameworks for Arsenate Removal: A Study of Kinetics, Isotherms, and Mechanism. Chemosphere 2021, 271, 129528. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Gorman-Lewis, D.; Chen, N.; Flynn, S.L.; Ok, Y.S.; Konhauser, K.O.; Alessi, D.S. Thermodynamic Analysis of Nickel(II) and Zinc(II) Adsorption to Biochar. Environ. Sci. Technol. 2018, 52, 6246–6255. [Google Scholar] [CrossRef]
- Wu, F.; Pu, N.; Ye, G.; Sun, T.; Wang, Z.; Song, Y.; Wang, W.; Huo, X.; Lu, Y.; Chen, J. Performance and Mechanism of Uranium Adsorption from Seawater to Poly(Dopamine) -Inspired Sorbents. Environ. Sci. Technol. 2017, 51, 4606–4614. [Google Scholar] [CrossRef]
- Zhang, W.-Y.; Ye, S.-Q.; Yang, X.-T.; Zhu, B.-S.; Li, W.-L.; He, H.-X.; Deng, X.-J. A Recoverable Magnetic Surface Ion-Imprinted Polymer Based on Graphene Oxide for Fast and Selective Adsorption of Ni(II) from Aqueous Solution: Experimental and DFT Calculations. New J. Chem. 2023, 47, 1197–1208. [Google Scholar] [CrossRef]
- Abdolmohammad-Zadeh, H.; Rahimpour, E.; Pasandideh, Y. Utilizing a Nanocomposite Based on Ion-Imprinted Polydopamine-Coated Magnetic Graphene Oxide for Extraction of Cd(II) and Ni(II) from Water Samples. J. Anal. Chem. 2020, 75, 967–974. [Google Scholar] [CrossRef]
- Adauto, A.; Khan, S.; Augusto da Silva, M.; Gomes Neto, J.A.; Picasso, G.; Sotomayor, M.d.P.T. Synthesis, Characterization and Application of a Novel Ion Hybrid Imprinted Polymer to Adsorb Cd(II) in Different Samples. Environ. Res. 2020, 187, 109669. [Google Scholar] [CrossRef]
- Padilla-Ortega, E.; Medellín-Castillo, N.; Robledo-Cabrera, A. Comparative Study of the Effect of Structural Arrangement of Clays in the Thermal Activation: Evaluation of Their Adsorption Capacity to Remove Cd(II). J. Environ. Chem. Eng. 2020, 8, 103850. [Google Scholar] [CrossRef]
- Huang, R.; Lin, Q.; Zhong, Q.; Zhang, X.; Wen, X.; Luo, H. Removal of Cd(II) and Pb(II) from Aqueous Solution by Modified Attapulgite Clay. Arab. J. Chem. 2020, 13, 4994–5008. [Google Scholar] [CrossRef]
- Cao, C.-Y.; Liang, C.-H.; Yin, Y.; Du, L.-Y. Thermal Activation of Serpentine for Adsorption of Cadmium. J. Hazard. Mater. 2017, 329, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chu, R.; Wei, Y.; Cai, L. A Comparative Study of Cd(II) Adsorption on Calcined Raw Attapulgite and Calcined Aluminium Hydroxide-Modified Attapulgites in Aqueous Solution. RSC Adv. 2022, 12, 13695–13705. [Google Scholar] [CrossRef] [PubMed]
Sample | Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Diameter (nm) |
---|---|---|---|
Fe3O4@SiO2@IIP | 107.990 | 0.235 | 8.675 |
Fe3O4@SiO2@NIP | 79.455 | 0.182 | 8.747 |
Adsorption | qe, exp | Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | ||||
---|---|---|---|---|---|---|---|
k1 | qe, cal | R12 | k2 | qe, cal | R22 | ||
IIP | 18.21 | 0.2245 | 14.90 | 0.9658 | 0.0068 | 22.30 | 0.9945 |
NIP | 11.94 | 0.1971 | 6.86 | 0.9264 | 0.0199 | 13.46 | 0.9978 |
Adsorbents | qe, exp | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
KL | qm | R2 | n | KF | R2 | ||
Fe3O4@SiO2@IIP | 29.82 | 0.02429 | 37.24 | 0.9988 | 2.199 | 3.162 | 0.9501 |
Fe3O4@SiO2@NIP | 24.35 | 0.01018 | 42.03 | 0.9859 | 1.659 | 1.225 | 0.9592 |
Adsorbents | qe, exp (mg·g−1) | Ks (mg·L−1) | qm (mg·g−1) | R2 |
---|---|---|---|---|
Fe3O4@SiO2@IIP | 29.82 | 51.12 | 41.88 | 0.9583 |
35.00 | 35.94 | 0.9966 | ||
Fe3O4@SiO2@NIP | 24.35 | 93.28 | 39.34 | 0.9452 |
Adsorbent | Temperature (K) | ΔG (kJ·mol−1) | ΔH (kJ·mol−1) | ΔS (J·mol−1·K−1) |
---|---|---|---|---|
Fe3O4@SiO2@IIP | 298 | −15.13 | 8.56 | 79.56 |
303 | −15.51 | |||
308 | −15.97 | |||
313 | −16.03 | |||
318 | −16.72 | |||
Fe3O4@SiO2@NIP | 298 | −13.95 | 13.22 | 91.04 |
303 | −14.44 | |||
308 | −14.71 | |||
313 | −15.30 | |||
318 | −15.81 |
Metal Ion | Fe3O4@SiO2@IIP | Fe3O4@SiO2@NIP | k′ | ||||
---|---|---|---|---|---|---|---|
qe (mg·g−1) | D (mL·g−1) | k | qe (mg·g−1) | D (mL·g−1) | k | ||
Cd(II) | 3.02 | 643.30 | 0.98 | 172.06 | |||
Zn(II) | 0.28 | 54.12 | 11.89 | 0.70 | 139.82 | 1.23 | 9.67 |
Ni(II) | 0.26 | 51.78 | 12.42 | 1.07 | 230.34 | 0.75 | 16.56 |
Co(II) | 0.20 | 38.81 | 16.58 | 0.93 | 197.39 | 0.87 | 19.06 |
Items | Bond Length (Å) | Wiberg Bond Order | ||||
---|---|---|---|---|---|---|
C8-O10 | P14-O16 | P14-O17 | C8-O10 | P14-O16 | P14-O17 | |
PBTCA5− | 1.262 | 1.530 | 1.532 | 2.394 | 2.136 | 2.112 |
PBTCA-Cd(II)3− | 1.287 | 1.577 | 1.579 | 2.193 | 2.126 | 1.827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, S.; Zhang, W.; Hu, X.; He, H.; Zhang, Y.; Li, W.; Hu, G.; Li, Y.; Deng, X. Selective Adsorption Behavior and Mechanism for Cd(II) in Aqueous Solution with a Recoverable Magnetie-Surface Ion-Imprinted Polymer. Polymers 2023, 15, 2416. https://doi.org/10.3390/polym15112416
Ye S, Zhang W, Hu X, He H, Zhang Y, Li W, Hu G, Li Y, Deng X. Selective Adsorption Behavior and Mechanism for Cd(II) in Aqueous Solution with a Recoverable Magnetie-Surface Ion-Imprinted Polymer. Polymers. 2023; 15(11):2416. https://doi.org/10.3390/polym15112416
Chicago/Turabian StyleYe, Siqing, Weiye Zhang, Xingliang Hu, Hongxing He, Yi Zhang, Weili Li, Guangyuan Hu, Yue Li, and Xiujun Deng. 2023. "Selective Adsorption Behavior and Mechanism for Cd(II) in Aqueous Solution with a Recoverable Magnetie-Surface Ion-Imprinted Polymer" Polymers 15, no. 11: 2416. https://doi.org/10.3390/polym15112416
APA StyleYe, S., Zhang, W., Hu, X., He, H., Zhang, Y., Li, W., Hu, G., Li, Y., & Deng, X. (2023). Selective Adsorption Behavior and Mechanism for Cd(II) in Aqueous Solution with a Recoverable Magnetie-Surface Ion-Imprinted Polymer. Polymers, 15(11), 2416. https://doi.org/10.3390/polym15112416